Development of a MODFLOW Tool for Delineation of Stream Depletion Zones

Andrew Bobst and Scott Fleener Montana Bureau of Mines and Geology Montana Tech of the University of Montana

• In order to maintain long-term equilibrium, water removed by a well must be offset by either induced recharge to the aquifer, or a decrease in the aquifer discharge (Theis, 1941; Bredehoeft et al., 1982)

What is a Stream Depletion Zone?

• "Stream depletion means either direct depletion of the stream or reduction of ground-water flow to the stream" (Jenkins, 1968)

Stream Depletion Zone (SDZ) – A 3-dimensional zone based on a depletion threshold.

MCA 85-2-102: "...an area where *hydrogeologic modeling* concludes that as a result of a ground water withdrawal, the surface water would be depleted by a rate equal to at least 30% of the ground water withdrawn within 30 days after the first day a well or developed spring is pumped at a rate of 35 gallons a minute."

MCA 85-2-306: "...a permit is not required before appropriating ground water by means of a well or developed spring...

- when the appropriation is <u>outside</u> a stream depletion zone, is <u>35 gallons a minute</u> or less, and does not exceed <u>10 acre-feet a year</u>,
- when the appropriation is *within* a stream depletion zone, is **20** gallons a minute or less, and does not exceed **2** acre-feet a year"

How Stream Depletion is Calculated from MODFLOW Results – Numerical Model

Numerical modeling allows for more complex settings.

HEAD WILL BE SAVED ON U	NIT 730 AT END	OF TIME STEP 30, STRESS	PERIOD 1	T 730 AT END	OF TIME STEP 30, STRESS	PERIOD 1			
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 30, STRESS PERIOD 1					TIRE MODEL AT END OF TIME STEP 30, STRESS PERIOD 1				
CUMULATIVE VOLUMES	L**3	RATES FOR THIS TIME STEP	L**3/T	L**3	RATES FOR THIS TIME STEP	L**3/T			
IN: STORAGE =	2152.4048	IN: STORAGE =	28,9307	12022698.0000 0.0000	IN: STORAGE = CONSTANT HEAD =	399986.5000 0.0000			
CONSTANT HEAD = RIVER LEAKAGE =	11984761.0000 0.0000	CONSTANT HEAD = RIVER LEAKAGE =	<u>399494,7812</u> 0.0000	0.0000 0.0000	WELLS = RIVER LEAKAGE =	0.0000			
TOTAL IN = OUT:	11986913.0000	TOTAL IN = OUT:	399523.7188	12022698.0000	TOTAL IN = OUT:	399986.5000			
STORAGE = CONSTANT HEAD = RIVER LEAKAGE =	386.2915 0.0000 12468073.0000	STORAGE = CONSTANT HEAD - RIVER LEAKAGE =	1.4648 0.0000 415601.8125	338.1958 0.0000 202140.0000 12297468.0000	STORAGE = CONSTANT HEAD = WELLS = RIVER LEAKAGE =	0.0000 0.0000 6738.0000 409431.5000			
TOTAL OUT =	12468459.0000	TOTAL OUT =	415603.2812	12499946.0000	TOTAL OUT =	416169.5000			
IN - OUT =	-481546.0000	IN - OUT =	-16079.5625	-477248.0000	IN - OUT =	-16183.0000			
PERCENT DISCREPANCY =	-3.94	PERCENT DISCREPANCY =	-3.95	-3.89	PERCENT DISCREPANCY =	-3.97			

 $415,602 \text{ ft}^3/\text{d} - 409,432 \text{ ft}^3/\text{d} = 6170 \text{ ft}^3/\text{d}$

 $6170 \text{ ft}^3/\text{d} \div 6738 \text{ ft}^3/\text{d} = 91.6\%$

Testing a particular location is easy.

Testing every location to develop a SDZ would be extremely inefficient.

