U.S. FISH & WILDLIFE SERVICE REGION 6 ENVIRONMENTAL CONTAMINANTS PROGRAM

Montana—Impacts of Oil Exploration and Production to the Northeast Montana Wetland Management District

MONTANA BUREAU OF MINES AND GEOLOGY OPEN-FILE REPORT 620

DEC ID: 200460001 FFS: 61130- 6N51 July 2013

TABLE OF CONTENTS

Abstract	3
List of Acronyms and Abbreviations	4
Introduction	5
Study Area	7
Climate	8
Regional Hydrogeology	8
Water Quality	9
Methods	12
Site Selection	
Produced Water in Wetlands	
Characterizing Oil Field Production	
Waste Migration	
Mapping EM-31 Surveys	
Monitoring Wells	
Soil Salinity at Monitoring Well Drilling Locations and Salt Scald Areas	13
Invertebrate Community and Sampling	14
Modeling Ion Toxicity and Toxicity Testing	14
Surface-Water and Groundwater Samples	14
Quality Assurance/Quality Control	14
Results and Discussion	15
Anderson WPA	15
Geology	15
Groundwater Hydrology	15
Characterizing Oilfield Production Brine Migration	10
Wetland Water Quality	
Co-occurring Contaminants	23
Rose Comp WPA	23
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Chandler WDA	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Watland Water Quality	
Co-occurring Contaminants	
Long Lake WPA	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Berger Pond WPA	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Watland Water Quality	
Co-occurring Contaminants	
Melby WPA	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Pring Migration	
Watland Water Quality	
Co-occurring Contaminants	
Co occurring Containmants	

Mallard Pond WPA	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Northeast WPA	56
Geology	57
Groundwater Hydrology	57
Characterizing Oil Field Production Brine Migration	57
Wetland Water Quality	57
Co-occurring Contaminants	57
North Root WPA	57
Geology	57
Groundwater Hydrology	57
Characterizing Oil Field Production Brine Migration	59
Wetland Water Quality	59
Co-occurring Contaminants	59
Big Slough WPA	59
Geology	59
Groundwater Hydrology	59
Characterizing Oil Field Production Brine Migration	59
Wetland Water Quality	62
Co-occurring Contaminants	62
Rabenberg WPA	63
Geology	63
Groundwater Hydrology	65
Characterizing Oilfield Production Brine Migration	65
Wetland Water Quality	68
Co-occurring Contaminants	
Hansen WPA	73
Geology	73
Groundwater Hydrology	74
Characterizing Oilfield Production Brine Migration	74
Wetland Water Quality	74
Co-occurring Contaminants	74
Ward WPA	76
Geology	76
Groundwater Hydrology	76
Characterizing Oilfield Production Brine Migration	76
Wetland Water Quality	78
Co-occurring Contaminants	78
Jerde WPA	79
Geology	79
Groundwater Hydrology	79
Characterizing Oilfield Production Brine Migration	79
Wetland Water Quality	
Co-occurring Contaminants	84
Erickson WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Ferguson WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	89

Wetland Water Quality	91
Co-occurring Contaminants	
Giesdal East WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Ouality	
Co-occurring Contaminants	
Redhead Retreat WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Westgard WPA	
Ğeology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Dog Leg WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Goose Lake WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Gjesdal West WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Olson WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Rivers WPA	
Geology	
Groundwater Hydrology	107
Characterizing Oilfield Production Brine Migration	109
Wetland Water Quality	109
Co-occurring Contaminants	109
Rich Johnson WPA	
Geology	
Groundwater Hydrology	
Characterizing Oilfield Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Parry WPA	
Geology	

Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Shoveler Puddle WPA	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
State Line WPA	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Wigeon Slough WPA	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Medicine Lake National Wildlife Refuge	
Geology	
Groundwater Hydrology	
Characterizing Oil Field Production Brine Migration	
Wetland Water Quality	
Co-occurring Contaminants	
Ion Toxicity	
Conclusions	
Management Recommendations	
Acknowledgments	
Literature Cited	
Appendix A	
Appendix B	
Appendix C	
Appendix D	

FIGURES

Figure 1. Location of the Northeast Montana WMD and Medicine Lake NWR	7
Figure 2. Stiff diagram based on the average values of major anions and cations	11
Figure 3. Map depicting locations of sampling sites, oil wells, and bodies of water for the Anderson WPA	16
Figure 4. Geology of the Anderson WPA	16
Figure 5. Groundwater flow map at the Anderson Tank battery and Site 4	17
Figure 6. Hydrogeologic cross-section showing near-surface conditions below the Anderson tank battery	18
Figure 7. Location of the five EM-31 terrain-conductivity survey sites conducted at the Anderson WPA	18
Figure 8. Distribution of mean chloride contamination index measured in wells and wetlands at Anderson WPA	19
Figure 9. Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 3	20
Figure 10. Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 4	20
Figure 11. Major groundwater ionic concentrations and associated contaminant index for monitoring wells	
present within EM-31 survey site 3 of the Anderson WPA during 2005	21
Figure 12. Major groundwater ionic compositions and associated contaminant index for monitoring wells	
present within EM-31 survey site 3 of the Anderson WPA during 2005	21
Figure 13. Major groundwater ionic concentrations and associated contaminant index for monitoring wells	
present within EM-31 survey site 4 of the Anderson WPA during 2005	22
Figure 14. Major groundwater ionic compositions and associated contaminant index for monitoring wells	
present within EM-31 survey site 4 of the Anderson WPA during 2005	22

Figure 15.	Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 1	23
Figure 16	. Hydrogeologic cross-section showing near-surface conditions below the Anderson site #1	23
Figure 17	Major groundwater ionic concentrations and associated contaminant index for monitoring wells	
0	present within EM-31 survey site 1 of the Anderson WPA during 2005	24
Figure 18.	Major groundwater ionic compositions and associated contaminant index for monitoring wells	
0	present within EM-31 survey site 1 of the Anderson WPA during 2005	24
Figure 19.	Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 2	25
Figure 20.	Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 5	25
Figure 21	Concentrations of total petroleum hydrocarbons from soil samples collected across the Northeast	
0	MTWMD in 2005	29
Figure 22	Concentrations of total petroleum hydrocarbons from groundwater samples collected across the	,
	Northeast Montana WMD in 2005.	
Figure 23.	Map depicting locations of sampling sites, oil wells, and bodies of water for the Base Camp WPA	
Figure 24	Near-surface geology of the Base Camp WPA	
Figure 25.	Map depicting locations of sampling sites, oil wells, and bodies of water for the Chandler WPA	
Figure 26	Geology of the Chandler WPA	
Figure 27	Map depicting locations of sampling sites, oil wells, and bodies of water for the Long Lake WPA	
Figure 28	Geology of the Long Lake WPA	36
Figure 29	Location of EM-31 terrain-conductivity surveys conducted at the Long Lake WPA	37
Figure 30	Map depicting locations of sampling sites oil wells and bodies of water for the Berger Pond WPA	39
Figure 31	Geology of the Berger Pond WPA	39
Figure 32	Man depicting locations of sampling sites oil wells, and bodies of water for the Melby WPA	40
Figure 33	Geology of the Melby WPA	41
Figure 34	Groundwater flow at the Melby WPA	42
Figure 35	Hydrogeologic cross-section at the Melby WPA oil well site	43
Figure 36	Location of FM-31 terrain-conductivity surveys conducted at the Melby WPA	43
Figure 37	Major groundwater ionic concentrations and associated contaminant index for monitoring wells	
I iguite 57	present within the Melby WPA during 2005	44
Figure 38	Major groundwater jonic compositions and associated contaminant index for monitoring wells	
I iguite 50.	present within the Melby WPA during 2005	44
Figure 30	Distribution of the mean chloride contamination index measured in wells and wetlands associated	++
riguit 57	with the Melby WPA	15
Figure 40	Concentrations of total petroleum hydrocarbons from soil samples collected across the Northeast	+J
riguit 40	Montana WMD in 2005	15
Figure /1	Concentrations of total petroleum hydrocarbons from groundwater samples collected across the	+J
riguit 41	Northeast Montana WMD in 2005	17
Figure 12	Man depicting locations of sampling sites oil wells, and bodies of water for the Mallard Pond WPA	/10
Figure 13	Geology of the Mallard Pond WPA	/10
Figure 1/	Cross section showing hydrogeologic conditions in the vicinity of the of the Mallard Pond WPA	50
Figure 45	Location of FM 31 terrain conductivity surveys conducted at the Mallard Pond WPA	50
Figure 16	Major groundwater ionic concentrations and associated contaminant index for monitoring wells	
riguie 40	present within the Mallard Pond WPA during 2005	51
Figure 17	Major groundwater ionic compositions and associated contaminant index for monitoring wells	
riguie 47	present within the Mallard Pond WPA during 2005	51
Figure 18	Distribution of the mean chloride contamination index measured in wells and wetlands associated	
riguie 40	with the Mollard Pond WPA	52
Eiguro 40	Concentrations of total petroleum hydrocerbons from soil semples collected across the Northeast	
riguie 49	Montone WMD in 2005	55
Eigura 50	Concentrations of total notroloum hydrocerbons from groundwater samples collected coross the	
Figure 50	Northeast Montane WMD in 2005	55
Eigura 51	Non-denisting locations of sompling sites, oil wells, and hodies of water for the Northeast WDA	
Figure 51.	. Is ap depicting locations of sampling sites, on wens, and boules of water for the Northeast WPA	
Figure 52	Mon deniating logations of compling sites, all wells, and hading of water for the North Deet WDA	
Figure 53.	. Wap depicting locations of sampling sites, on wens, and bodies of water for the North Root WPA	
Figure 54	Location of EM 21 terroin conductivity surgers and acted at the North Dect WDA	
Figure 55.	Mon deniating locations of compling sites, oil wells, and hading of water for the Dig Slowsh WDA	
Figure 50	. Wrap depicting locations of sampling sites, on wens, and bodies of water for the Big Slough WPA	0U
Figure 57	Location of EM 21 terrain conductivity survive conducted at the Dis Claush WDA	0U ∠1
rigure 58.	. Location of EN1-51 terrain-conductivity surveys conducted at the Big Slough wPA	01

Figure 59	Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within the Big Slough WPA during 2005	61
Figure 60	Major groundwater jonic compositions and associated contaminant index for monitoring wells	.01
I Iguie oo	present within Rig Slough WPA during 2005	62
Figure 61	Man depicting locations of sampling sites oil walls and bodies of water for the Pahenberg WPA	.02 64
Figure 62	Coology of the Debenberg WDA	.0 4
Figure 62	Location of EM 21 terrain conductivity surveys conducted at the Debenberg WDA	.04
Figure 64	Location of EM 21 terms and activity survey conducted at the Rabenberg WPA	.05
Figure 64	Location of EM-31 terrain-conductivity survey conducted at Site 1 of the Rabenberg wPA	.65
Figure 65	Location of EM-31 terrain-conductivity survey conducted at Site 2 of the Rabenberg WPA	.66
Figure 66	. Location of EM-31 terrain-conductivity survey conducted at Site 3 of the Rabenberg WPA	.66
Figure 67	. Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within and around the Rabenberg WPA during 2005	67
Figure 68	Major groundwater ionic compositions and associated contaminant index for monitoring wells	
I Iguie oo	present within and around the Rabenberg WPA during 2005	67
Figure 60	Comparison of major groundwater jonic concentrations and associated contaminant indices for selected	4
rigule 09	monitoring walls within and around the Dahanharg WDA during 1080 and 2005	л 67
Eigen 70	Comparison of motion anound methods in a comparison and accessized contaminant in diaco for extended	.07
Figure 70	Comparison of major groundwater fonic compositions and associated contaminant indices for selected	60
	monitoring wells present within and around the Rabenberg WPA during 1989 and 2005	.68
Figure /1	. Concentrations of total petroleum hydrocarbons from groundwater samples collected across the	
	Northeast Montana WMD in 2005	.69
Figure 72	. Map depicting locations of sampling sites, oil wells, and bodies of water for the Hansen WPA	.73
Figure 73	. Geology of the Hansen WPA	.74
Figure 74	. Location of EM-31 terrain-conductivity surveys conducted at the Hansen WPA	.74
Figure 75	. Comparison of major groundwater ionic concentrations and associated contaminant indices between	
-	1989 and 2005 for the groundwater well HAN-1MW	.75
Figure 76	. Comparison of major groundwater ionic compositions and associated contaminant indices between	75
	1989 and 2005 for the groundwater well HAN-IMW	. / 3
Figure 77	. Map depicting locations of sampling sites, oil wells, and bodies of water for the Ward WPA	.77
Figure 78	. Geology of the Ward WPA	.77
Figure 79	. Major groundwater ionic concentrations and associated contaminant index values for the monitoring well 167B in 1989 and the wells WD-2MW and WD-3MW in 2005	.78
Figure 80	Major groundwater ionic compositions and associated contaminant index values for the monitoring	
C	well 167B in 1989 and the wells WD-2MW and WD-3MW in 2005	.78
Figure 81	. Map depicting locations of sampling sites, oil wells, and bodies of water for the Jerde WPA	.80
Figure 82	. Geology of the Jerde WPA	.80
Figure 83	Cross section showing hydrogeologic conditions at the Jerde WPA	81
Figure 84	Location of EM-31 terrain-conductivity surveys conducted at the Ierde WPA	81
Figure 85	Location of EM-31 terrain-conductivity site 1 surveys conducted at the Jerde WPA	81
Figure 86	Location of EM-31 terrain-conductivity site 2 surveys conducted at the Jerde WPA	82
Figure 87	Major groundwater ionic compositions and associated contaminant index values for monitoring wells	.02
riguie or	present within the Word WDA during 2005	87
Eiguro 99	Major groundwater jonic concentrations and associated contaminant index values for monitoring walls	.02
Figure 88	. Wajor groundwater forme concentrations and associated containmant much values for monitoring wens	02
E	present within the ward w PA during 2005	.03
Figure 89	. Concentrations of total petroleum hydrocarbons from soil samples collected across the Northeast	05
	Montana WMD in 2005	.85
Figure 90	. Concentrations of total petroleum hydrocarbons from groundwater samples collected across the Northeast Montana WMD in 2005	87
Figure 01	Man denicting locations of sampling sites oil walls and bodies of water for the Eristson WDA	00
Figure 91	Coole on which Emiland WDA	.00
Figure 92	Leasting of EM 21 termin conductivity representation in the state of the E 1 and WDA	.00
Figure 93	Location of EWI-31 terrain-conductivity surveys conducted at the Erickson WPA	.89
Figure 94	. Map depicting locations of sampling sites, oil wells, and bodies of water for Redhead Retreat WPA	.90
Figure 95	. Geology of the Ferguson WPA	.90
Figure 96	. Map depicting locations of sampling sites, oil wells, and bodies of water for the Gjesdal East WPA	.91
Figure 97	. Geology of the Gjesdal East WPA	.92
Figure 98	. Map depicting locations of sampling sites, oil wells, and bodies of water for Redhead Retreat WPA	.93
Figure 99	. Geology of the Redhead Retreat WPA.	.94
Figure 10	0. Map depicting locations of sampling sites, oil wells, and bodies of water for the Westgard WPA	.95
Eiguro 10	1 Geology of the Westgard WPA	95

Figure 102. Location of EM-31 terrain-conductivity surveys conducted at the Westgard WPA	96
Figure 103. Map depicting locations of sampling sites, oil wells, and bodies of water for the Dog Leg WPA	98
Figure 104. Geology of the Dog Leg WPA.	98
Figure 105. Location of EM-31 terrain-conductivity surveys conducted at the Dog Leg WPA	99
Figure 106. Location of EM-31 terrain-conductivity survey conducted at Site 1 of the Dog Leg WPA	99
Figure 107. Location of EM-31 terrain-conductivity survey conducted at Site 2 of the Dog Leg WPA	100
Figure 108. Location of EM-31 terrain-conductivity survey conducted at Site 3 of the Dog Leg WPA	100
Figure 109. Map depicting locations of sampling sites, oil wells, and bodies of water for the Goose Lake WPA.	101
Figure 110. Geology of the Goose Lake WPA	101
Figure 111. Map depicting locations of sampling sites, oil wells, and bodies of water for the Gjesdal West WPA	103
Figure 112. Geology of the Giesdal West WPA	104
Figure 113. Location of EM-31 terrain-conductivity surveys conducted at the Gjesdal West WPA	104
Figure 114. Map depicting locations of sampling sites, oil wells, and bodies of water for the Olson WPA	106
Figure 115. Geology of the Olson WPA	106
Figure 116. Map depicting locations of sampling sites, oil wells, and bodies of water for the Rivers WPA	108
Figure 117. Geology of the Rivers WPA	108
Figure 118. Map depicting locations of sampling sites, oil wells, and bodies of water for the Rich Johnson WPA	110
Figure 119. Geology of the Rich Johnson WPA	110
Figure 120. Map depicting locations of sampling sites, oil wells, and bodies of water for the Parry WPA	111
Figure 121. Geology of the Parry WPA.	
Figure 122. Map depicting locations of sampling sites, oil wells, and bodies of water for Shoveler Puddle WPA	
Figure 123. Geology of the Shoveler Puddle WPA.	
Figure 124. Map depicting locations of sampling sites, oil wells, and bodies of water for the State Line WPA	
Figure 125. Geology of the State Line WPA.	
Figure 126. Map depicting locations of sampling sites, oil wells, and bodies of water for Wigeon Slough WPA.	
Figure 127. Geology of the Wigeon Slough WPA	
Figure 128. Location of EM-31 terrain-conductivity surveys conducted at the Wigeon Slough WPA	
Figure 129. Location of EM-31 terrain-conductivity survey conducted at Site 1 of the Wigeon Slough WPA	
Figure 130. Location of EM-31 terrain-conductivity survey conducted at Site 2 of the Wigeon Slough WPA	
Figure 131. Location of EM-31 terrain-conductivity survey conducted at Site 3 of the Wigeon Slough WPA	
Figure 132. Map depicting locations of sampling sites, oil wells, and bodies of water for Medicine Lake NWR.	
Figure 133. Geology of the Medicine Lake NWR—West & East	
Figure 134. Geology of Medicine Lake NWR—West & East	
Figure 135. Cross-section A-A' at Medicine Lake NWR – West & East	
Figure 136. Location of EM-31 terrain-conductivity survey conducted at the Medicine Lake NWR surrounding	
oil well 21600	123
Figure 137. Location of EM-31 terrain-conductivity survey conducted at the Medicine Lake NWR surrounding	
oil well 21599	
Figure 138. Location of vertical EM-31 terrain-conductivity survey conducted at the Medicine Lake NWR	
surrounding oil well 21599	
Figure 139. Major groundwater jonic concentrations and associated contaminant index values for monitoring	
wells present within the Medicine Lake NWR during 2005.	
Figure 140. Major groundwater jonic compositions and associated contaminant index values for monitoring	
wells present within the Medicine Lake NWR during 2005.	
Figure 141. Concentrations (mg/kg DW) of total petroleum hydrocarbons from soil samples collected across the	e
Northeast MTWMD in 2005.	
Figure 142. Concentrations of total petroleum hydrocarbons from groundwater samples collected across the	120
Northeast MTWMD in 2005	
Figure 143. Average observed survival of <i>C. dubia</i> with 95% confidence intervals when exposed to site water	
from 20 locations across the Northeast MTWMD.	128
Figure 144. Average CI value for wetland sites visited across the Northeast Montana Wetland Management	
District.	
	· · · · · · · · · · · · · · · · · · ·