Usir	na the Tool					
Surface Water Features:	Hypothetical well pumping rate:					
General Head	gal ▼ per min ▼ Output Type:					
Stream Specified Head	 Depletion values by cell % of pumping rate 					
WARNING: If a cell type is used to define a surface water feature, that cell	Absolute SW depletion gal per min SDZ Boundary Output boundary instead of depletion values					
type CANNOT be used for anything else in the model.	 % of pumping rate Threshold % of pumping rate: % 					
Time step: 1	Absolute SW depletion Threshold value: gal v per min v					
	Simulation range limits (leave blank for defaults): Layer: 1-10					
	Row: 1-10 Column: 1-10					
	ERROR: No pump rate entered Confirm Cancel					

- Load native MODFLOW file
- Run Baseline
- Select surface water features
- Stress period/time steps
- Well pumping rate
- Brute-Force Method
- Recursive Method
 - Works out from "seed" cells until results are below a threshold
- *n*th cell
- Simulation Range Limits

1	Sim	ulation	finish d	ate: 201	3-09-17	17:08:10						
2	Fil	e locati	on:								Test	_1.m
3	Usi	ng MODFL	OW 2005	for simu	lation							_
4												
5	Lav	er 1										
6	-1	-1 -1	-1 -1	-1 -1	-1 -1	-1						
7	-2	0.0610	0.0610	0.0610	0.0610	0.0610	0.0610	0.0610	0.0610	-2		
8	-2	0.1223	0.1222	0.1222	0.1222	0.1222	0.1222	0.1222	0.1223	-2		
9	-2	0.1839	0.1838	0.1838	0.1838	0.1838	0.1838	0.1838	0.1839	-2		
10	-2	0.2459	0.2458	0.2457	0.2457	0.2457	0.2457	0.2458	0.2459	-2		
11	-2	0.3083	0.3081	0.3080	0.3079	0.3079	0.3080	0.3081	0.3083	-2		
12	-2	0.3712	0.3709	0.3706	0.3705	0.3705	0.3706	0.3709	0.3712	-2		
13	-2	0.4349	0.4343	0.4337	0.4335	0.4335	0.4337	0.4343	0.4349	-2		
14	-2	0.4998	0.4985	0.4976	0.4972	0.4972	0.4976	0.4985	0.4998	-2		
15	-1	-1 -1	-1 -1	-1 -1	-1 -1	-1						

- Tab delimited Easily imported into Excel
- Results by cell
 - -1: Inactive and/or featured cell
 - -2: Cell outside user limits
 - -888: Dry cell detected during simulation
 - -999: Error during simulation
 - Positive value: Calculated depletion value

Results using a Pre-Existing Model (Uthman and Beck, 1998)

Results using a Pre-Existing Model SDZ defined by q/Q>30% after 30 days

High Performance Computer (HPC)

- Trade off due to high "overhead" per batch
 <u>30 sec startup</u>
- Small models run quicker on desktop
- All the desktop options are available
- Need to submit batches
 - Brute-Force Method
 - User defined size
 - 32 cells per batch, with a maximum of 512 cores (16 batches) works well
 - MTech HPC has 704 cores
 - Recursive Method
 - User defined "chunk" size
 - 6x6x6 cell chunks (up to 216 cells) work well for MTech HPC
 - Chunk faces are evaluated for propagation

Run Times

• Non-HPC run times using a 4 core processer

- Brute-Force Method
 - 7,000 cells 11 minutes
 - 250,000 cells 4 days
- Recursive Method
 - 7,000 cells 2 minutes
 - 250,000 cells 16 hours
- HPC run times 250,000 cells
 - Brute-Force Method 6 hours
 - Recursive Method 1.5 hours

Conclusions

- Stream Depletion Zones (SDZs) will need to be developed in some areas of Montana.
- Other states have similar laws.
- If a properly designed and calibrated MODFLOW model is available for the area, it can be used to define the SDZ.
 - Be aware of the effects of boundaries.
- The SDZTool allows for automation of the stream depletion calculations
 - A 250,000 cell model can be run in 1.5 hrs on the HPC
- Critical evaluation of the initial model, and the results will be required.