TABLES

Table 1. Water-yielding and water-quality characteristics of principal aquifers in Sheridan County Table 2. Specific conductivity and CI of 1:1 aqueous leachates of soil samples at different depths in the Anderson WPA	.10 .26
Table 3. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification.	.26
Table 4. Groundwater concentrations of trace elements present in groundwater samples from monitoring wells present within the Anderson WPA during 2005	.27
Table 5. Kendall's tau correlation coefficients and resulting probabilities between groundwater trace element concentrations and the CI with associated sample size from samples collected across the Northeast Monta WMD	na .28
Table 6. Surface-water concentrations of trace elements present in the sampled wetland AND2 during 2004 and the wetlands AND4 and AND11 during 2005	.29
Table 7. Kendall's tau correlation coefficients and resulting probabilities between surface-water trace element concentrations and the CI with associated sample size from samples taken across the Northeast Montana WMD	.30
Table 8. Concentrations of hydrocarbon fractions from soil samples collected in 2006 within Anderson WPA with associated toxicity criteria	.30
Table 9. Concentrations of hydrocarbon fractions from groundwater samples collected in 2006 within Anderson WPA with associated toxicity criteria	.31
Table 10. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Base Camp WPA	.33
Table 11. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for the wetland visited at the Chandler WPA	.35
Table 12. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Long Lake WPA	.37
Table 13. Surface-water concentrations of trace elements present in the sampled wetland LL2 during 2004 and 2005	.38
Table 14. Specific conductivity and CI of 1:1 aqueous leachates of soil samples at different depths in the Melby WPA	.42
Table 15. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Melby WPA	.44
Table 16. Surface-water and groundwater concentrations of trace elements present in the sample monitoring wells and wetland of the Melby WPA in 2005	.46
Table 17. Concentrations of hydrocarbon fractions from soil samples collected in 2006 with the Melby WPA with associated toxicity criteria	.47
Table 18. Concentrations of hydrocarbon fractions from groundwater samples collected in 2006 within the Melby WPA with associated toxicity criteria.	.48
Table 19. Specific conductivity and CI of 1:1 aqueous leachates of soil samples at different depths in the Mallard Pond WPA	.53
Table 20. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Mallard Pond WPA	.53
Table 21. Surface-water and groundwater concentrations of trace elements present in the sample monitoring wells and wetland of the Mallard Pond WPA in 2005	.54
Table 22. Concentrations of hydrocarbon fractions from the soil sample collected in 2006 within the Mallard Pond WPA with associated toxicity criteria	.54
Table 23. Specific conductivity and CI of 1:1 aqueous leachates of soil samples at different depths in the Big Slough WPA	.62
Table 24. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Big Slough WPA	.63
Table 25. Groundwater concentrations of trace elements present in the sample monitoring wells of the Big Slough WPA in 2005	.63
Table 26. Specific conductivity and CI of 1:1 aqueous leachates of soil samples at different depths in the Rabenberg WPA	.66
Table 27. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Rabenberg WPA	.69

Table 28.	Surface-water concentrations of trace elements present in the sampled wetlands of the Rabenberg WPA in 2004 and 2005	70
Table 29.	Groundwater concentrations of trace elements present in the sampled monitoring wells of the Rabenberg WPA in 2005.	71
Table 30.	Groundwater concentrations of trace elements present in the sampled monitoring wells of the Rabenberg WPA in 1989	72
Table 31.	Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Hansen WPA	75
Table 32.	Surface-water concentrations of trace elements from HAN1 in 2005 and groundwater concentrations of trace elements present in the sampled monitoring well HAN-1MW in 1989 and 2005	76
Table 33.	Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Ward WPA	79
Table 34.	Groundwater concentrations of trace elements present in the sampled monitoring wells of the Ward WPA in 2005	79
Table 35.	Specific conductivity and CI of 1:1 aqueous leachates of soil samples at different depths in the Jerde WPA	83
Table 36.	Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Jerde WPA	83
Table 37.	concentrations of trace elements from JERT in 1990 and 2005 and groundwater concentrations of trace elements present in the sampled monitoring wells of the Jerde WPA in 2005	84
Table 30.	with associated toxicity criteria	86
Table 40	Jerde WPA with associated toxicity criteria	86
Table 41	classification based on inland salinity modifiers for wetlands visited at the Erickson WPA	89
Table 42.	classification based on inland salinity modifiers for the wetland visited at the Ferguson WPA	91
Table 43.	classification based on inland salinity modifiers for wetlands visited at the Gjesdal East WPA	92
Table 44.	classification based on inland salinity modifiers for wetland visited at the Redhead Retreat WPA	94
Table 45.	classification based on inland salinity modifiers for wetlands visited at the Westgard WPA Surface-water concentrations of trace elements present in the sampled wetland WG3 in 2004	96 97
Table 46.	Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Dog Leg WPA	99
Table 47.	Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Goose Lake WPA	102
Table 48.	Surface-water concentrations of trace elements present in select wetlands of the Goose Lake WPA in 2005	102
Table 49.	Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for wetlands visited at the Gjesdal West WPA	105
Table 50.	Surface-water concentrations of trace elements present in select wetlands of the Gjesdal West WPA in 2005	105
Table 51.	classification based on inland salinity modifiers for the wetland visited at the Olson WPA	107
Table 52. Table 53.	Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers for the worland visited at the Divers WPA	107
Table 54.	Surface-water concentrations of trace elements present in the RIV1 site at the Rivers WPA in 2005 Watland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity.	109
Table 56	classification based on inland salinity modifiers for wetlands visited at the Rich Johnson WPA	111
Table 57	classification based on inland salinity modifiers for wetlands visited at the Parry WPA	112
	classification based on inland salinity modifiers for wetlands visited at the State Line WPA	116

Table 58.	Surface-water concentrations of trace elements present in select wetland sites at the State Line WPA	
	in 2005	116
Table 59.	Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity	
	classification based on inland salinity modifiers for wetlands visited at the Wigeon Slough WPA	.119
Table 60.	Surface-water sampling date, specific conductivity, chloride concentration, contaminant index, and	
	salinity classification based on inland salinity modifiers developed for the Medicine Lake NWR	123
Table 61.	Surface-water concentrations of trace elements from ML-SW in 2005 and groundwater concentrations	
	of trace elements present in the sampled monitoring wells of the Medicine Lake NWR in 2005	.125
Table 62.	Concentrations of hydrocarbon fractions from the groundwater sample collected in 2006 within the	
	Medicine Lake NWR with associated toxicity criteria	127
Table 63.	Summary of chloride impacts and water-quality exceedances for surface-water and groundwater	
	samples collected across the Northeast Montana WMD	130

U.S. FISH & WILDLIFE SERVICE REGION 6 ENVIRONMENTAL CONTAMINANTS PROGRAM

MT—Impacts of Oil Exploration and Production to the Northeast Montana Wetland Management District

By David R. Rouse¹, Karen J. Nelson¹, and Jon C. Reiten²

> DEC ID: 200460001 FFS: 61130- 6N51 August 14, 2013

¹U.S. FISH AND WILDLIFE SERVICE Ecological Services Montana Field Office 585 Shepard Way Helena Montana 59601 ²MONTANA BUREAU OF MINES AND GEOLOGY Montana Tech 1300 N. 27th Street Billings, Montana 59101

ABSTRACT

The Northeast Montana Wetland Management District provides habitat for numerous different species of breeding waterfowl and migrating shorebirds, including the threatened Piping Plover and endangered Whooping Crane. The management district is also located within the Williston Basin, which is often considered Montana's top oil-producing region, characterized by dense oil fields both currently operational and historic. The majority of the waterfowl production areas are located in the eastern half of Sheridan County, Montana, where very high densities of oil wells are also located. Produced water is the dominant waste product of the oil production process. Prior to the 1970s, it was often stored in unlined reserve pits or disposed of in infiltration pits. Produced waters of the Williston Basin are highly saline brines that often contain co-occurring contaminants that were either included as additives during the drilling process or derived from the deep oilproducing zones and brought to the surface during the extraction process. Improper disposal of produced water brines can degrade surface water and groundwater. This study was conducted to evaluate the extent of produced water contamination throughout the Northeast Montana Wetland Management District.

Numerous techniques were employed to assess produced water brine contamination throughout the Northeast Montana Wetland Management District. In the field, a contaminant index (i.e., chloride concentration/specific conductivity) was calculated for wetlands visited to initially quantify the extent of surface-water brine contamination. Water quality was assessed at 87 wetlands. Thirty-five of the visited wetlands had average contaminant index values indicating brine contamination. Impacted wetlands were found in 17 of the 29 waterfowl production areas and one refuge visited. The apparent terrain conductivity of sites where the contaminant index suggested produced water brine impacts was then characterized using soil electromagnetic conductivity (EM-31) surveys. Completed EM-31 surveys delineated the movement of brine from its original disposal location and indicated whether or not produced water and associated contaminants may have contaminated surface waters on the WPAs. Ionic compositions of groundwater monitoring well samples were quantified in areas with suspected contamination, and the calculated groundwater contaminant index value often verified the results of the EM-31 surveys. Furthermore, analyses for petroleum hydrocarbons on soil and groundwater samples and analyses for trace elements on groundwater and surface-water samples indicated that certain constituents from each group of co-occurring contaminants were present in the environment at potentially toxic levels as a result of the oil exploration and production processes. In an effort to quantify the impacts of co-occurring contaminants, an ion-toxicity model was applied in coordination with laboratory toxicity tests using site water.

The presence of historical infiltration disposal pits, coupled with underlying glacial outwash, represent scenarios in which the risk of environmental contamination is elevated due to the likelihood of drilling waste migrating offsite. Historic aerial maps could be used to identify historical brine pits and the application of the contaminant index could be used in coordination to identify other contaminated areas or to identify areas that are susceptible to contamination.

Keywords: DEC ID: 200460001, FFS: 61130- 6N51, Produced Water, Brines, Williston Basin, Northeast Montana Wetland Management District, EM-31

LIST OF ACRONYMS AND ABBREVIATIONS

Ag	Silver	V	Vanadium
Al	Aluminum	WMD	Wetland Management District
API	American Petroleum Institute	WPA	Waterfowl Production Area
As	Arsenic	Zn	Zinc
ASCII	American Standard Code for Information Interchange	Zr	Zirconium
В	Boron		
Ba	Barium		
Be	Beryllium		
Br	Bromine		
Ca	Calcium		
Cd	Cadmium		
CI	Contaminant index		
Cl	Chloride		
Со	Cobalt		
CO ₃	Carbonate		
Cr	Chromium		
Cu	Copper		
DEM	Digital elevation model		
DO	Dissolved oxygen		
DOC	Dissolved organic carbon		
DW	Dry weight		
EM-31	Electromagnetic conductivity survey meter		
EPA	Environmental Protection Agency		
GPM	Gallons per minute		
GWIC	Ground-Water Information Center		
HAPET	Habit and Population Evaluation Team		
HCO,	Bicarbonate		
Hg	Mercury		
ICP-MS	Inductively coupled plasma spectrometry		
IDW	Inverse distance weighting		
K	Potassium		
Li	Lithium		
MBMG	Montana Bureau of Mines and Geology		
MBOGC	Montana Board of Oil and Gas Conservation		
Mg	Magnesium		
Mo	Molybdenum		
Na	Sodium		
NaCl	Sodium chloride		
Ni	Nickel		
NO.	Nitrate		
NWR	National Wildlife Refuge		
Pb	Lead		
OA/OC	Ouality assurance/quality control		
RCRA	Resource Conservation and Recovery Act		
SAR	Sodium adsorption ratio		
SC	Specific conductivity		
Se	Selenium		
Service	United States Fish and Wildlife Service		
SO	Sulfate		
Sr ⁴	Strontium		
TDS	Total dissolved solids		
TERL	Trace Element Research Laboratory		
Ti	Titanium		
ГРН	Total petroleum hydrocarbons		
[]	Uranium		
UWRBERI	University of Wyoming Red Butte Environmental Biolo	ov Lah	
	Surversity of the sound from Butte Environmental Biolo	5, Luo	

INTRODUCTION

The Williston Basin, which extends into the northeastern corner of Montana, is Montana's top oil-producing region, accounting for 81% of all oil produced in the state (Montana Oil and Gas Conservation Division, 2000). The Northeast Montana Wetland Management District (WMD), found in Daniels, Sheridan, and Roosevelt Counties of Montana, contains a portion of the prairie pothole region, and also overlies numerous oil fields located in the Williston Basin. The majority of the waterfowl production areas (WPA) were purchased without underground mineral rights, and perpetual wetland and grassland easements do not prevent oil exploration or drilling activities. Consequently, oil field development in eastern Sheridan County, Montana has caused the transfer of highly concentrated sodium chloride brines from deep oil-producing zones to shallow aquifers, lakes, and wetlands. Therefore, the overlap of oil production activities has created concerns for the Northeast Montana WMD.

Oil was first discovered in the Williston Basin in North Dakota along the Nesson Anticline near the town of Tioga in 1951. The first oil boom in eastern Sheridan County, Montana did not occur until the early 1960s, when several large fields were developed. Two of the larger fields developed were the Goose Lake and Flat Lake fields. The primary targets for oil extraction were zones in the lower Charles Formation of the Mississippian Madison group. A second oil boom occurred in the 1970s when deeper oil formations were targeted, mainly in the Ordovician Red River Formation. Renewed oil exploration activity began in the mid-1990s with the advent of horizontal drilling and three-dimensional seismic technology (USFWS, 2000). Recent targets include the Bakken Shale and the underlying Three Forks Formation. Typical production from these units requires horizontal boreholes to be completed within the producing formation. To produce hydrocarbons, the formations surrounding the horizontal legs are hydrofractured using highly pressurized fluids developed to carry fine-sand-sized proppants into fractures induced by the high-pressure fluids. These induced fractures are propped open and stabilized by the sand grains, allowing hydrocarbons to flow toward the borehole, where they are extracted by surface pumps.

Environmental contaminants generated in conjunction with oil exploration and production that may cause adverse effects are drilling muds and production activity wastes, including produced water. Congress exempted these wastes from the more stringent requirements of the hazardous waste management provision of the Resource Conservation and Recovery Act (RCRA). Consequently, reserve pits, reinjection wells, and well site abandonment procedures are less stringent than would otherwise be required under RCRA, increasing the potential for contamination to remain in the environment (Kharaka and others, 1995). Drilling fluids or muds are crucial production components for cooling and lubricating the drill bit, removing the drill cuttings from the drilling area, and transporting them to the surface. They counterbalance the geologic formation pressure to prevent formation fluids (i.e., oil, gas, and water) from entering the well prematurely and prevent the open uncased wellbore from caving in (EPA, 2000). Additives enhance the performance of the drilling fluids and typically contain weighting materials such as barium sulfate and various types of corrosion inhibitors such as iron oxide, aluminum bisulfate, zinc carbonate, and zinc chromate (EPA, 2000). In the Williston Basin, most drilling requires negotiating salt-bearing formations, which necessitates the use of special drilling muds. Muds used for these formations are either saltwater-based or oil-based. Saltwaterbased muds typically contain 250,000 mg/L NaCl, while oil-based muds contain combinations of diesel fuel, crude oil, oxidized asphalt, fatty and organic acids, and stabilizing agents (Montana Office of the Governor and others, 1989). Other drilling additives employ dispersants such as iron lignosulfonates; flocculants such as acrylic polymers; surfactants; and biocides such as organic amines, chlorophenols, and formaldehydes, which are used to kill bacteria that may produce sulfide gas (EPA, 2000).

Drilling wastes range from 8 to 84 gallons for each foot drilled (EPA, 2000). In Sheridan County, where well depths vary between 6,520 and 12,000 ft (Montana Oil and Gas Conservation Division, 2000), drilling wastes may range from 52,000 to 1 million gallons per newly drilled well. Formation fluids, as well as rock cuttings from the drilling process, are also often found in the drilling wastes and may contribute to contaminant loads (EPA, 2000).

When brought to the surface through the extraction process, the formation fluid normally contains several constituents in addition to crude oil, such as natural gas, produced water, sand, silt, and various additives. In the Williston Basin, gas fraction hydrocarbons are typically burned off in a flare pit and the remaining formation fluid is piped to an onsite or nearby tank battery where initial oil/water separation occurs. The extraction process is turbulent, so the formation fluid usually is comprised of a high percentage of oil–water emulsion (EPA, 2000).

By volume, produced water is the largest waste product from the oil production process (EPA, 2000). The Montana portion of the Williston Basin has numerous older oil wells, defined as those wells drilled prior to the mid-1980s, and because the volume of produced water also increases with the age of the well, this basin likely produces saline water at far higher rates than oil. In fact, 90–98% of extracted fluid in older wells is produced water instead of oil (EPA, 2000). On a national scale, oil production in the U.S. resulted in the extraction of 2.5 billion barrels of crude oil and 25 billion barrels of produced water, a volume 10-fold greater than the crude oil produced (USGS, 1997).

Contaminant concentrations in produced water vary by region, depth to production zone, and age of the well (EPA, 2000). Frequently occurring produced water contaminants include hydrocarbons, trace elements, radionuclides, drilling mud additives, and salts (Stephenson, 1992). Trace element occurrence and concentration in produced waters can vary. Commonly occurring trace elements include barium, boron, cadmium, chromium, copper, lead, lithium, nickel, silver, strontium, and zinc (Stephenson, 1992; Jacobs and others, 1992). Some trace elements such as boron, lithium, and strontium are present in produced water because they are co-located within the oil-producing zones, while other trace elements such as silver, cadmium, lead, chromium, barium, aluminum, nickel, and zinc occur in produced water as drilling additive constituents (Reiten, 1991). Further, oil extracted from deep formations can be very corrosive, and can entrain high concentrations of trace elements added in the drilling process during extraction (Brian Cain, USFWS, written commun., 2009). Radionuclides are also a commonly occurring constituent in produced water. These radionuclides, often referred to as NORM (naturally occurring radioactive material), primarily consist of radium (226Ra and 228Ra; Stephenson, 1992), although uranium and radon can also be present (EPA, 2000). NORM can be found in high concentrations in the scale formation on the well casing. Scale forms as the salts in produced water precipitate out of solution as the formation fluid approaches the surface and cools. Scale and paraffin removal are regular maintenance activities completed with hydrochloric and hydrofluoric acid, organic acids, and phosphates (EPA, 2000). These maintenance activities can be continuous, and cleaning chemicals and associated scale material will likely become additional contaminant components in the produced water.

An additional concern associated with oil drilling is that co-produced water in the Williston Basin is some of the most saline produced water in the United States. In fact, the oil field brines produced from within the Williston Basin can be up to 10 times as salty as seawater. Migration of produced water brines to surface-water or groundwater has been characterized in many areas of the United States, and many of the contamination pathways are similar, such as leaching of brines from disposal pits, migrating from road spreading sites, and reinjection wells leaking into freshwater aquifers and contaminating drinking water and irrigation wells (Bair and Digel, 1990; Baker and Brendecke, 1983; Thamke and Craigg, 1997; Jones and Waite, 1988; Dutton and others, 1989).

Traditionally, infiltration pits and unlined reserve pits were excavated at the drill site and used to dispose of produced water, as well as other oil field wastes (Reiten, 1992). After the drilling was completed, the pits were left open to be used for additional produced water disposal, or they were backfilled (Reiten, 1991). Delivery of contaminated produced waters to these pits ranged from one half to 420 barrels (a standard oil barrel is 42 gallons) a day, and it

was assumed that the contaminated produced water delivered to these unlined pits was evaporating (Murphy and others, 1988). Rather than evaporating, much of the produced water leached into the shallow groundwater system underlying the infiltration and reserve pits. Based on the average pit size and conservative chloride concentrations, an estimated 260 tons of sodium chloride salts was present in each pit (Reiten, 1992). Recharge events that allow moisture to infiltrate the soil layers above shallow aguifers have the potential to dissolve salts and cause downgradient migration, further increasing the mobile salt loads present in groundwater. Migration of salts from old infiltration pits has been documented numerous times, often resulting in lost productivity of crop ground and salinization of shallow groundwater and surface waters (Reiten and Tischmak, 1993). Prior to the mid-1970s, reserve pits were reclaimed by simply backfilling the pit.

While current reserve pit rules and regulations for the state of Montana require that all pits must now be lined, the liners used in these pits often become compromised during placement, or in time through use. Many of the liners observed at new drilling sites appear to be ripped, torn, or punctured (J. Reiten, Montana Bureau of Mines and Geology, and K. Nelson, USFWS, oral commun., 2009). Additionally, reserve pit liners were often breached as a means to reclaim the site, allowing salt-saturated mud to move to unlined trenches. Brines are extremely mobile, and only infiltrating snowmelt or rainfall dilutes the salt load. The rate of dilution is very slow, and high concentrations of salt can be found in both the soil and groundwater below a site for decades (Reiten, 1991).

Migration of brine results in salt contamination of soil and groundwater offsite. Recharge events have the potential to mobilize salts, contributing to downgradient migration. Additionally, upward migration of salt is common in areas with high water tables, resulting in the movement of salt into the soil, effectively sterilizing the soil to a point in which the system can no longer support vegetation. Produced water brines can kill vegetation, prevent germination of seeds, and cause increased erosion. The sodium in produced water can cause dispersion of clays, disruption of soil texture, and loss of soil cohesion (Otton and Zielinski, 2000). Additionally, produced water brines may cause damage to aquifers, contaminating water wells throughout the county. The cost of relocating and redrilling wells to avoid contaminated aquifers can be high. It may require drilling several test holes to find uncontaminated groundwater. Sampling in the 1990s indicated increased salt concentrations in and around parts of the Clear Lake aquifer near Dagmar. The Clear Lake aquifer eventually discharges to the many lakes and wetlands in Sheridan County that are protected as WPAs or are included in the Medicine Lake National Wildlife Refuge (NWR). Indirect costs include the loss of wildlife habitat caused by oilfield brine-contaminated wetlands and contaminated aquifers.

This investigation intends to determine to what extent

oilfield exploration and production wastes, principally through produced waters, have impacted WPAs administered by the Northeast Montana WMD and to promote the implementation of environmentally sound technology to new oil and gas drilling. Specifically, this investigation will determine the number of WPAs impacted by oil field waste and determine which wetlands contain potentially toxic concentrations of ions and co-occurring contaminants from oil exploration and production activities.

STUDY AREA

The study area for this project, located in the northeastern corner of Montana, included Daniels, Sheridan, and Roosevelt Counties as well as the Medicine Lake NWR and the Northeast Montana WMD, which is administered by the Medicine Lake NWR complex (fig. 1). National Wildlife Refuge System lands within the WMD include 44 WPAs, totaling 12,507 acres; the two noncontiguous units of Medicine Lake NWR, totaling 31,660 acres; an additional 8,573 acres of wetlands protected under perpetual wetland easements; and perpetual grassland easements protecting 10,968 acres of grassland.

The Northeast Montana WMD provides habitat for approximately 200,000 waterfowl breeding pairs and in excess of 100,000 migrating shorebirds (M. Rabenberg, USFWS, oral commun., 2006). The area has been used by endangered Whooping Cranes (*Gus Americana*) and supports 85% of Montana's breeding population of the threatened Piping Plover (*Charadrius melodus*). Surveys completed in June 2000 indicated 144 adult plovers (66 breeding pairs) were using the WPAs as well as state and private lands in the area (USFWS, 2000).

Dry land farming and livestock grazing are the traditional land uses in Sheridan County. Irrigation development has increased in the past 29 years, occurring mainly in the southeastern part of the county where the Clear Lake aquifer is being tapped. Irrigable soils and sufficient water supplies for irrigation overlie several of the oil fields.

Figure 1. Location of the Northeast Montana WMD and Medicine Lake NWR in Daniels, Sheridan, and Roosevelt Counties.

Resource extraction industries that are present within Sheridan County include oil production, coal mining, and gravel mining. Reserves of lignite within the Fort Union Formation underlie the glacial and terrace deposits. Several abandoned coal mines are located near the town of Coalridge. Most of the glacial outwash deposits in this area are composed of sand and gravel, and are mined throughout eastern Sheridan County.

Hundreds of lakes and wetlands are located in eastern Sheridan County. These surface-water sources have a very diverse chemistry, with several-fold increases in dissolved solids possible between lakes separated by only a few hundred yards. The diverse chemistry implies the integration of complex groundwater flow systems including local, intermediate, and regional flow systems supplying water to the lakes and wetlands. The lakes are used by wildlife, livestock, and recreationists. Many of the lakes are important to the water balance of the region both as focused recharge sources and as buffers influencing groundwater levels.

Climate

Eastern Sheridan County has a semiarid continental climate, characterized by cold, dry winters, moderately hot and dry summers, and cool, dry falls. Cold winters are often interrupted by warming trends, with summers dominated by hot days and cool nights. January is generally the coldest month and July the warmest. Based on the 29-year period of record from 1980 to 2009, the average precipitation at Westby is approximately 13.07 in/year with about 66 percent of the precipitation falling from May through August. June is typically the wettest month. Evaporation is typically much higher than precipitation in this area. The closest station with long-term Class A evaporation pan data is at Sidney. Long-term data from the Sidney site indicates that between 25 and 35 in of water evaporates annually. Evaporation data from a Class A pan of the U.S. Department of Agriculture research farm near Froid indicates significantly higher evaporation rates than at Sidney. The average evaporation at the Froid station was 52 in per year between 1984 and 1988. In contrast, the Sidney station reported 34 in of annual evaporation over the same period (Donovan, 1988). Wind and hot temperatures contribute to an average 6 to 12 in of monthly evaporation from May to August at the Froid site. The Froid climatic station appears to be more representative of conditions in eastern Sheridan County than the Sidney climatic station because of the proximity and more similar physiography.

Long-term climatic trends show a large range of monthly precipitation for individual months. This trend is most evident from April through September. A 10- to 20-year periodicity of below average precipitation is often accompanied by above average temperatures, indicating that cycles of drought are common in this region. The 1980s were drier than average, resulting in drought during much of the decade.

Regional Hydrogeology

Eight major aquifer systems underlie eastern Sheridan County from the Paleozoic Madison Group to the Quaternary alluvium (table 1). Aquifers within 200 to 300 ft of ground surface include the Tongue River Member of the Tertiary Fort Union Formation, Tertiary/Quaternary terrace deposits, Quaternary glacial outwash deposits, and recent alluvial deposits. The lower Hell Creek–Fox Hills aquifer is the deepest source of potable water in this region. Depth to this aquifer ranges from 700 to 1100 ft. Deeper aquifers in rocks of Mesozoic and Paleozoic age contain nonpotable water, but are important aquifers because they are associated with oil reservoirs. Water from these aquifers is commonly pumped to the surface during oil production and can degrade potable supplies if allowed to infiltrate shallow aquifers.

The Prairie Pothole region of northeastern Montana consists of glaciated terrain that makes up parts of the Missouri Coteau and the Coteau Slope physiographic regions (Bluemle, 1991). Underlying the Quaternary glacial deposits are sediments and rocks that form a large regional structural feature known as the Williston Basin. The Basin is filled with Paleozoic to Recent Age sediments. Hydrocarbons were generated and trapped in several different Paleozoic age sediments. Depths of hydrocarbon targets range from about 6000 ft to more than 12,000 ft. Hydrocarbons accumulated in rocks of the Red River Formation, Three Forks Formation, Bakken Formation, and several formations within the Mississippian Group. Co-produced brines from this part of the Williston Basin are typically ten times more concentrated than sea water.

The Missouri Coteau and the Coteau Slope physiographic regions are clearly identifiable on aerial photographs, on satellite images, and on a variety of maps showing the topography. Plate 1 is a near-surface geologic map showing predominant lithologic units draped over a hillshade map of the area. The geologic map was developed using information from outcrops, drill holes, soil surveys (Richardson and Hanson, 1977), and open-file geologic maps (Bergantino, 1986). The Missouri Coteau is found in the two northern townships of this area. The Coteau Slope occupies the rest of the area. The topography of the Missouri Coteau is very hummocky with abundant potholes and sharp hills. The predominant near-surface deposits are glacial till with minor areas of lake sediment, outwash, and alluvium. The remnants of several ice-walled lakes are found in the Missouri Coteau region of Sheridan County. These are often slightly hummocky due to lake development over ice and subsequent differential melting of the stagnant ice. The topography of the Coteau slope is smoother, with gentler hills and fewer potholes. A relict swale trending southwest to northeast aligns with the ancestral valley of the Missouri River. The alluvial aquifer section of the Clear Lake Aquifer occupies the central part of the swale. Glacial till and glacial outwash are the predominant near-surface deposits. The glacial outwash section of the Clear Lake aquifer

underlies areas mapped as glacial outwash from Medicine Lake to Westby.

The distribution of surficial glacial deposits of till, outwash, and lake sediments are mapped throughout most of Sheridan County. These sediments were deposited during and after the advance of Late Wisconsinan glaciers into the region. Glacial till is the most widespread surficial geologic unit mapped in the study area. The glacial till consists of unbedded and unsorted gray to light olive brown, pebbly clay-loam, and is considered an aquitard. Pebbles, cobbles, and boulders of local and northern sources are common in this unit. Water in the till aquitards is generally under confined conditions. Secondary porosity caused by fractures in the till accounts for most of the groundwater flow.

Glacial outwash deposits are the second most widespread surficial geologic unit mapped in the study area. The outwash consists of light gray, brown, and reddish-brown silty sand, sand, and gravel. It is composed of a heterogeneous mixture of igneous, metamorphic, and sedimentary rock fragments. The outwash is typically composed of poorly sorted to moderately well-sorted sediments. Glacial outwash was deposited by meltwater streams draining the glaciers. Deposits of glacial outwash typically form aquifers, which if buried by glacial till or other fine-grained materials are commonly under confined or leaky confined conditions.

Glacial lake sediments cover the least area of the surficial geologic units mapped. These lake sediments consist of light brown to dark gray interbedded, fine-grained sand, silt, and clay. Lake sediments were deposited by interflow and underflow currents in glacially dammed lakes. All of the surficial lake deposits are restricted to the portion of Plate 1 north and west of McElroy. Due to its fine-grained nature, lake sediments typically form aquitards. As in glacial till, fractures cause secondary porosity, increasing the water-transmitting capabilities of this unit. Water in lake deposits is generally under confined conditions. For simplicity, recent deposits of alluvium, loess, colluvium, and slough sediment are not typically mapped. These deposits are usually thin (less than 3 ft thick) and where thicker are difficult to distinguish from the older glacial deposits.

Aquifers in Sheridan County range from non-potable water sources associated with deep hydrocarbon exploration and production to potable sources that are commonly used for stock, domestic, municipal, and irrigation supplies (Donovan, 1988). Water produced from aquifers stratigraphically below the Bearpaw Shale are typically unusable for most purposes and are generally considered a waste, often requiring injection into a properly engineered disposal well. These include aquifer zones within the Cretaceous Age Judith River Formation, Cretaceous Age Lakota and Dakota sandstone, Mississippian Age Madison Group limestone and dolomite, and deeper Paleozoic Age carbonate and sandstone. Waters from these aquifers are often co-produced with hydrocarbons and contain very high concentrations of dissolved minerals, sometimes greater than 300,000 mg/L total dissolved solids (TDS). Aquifer zones from the Dakota and deeper are often targeted for injection wells used for disposal of produced water from hydrocarbon production. Containment of this water is a significant concern to water users because of potential contamination from discharges into shallower potable supplies. Aquifers in the Madison Formation and deeper may have a potential for low-temperature geothermal exploitation because of high artesian pressures and water temperatures reaching 60°C. These aquifers are believed to be part of a deep regional groundwater flow system with recharge areas located farther west in Montana and discharge areas in eastern North Dakota. As the groundwater flows from west to east, the dissolved minerals tend to increase significantly. Another significant component of the deep aquifer system is vertical leakage, where water leaks vertically to either overlying or underlying stratigraphic units dependent on differential hydrostatic pressures.

Water Quality

Potable groundwater can be produced from several generally reliable aquifers underlying Sheridan County. Characteristics of these aquifers are summarized in table 1.

Groundwater occurring within sandstone units of the Fox Hills–Hell Creek aguifer system underlies Sheridan County at depths ranging from about 1000 to 1300 ft. This is the stratigraphically lowest aquifer that dependably yields potable water in this area. It is exposed or thinly covered by unconsolidated materials around the Poplar Dome located just west of Sheridan County. Water quality is summarized based on the results of five water analyses in Sheridan County. A Stiff diagram showing the dominant ions is shown in figure 2. Water from the Fox Hills-Hell Creek aquifer is dominated by ions of sodium and bicarbonate. The TDS ranged from 1187 to 1643 mg/L in samples from five wells in Sheridan County. The mean TDS was 1429 mg/L and mean sodium absorption ration (SAR) was 78. Fluoride concentrations ranged from 1.1 to 4.1 mg/L and are likely to be greater than drinking water standards. Based on regional studies in nearby areas it appears that groundwater from the Fox Hills-Hell Creek aquifer discharges to the deep incised trenches formed by the Big Muddy meltwater channel and ancestral Missouri River channel and eventually flows towards the Missouri River. Little is currently known about the volume of these discharges or how these discharges impact the water quality of surface-water bodies in Sheridan County.

The Fort Union Formation underlies Sheridan County and is about 1000 to 1500 ft thick. There are four Members of the Fort Union mapped in northeastern Montana. The Tullock Member is the oldest unit. It is largely yellow sandstone interbedded with grayish brown and black shale and thin beds of coal. This unit is overlain by the Lebo Member, which is composed of dark gray carbonaceous

Stratigraphic Unit	Principal Aquifers	Aquifer Characteristics
Quaternary unconsolidated deposits 0–100 ft thick (110QAL)	Alluvial sand and gravel along and underlying the Big Muddy and its tributaries	Groundwater under unconfined and semi-confined conditions in alluvial sand and gravel along the Yellowstone River. Saturated thickness generally less than 40 ft. Well yields and quality adequate for domestic and stock uses. Water quality variable, mean TDS 1,470 mg/L.
Quaternary glacial aquifers unconsolidated deposits 0–250 ft thick (112OTSH, 112DRFT, 112TILL)	Minor low-yield aquifers in glacial till. High yield aquifers in glacial outwash deposits associated with buried channels	Groundwater is semi-confined or confined in buried channel aquifers. May directly overlie alluvial aquifer in buried channels, resulting in gravel deposits 100–250 ft thick. Well yields and quality commonly adequate for irrigation. Irrigation potential limited by high SAR, mean TDS 1,323.
Quaternary or Tertiary unconsolidated or poorly cemented deposits 0–300 ft thick (112ALVM, 112SNGR,112TRRC)	Minor upland sand and gravel associated with Flaxville Formation. More commonly in buried channels containing ancestral Missouri River (Wiota) sand and gravel deposits	Groundwater under unconfined conditions in isolated sand and gravel deposits underlying terraces on uplands above Big Muddy Creek valley. Groundwater is semi- confined or confined in buried channel aquifers. Saturated thickness ranges from 0 to 150 ft. Well yields and quality adequate for irrigation. Irrigation potential limited by high SAR, mean TDS 1,471 mg/L.
Fort Union Formation up to 1500 ft thick (125FRUN,125TGRV)	Fort Union Formation Sentinel Butte Member Tongue River Member Lebo Member Tullock Member	Sandstone up to 100 ft thick and coal beds up to 8 ft thick are water- yielding units. Groundwater generally unconfined in upper 200 ft, confined below. Yields typically average 10 gpm. Variable water quality, mean TDS 1,379 mg/L, may have high sulfate and iron concentrations.
Fox Hills/Hell Creek Formation 350–450 ft thick (211FHHC, 211 HLCK)	Fox Hills	Groundwater is generally under confined conditions in sandstones in the lower part of the Hell Creek Formation and upper part of the Fox Hills Sandstone (Colgate Member). Wells may flow in low-lying areas. Well yields as high as 100 gpm have been reported, but average about 20 gpm. Alkaline water, mean TDS 1,429 mg/L, sodium and bicarbonate are the dominant ions, may have high fluoride concentrations.

Table 1. Water-yielding and water-quality characteristics of principal aquifers in Sheridan County.

Figure 2. Stiff diagram based on the average values of major anions and cations in samples from Big Muddy Creek and wells completed in major geological sources in the Big Muddy watershed of Sheridan County.

shale, bentonitic claystone, sandstone, and coal. The next overlying unit is the Tongue River Member, composed of yellowish orange sandstone, sandy and silty carbonaceous shale, and coal. The uppermost unit is the Sentinel Butte Member, consisting of dark gray shale with interbedded lignite and gray sandstone. Groundwater production is typically limited to sandstone or coal lithologies. All of the members contain permeable zones that are aquifers, but the Lebo Member contains significantly more bentonitic claystone and shale. Wells completed in this unit are the least likely to produce significant amounts of water.

Well depths in the Fort Union aquifer range from 40 to 500 ft, and static water levels range from 10 to 350 ft depending on topographic position and regional flow conditions. Water quality is summarized based on the results of 38 water analyses in the Big Muddy watershed. A Stiff diagram showing the dominant ions is shown in figure 2. Water from the Fort Union aquifer is dominated by ions of sodium and bicarbonate. TDS ranged from 328 to 4009 mg/L in samples from 38 wells in the Big Muddy drainage. The mean TDS was 1379 mg/L and mean SAR was 86. The median value of TDS was 1229 and the median SAR was 8. While either the median or mean appear to be good predictors of TDS, the median of the SAR values is probably a better measurement of typical SAR values. Based on regional studies in nearby areas, it appears that groundwater discharges to the deep incised trench formed by the Big Muddy meltwater channel and eventually flows towards the Missouri River. Little is currently known about the volume of these discharges or how these discharges impact the water quality of the Big Muddy.

Deposits of the ancestral Missouri River in northeastern Montana are known as the Flaxville Formation and Wiota gravels. These units formed when the ancestral Missouri River flowed northeast towards Hudson Bay. The Flaxville Formation is a Tertiary Age gravel deposit that commonly forms unconfined aquifers typically less than 100 ft deep. It is restricted to upland alluvial gravel plateaus west of the Big Muddy, but is buried by glacial deposits in parts of eastern Sheridan County. Local rainfall and snowmelt

provide abundant recharge and springs commonly form along the plateaus. The Wiota gravels are Quaternary age and contain fragments of Canadian Shield rocks, indicating association with glacial deposits. These gravels are overlain by 50 to 250 ft of glacial sediments. Aquifers developed in these gravels are typically semiconfined or confined. Water quality is summarized based on the results of 18 water analyses in Sheridan County. A Stiff diagram showing the dominant ions is shown in figure 2. Water from the alluvial gravel aquifer is dominated by ions of sodium and bicarbonate. TDS ranged from 477 to 2068 mg/L in 18 samples from wells in the Big Muddy drainage. The mean TDS was 1282 mg/L and mean SAR was 8.

METHODS

Site Selection

Study site selection began by compiling spatial data in ArcView. Locations of oil wells drilled in Sheridan, Daniels, and Roosevelt Counties in Montana were obtained from the Montana Board of Oil and Gas Conservation (MBOGC). The Habitat and Population Evaluation Team (HAPET) of the U.S. Fish and Wildlife Service (Service) provided shapefiles for WPA and Refuge boundaries in these same counties; this included the Medicine Lake NWR and the Northeast Montana WMD. HAPET also provided wetland data and worked with MBOGC to create current information on the locations of all wells drilled in the Williston Basin. Wetlands were separated into basin classes when displayed in WPA maps. These classes, adopted from Niemuth and others (2010), include temporary, seasonal, semi-permanent, and lake classes. Digital elevation models (DEM), as well as hydrologic unit boundaries, soil types, landcover, and major roads were also added to the spatial data used. The created maps and the use of the associated attribute data allowed for desktop site selection. Site selection involved first compiling a list of all WPAs that have or have had oil exploration and production activities in their watershed. This subset of WPAs was then reviewed by examining the attribute data associated with the wells drilled on or nearby the selected WPA. Well information reviewed included date of drilling (wells drilled before the late 1970s will likely have unlined infiltration pits), type of well (i.e., oil, dry hole, injection well), and status (i.e., closed, temporarily abandoned, producing). All these factors were used to determine potential risks from a particular well. The Service also worked with the local inspector for MBOGC. The inspector was able to provide historical information about infiltration pits used in the area as well as provide access to tank batteries, or a group of tanks that are connected to receive product from a producing well, located off Service-owned lands. Previous research conducted in the area was also used for site selection. Some of this previous work included landowner interviews regarding improper oil field waste disposal.

Produced Water in Wetlands

Sites selected for investigation were then visited to determine the Contaminant Index (CI), i.e., the ratio of field chloride concentration (mg/L) to field specific conductance (μ S/cm; Reiten, 1992). This evaluation was conducted for all wetlands within each selected WPA. At each wetland, HACH Quantab titrators for chloride were employed to determine chloride concentrations. A small amount of wetland water was placed in a certified cleaned container with a chloride strip. Dilutions were completed with a graduated cylinder with distilled water if chloride concentrations exceeded the 613 mg/L maximum reading of the titration strips. Dilution water and site water in the graduated cylinder were mixed prior to measuring chlorides. Specific conductivity was determined using a Hydrolab MiniSonde 4a, while dissolved oxygen (DO), pH, and temperature were also recorded. Chloride concentrations were then divided by the specific conductance to determine the CI. Previous investigations completed in eastern Sheridan County determined an empirical lower limit for indicating produced water impacts at CI > 0.035 (Reiten, 1992). When possible, all wetlands within a WPA were sampled, although several wetlands were dry for the duration of this investigation. WPAs that were not necessarily under current risk from oil field exploration and production were also sampled as time allowed. This information would then be available to the WMD as baseline data if a new well was drilled in the area.

Characterizing Oil Field Production Waste Migration

Sites where the CI showed produced water impacts were then characterized using soil electromagnetic conductivity (EM-31) surveys. EM-31 surveys document soil conductivity by measuring the electrical conductivity of pore water. This method was used to delineate the extent and/or movement of produced water from infiltration pits, reserve pits, or spills. The EM-31 was used in combination with a Trimble (Model GeoXT) global positioning system unit with sub-meter accuracy for accurate map production. Transects for each site were set up at each location and typically ran north to south, or east to west. Transects were located approximately 50 ft apart and crossed the location of an infiltration pit, reserve pit, or suspected location if no visual clues were evident. The transect length was determined by assessing background soil conductivity at each site. At the start of each survey, the EM-31 was monitored while walking in a presumed background area to determine soil conductivity of these areas. Once the background conductivity was noted, the length of each transect was determined by starting and ending in concentrations approximating background. The number of transects was also determined using the same method. However, mapping efforts were often stopped by property boundaries, wetlands, or roads.

Completed EM-31 surveys delineated the movement of brine from its original disposal location and indicated whether or not produced water and potentially associated contaminants have contaminated surface water on the WPAs (by looking at the extent of the mapped plume). The EM-31 surveys provided information on the movement of brines from reserve pits, as well as old infiltration pits. Information on the potential constituents in the ground water was then determined at a subset of sites by installation of monitoring wells.

Mapping EM-31 Surveys

Electrical conductivity data measured using an EM-31 and recorded in the field using a Trimble (Model GeoXT) global positioning system unit were imported to ArcGIS 9.3.1 as shapefiles. Several steps were involved to create maps that accurately displayed the electrical conductivity values collected. All of the proceeding analyses were done using ArcGIS 9.3.1. First, a single buffer was created around each set of measurement points at a distance of 85 ft, or until no gaps were left within the buffered zone. Next, the inverse distance weighted (IDW) function was used to interpolate the electrical conductivity to the same extent as the buffer layer. This creates a spatially interpolated surface that has the same rectangular extent as the buffer. We chose the IDW function as it is an exact interpolation method, meaning the surface produced is forced through all the data points, giving the exact value on the interpolated surface at the location of the corresponding data point. For this analysis we used a neighborhood of three points, which allows for finer resolution of rapidly changing values commonly encountered in these EM-31 surveys. Other interpolation methods, namely different krigging styles and splines, were also attempted. However, these methods are often used in studies that rely on fewer data points and cover much larger areas and commonly underestimate high values and overestimate low values. While these methods are more statistically robust, the interpolation surfaces created failed to honor the true electrical conductivity values collected in the field.

The IDW output produces a floating point raster, which is not supported by many other applications in ArcGIS 9.3.1. Therefore, these raster files where converted to ASCII text and then converted back to raster, which changes the format to an integer raster. These integer raster files were then converted to polygons. This conversion to polygon creates a separate polygon for each grid cell in the interpolated surface. To reduce the number of polygons, groups of neighboring polygons with the same electrical conductivity values were dissolved into single polygons. This polygon layer was then clipped to the buffer extent, thus restricting our interpolated surface to the area close to our data points. The accuracy of the spatially interpolated surface decreases moving away from the data points; therefore this clip allows us to only display data where we have appropriate control over electrical conductivity values and removes areas with strange artifacts of interpolation commonly seen on the edges of interpolated surfaces. Finally, the clipped spatially interpolated surface was classified as a quantity using a graduated color scheme with no outline and displayed with a 30% transparency.

Monitoring Wells

Sites were selected for installation of monitoring wells near where produced water signatures were detected in wetlands and maps created with EM-31 survey information showed conditions greater than background levels. In total, 33 monitoring wells were drilled on six WPAs and two different locations on Medicine Lake NWR. In addition, 12 wells drilled by the Montana Bureau of Mines and Geology (MBMG) in an earlier investigation located on or adjacent to five WPAs were refurbished. Samples were collected from all wells for a total metals and major ions scan. Selected wells were also sampled for total petroleum hydrocarbon (TPH) based on well logs created during the drilling process. During the drilling of several monitoring wells, a hydrocarbon layer was encountered. In these cases, we added TPH to the analyte list.

The wells were drilled with an MBMG auger rig and were constructed through shallow-stem auger flights. All of the wells were completed using 2-inch PVC casing and PVC well screen. The annulus around each well screen was packed with 10/20 slot silica sand and sealed to the surface with bentonite chips, and in some cases, bentonitic well cuttings. The wells were flushed with water and developed by pumping and bailing until they produced water representative of ambient groundwater conditions, as determined by field water-quality parameters. Well logs and completion results are available through the MBMG's Groundwater Information Center website (http://mbmggwic.mtech.edu/). To access this data, go to the Groundwater Information Center (GWIC) homepage above, where you will be prompted to sign in and establish a password and data use prior to connecting to the database. Data can be accessed by project name, sample number, and location. The best way to view and download data associated with the Medicine Lake project is to navigate to Projects at the top of the page. Click on the General MBMG Program Data and scroll down to "OILFIELD BRINE IMPACTS ON USFWS WETLANDS IN SHERIDAN COUNTY. MT (USFWSBRINE)." For this project, there are data listed under Site Data, Site Visit Data, Water Quality Data, and Water Level Data. At this point, you can select the type of data you want to view. The Site Data table provides direct access to well logs, well completion reports, water-quality data, hydrographs, and a plot of the well locations. Unique GWIC identification numbers were included throughout the document for sites that have data accessible through the MBMG's Groundwater Information Center.

Soil Salinity at Monitoring Well Drilling Locations and Salt Scald Areas

Soil samples were collected at selected monitoring well drilling sites and from two salt scars in 2005. Samples were collected at approximately 3 ft intervals (0–3, 3–5, 5–8, etc.) and were stored in wirl-pak plastic bags. The samples were placed in a cooler and then transported to the Service's Montana Field Office for processing.

Samples weighing approximately 200 grams were ovendried at 50°C and then placed in a blender to disaggregate clay-cemented clumps formed during the drying process. Soil from the blender was then placed in a stainless steel sieve with a 2 mm aperture, and mesh number 10. Exactly 50 g of sieved soil was weighed into a polycarbonate centrifuge bottle and 50 ml of deionized water added. Each 1:1 (by weight) mixture was stirred vigorously, allowed to stand overnight at room temperature, and again stirred. The slurries were centrifuged at 4,000 revolutions per minute for 40 minutes to remove suspended particles larger than approximately 0.1 µm diameter. Clear solution was decanted and passed through a filter membrane of 0.45 μ m pore size using a syringe. Specific conductance of each clear extract was measured immediately with an Oakton Con 510 Bench Conductivity/TDS meter, and chloride was measured using a HACH Quantab titrator for chloride.

Invertebrate Community and Sampling

Light traps were deployed overnight in selected wetlands to determine the invertebrate community. Dr. Dan Gustafson from Montana State University agreed to identify all invertebrates collected from approximately 40 different wetlands. These data have not been provided to the Service at this time, but we hope to obtain the data in the future. Additionally, invertebrate sampling for 2006 at several wetlands for body burdens of contaminants could not be completed because the wetlands targeted for sampling were dry.

Modeling Ion Toxicity and Toxicity Testing

In 2005, water was collected from 20 different wetlands in the study area. Samples were collected early in the morning and shipped overnight to the University of Wyoming's Red Buttes Environmental Biology Laboratory (UWRBEBL) to be used in toxicity tests. Toxicity tests were then started the next day to ensure test water did not exceed a 48 h holding time and followed the general guidance of the U.S. Environmental Protection Agency (EPA, 1991, 1993) for conducting acute whole effluent toxicity tests. All tests were conducted in 30 ml plastic beakers containing 10 ml of test solution and five organisms per chamber. Organisms used in these tests were *Ceriodaphnia dubia*. Tests were conducted under a 16 h:8 h light:dark photoperiod at 25°C. Each test was completed using four replicates of each control and site water. Exposure periods were 48 h with observations for mortality completed daily. The criteria for death were no visible movement and no response to prodding. During the tests, temperature, conductivity, pH, and DO were monitored at the beginning, at 28 h, and at 48 h.

Analyses completed on site waters included dissolved organic carbon (DOC), alkalinity, and major ions (Cl, NO3, SO4, Ca, K, Mg, and Na). Upon receiving results on the major ions present in water samples collected from selected wetlands, we used the statistical model developed by Mount and others (1997) to determine the predicted toxicity of the selected site waters to *C. dubia*. Predicted toxicity was then compared to the observed toxicity produced from the toxicity tests.

Surface-Water and Groundwater Samples

Surface-water and groundwater samples were collected from monitoring wells, wetlands, and Medicine Lake and submitted for major ion analyses and/or a total metals scan. Water-quality parameters were recorded at locations of water samples using a Hydrolab MiniSonde 4a to determine pH, DO, specific conductivity (SC), and temperature. Surface-water samples were collected in a 5-gallon plastic bucket that was previously washed with an Alcanox-water solution and rinsed with 10% nitric acid and distilled water. Groundwater samples were collected at all wells capable of producing enough water for analysis. Samples were collected by pumping or bailing each well until three well casing volumes were removed or SC measured with a Hydrolab MiniSonde 4a stabilized. Groundwater was then pumped or bailed into a 5-gallon plastic bucket that was previously washed with an Alcanox-water solution and rinsed with 10% nitric acid and distilled water.

A Geopump Peristaltic Pump was then used to pump surface water or groundwater from the bucket to the certified chemically cleaned sample bottles. A Geotech Dipos-afilter (0.45 μ m) was used for samples requiring filtration. Filtered samples collected for trace element analyses were acidified with trace metal grade nitric acid to a pH < 2. All samples were stored at 4°C until shipment to Trace Element Research Laboratory (TERL) or delivery to the MBMG. Analytical work was completed by two different laboratories, the MBMG Analytical Division and TERL. The MBMG completed analytical work for ions and trace elements, where metals including cations were determined using ICP and ICP-MS, and anions were determined using ion chromatography. Analytical work for a total metals scan was completed by TERL using atomic fluorescence spectroscopy for selenium, cold-vapor atomic absorption spectroscopy for mercury, graphite furnace atomic absorption spectroscopy for arsenic, and ICP for the rest of the trace elements. Quality assurance/quality control (QA/ QC) for both laboratories consisted of procedural blanks, duplicate analyses, and spike recoveries. All reports of QA/ QC completed by TERL were also reviewed by the Services Analytical Control Facility for acceptability before results are distributed. QA/QC for ion scans completed by the MBMG also included a mass balance.

A subset of monitoring wells was also sampled for TPH. If hydrocarbons were encountered during the monitoring well drilling process, TPH was sampled in those wells. Several soil samples were also collected in these areas. Additionally, if TPH were present in the wells, those wells were again sampled in the following year for aliphatic and aromatic hydrocarbons. All hydrocarbon samples were collected with a bailer, and decanted directly into certified cleaned amber glass containers. These samples were shipped immediately to Mississippi State Chemical Laboratory where they were preserved prior to analysis.

The Kendall's tau statistic (Helsel and Hirsch, 1992), a nonparametric measure of the monotonic correlation between two continuous variables, was used to measure the strength of the relationship between the CI and trace element concentrations in groundwater and surface water. This statistic relies on ranks rather than actual values to calculate a correlation coefficient, so it is considered resistant to outliers and will perform on data with moderate censuring. Water-quality data are often not normally distributed and contain censored data values (data reported as being less than the analytical limit of detection). Ranging between -1 and 1, tau is dimensionless and calculates the relationship between two variables based on the direction of paired values. For example, when one variable increases as the second increases, tau is positive. Kendall's tau correlation coefficients were considered statistically significant when probabilities (p-values) were less than 0.05. Free Statistics Software (v1.1.23-r6) based on the R framework was used to calculated Kendall's tau correlation coefficients and resulting probabilities (p-values; Wessa, 2008).

Quality Assurance/Quality Control

Contract laboratories performing analyses and the Service's Analytical Control Facility were responsible for adequate laboratory quality assurance and quality control. Precision and accuracy of laboratory analyses were confirmed with procedural blanks, duplicate analyses, test recoveries of spiked material, and reference material analyses when appropriate. Standard reference materials and spiked samples were analyzed to verify the accuracy of analytical techniques. Sample collection and storage followed standard operating procedures.

RESULTS AND DISCUSSION

Anderson WPA

Anderson WPA was established in August 1989 and is approximately 530 acres in area (fig. 3). Bird surveys have indicated that much of the WPA's habitat is suitable for breeding waterfowl during nesting season, with observations of 42–88 duck pairs per square mile in the northern portion of the WPA and 88–111 duck pairs per square mile in the southern portion of the WPA (Brian DeVries, US-FWS, written commun., 2009). Much of the upland habitat is intact native prairie, so management practices, such as prescribed grazing and prescribed fire, are implemented to maintain and increase the diversity of native prairie plants and the wildlife species that rely on that native prairie habitat. As of January 2010, there were four production wells and one tank battery located within the WPA. Using abbreviated American Petroleum Institute (API) well numbers, well 21351 is an approved plugged and abandoned dry hole that was completed in January 1981. Wells 05188 and 05191 are active enhanced oil recovery (EOR) injection wells that were completed in November 1964 and March 1965, respectively. Well 05184 is a shut-in oil well that was completed in February 1965. Additionally, many wells are located in close proximity to the WPA. For instance, well 05194 is a shut-in oil well completed in March 1965 that is located along the edge of the northwestern WPA boundary.

Geology

The surficial geology of this site is a mix of glacial outwash and glacial till (fig. 4). Nearby deeper drilling indicates that there is about 50 to 70 ft of glacial deposits overlying Fort Union bedrock. Lithologic logs indicate a mixture of glacial sediments, including: sand and gravel deposits (glacial outwash), pebbly clay loam deposits (glacial till), and fine-grained silt and clay deposits (glacial lake sediments).

Groundwater Hydrology

The water table altitude was estimated from water levels measured in the fall of 2005. Groundwater flow in the local flow system is shown in figure 5. The flow radiates away from the upland north and east of the site and in general mimics the topography (fig. 5). The cross section (fig. 6) indicates glacial outwash overlying glacial till except near the eastern wetland, where lake sediments directly underlie the outwash and eventually the outwash pinches out. The outwash forms a water table aquifer and the relatively high transmissivity of this glacial outwash aquifer creates a preferential pathway for contaminants moving offsite.

Figure 3. Map depicting locations of sampling sites, oil wells, and bodies of water for the Anderson WPA: T. 37 N., R. 58 E., sec. 4 & 5.

0.5 Miles

0

0.125 0.25

1

Figure 5. Groundwater flow map at the Anderson Tank battery and Site 4.

Figure 6. Hydrogeologic cross-section showing near-surface conditions below the Anderson tank battery.

Anderson WPA EM-31 Survey Areas

Figure 7. Location of the five EM-31 terrain-conductivity survey sites conducted at the Anderson WPA.

Characterizing Oilfield Production Brine Migration

EM-31 surveys identified five areas of high terrain conductivity associated with several of the oilfield locations on the Anderson WPA (fig. 7). Test drilling was conducted in and around these areas of high terrain conductivity in an effort to map plumes of brine-contaminated groundwater. Twelve monitoring wells were constructed at three of the Anderson sites in an effort to characterize brine plumes associated with oil wells 05194 and 21351, as well as the tank battery. One baseline well, well A-1MW (GWIC ID 221721), was also installed and 11 surface-water sites were visited to assess wetland condition.

Extensive areas of high conductivity associated with the Anderson tank battery, or Anderson WPA site 3 and Anderson WPA site 4, are shown in figures 9 and 10. For site 3, water-quality samples indicate that chloride concentrations and associated CI values diminish in groundwater downgradient of well A-8MW (GWIC ID 221707; fig. 11). Well A-1MW (GWIC ID 221721) is located outside the brine plume and is representative of a background ionic composition. Based on aerial photos taken in 1974, a large infiltration pit is clearly identifiable around the location of A-2MW (GWIC ID 221574). Not surprisingly, the wells A-2MW (GWIC ID 221574), A-3MW (GWIC ID 221727), A-4MW (GWIC ID 221737), A-5DMW (GWIC ID 221731), and A-8MW (GWIC ID 221707) reflect impacted groundwater conditions dominated by Cl- ions, while wells A-10MW (GWIC ID 221733) and A-11MW (GWIC ID 221687) reflect background condition (fig. 12). Similar results can be seen at site 4, where the ionic concentrations (fig. 13) and composition (fig. 14) of the sample collected from A-14MW (GWIC ID 221724) are indicative of brine impacts. However, well A-15MW (GWIC ID 221716), located near the suspected reserve pit location, did not show produced water impacts. This corresponds to the location where the outwash aquifer pinches out into fine-grained lake sediments.

Test holes were also drilled at the Anderson WPA site 1 based on measured high EM-terrain conductivities that appeared to relate to offsite migration of produced water (fig. 15). The surficial geologic map (fig. 4) indicates a narrow ridge of glacial till separating glacial lake deposits to the northwest and glacial outwash to the east. The well A-16 MW (GWIC ID 221715) was drilled on the slope directly east of the oilfield site. This well encountered a thin layer

Figure 8. Distribution of the mean chloride contamination index measured in wells and wetlands at the Anderson WPA.

Figure 9. Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 3.

Figure 10. Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 4.

of artificial fill from the well pad overlying slightly oxidized glacial till to a depth of 38 ft. Unoxidized glacial till was encountered for the bottom 5 ft of the test hole. Another well, A-17MW (GWIC ID 221703), was constructed about 100 ft east of A-16 MW. This well encountered a thin layer of oxidized glacial till to a depth of 3 ft underlain by slightly oxidized till from 3 to 26 ft. Unoxidized glacial till was encountered for the bottom 10 ft of this test hole. Both wells confirm the presence of glacial till as the unit mapped at this site. A cross section constructed between these wells depicts the near-surface hydrogeologic conditions (fig. 16). Groundwater flow is generally towards the east.

Water-quality samples were collected at both of these wells. Sampling results indicate high concentrations of total dissolved solids and chloride concentrations. A high CI of 0.485 was identified at A-16MW (GWIC ID 221715) and 0.272 at A-17MW (GWIC ID 221703; fig. 17). Although very similar in ionic composition (fig. 18), the A-17MW (GWIC ID 221703) sample was more dilute with a slightly elevated SO42- concentration (fig. 17). These results verify a brine plume migrating away from the pad location with the groundwater flow direction. The ultimate fate of produced water moving off this site is unclear. Previous work around oilfield sites underlain by relatively thick glacial till have shown similar results, characterized by highly concentrated brine plumes migrating slowly because of the low transmissivity of the glacial till. The brines are slowly diluted and may ultimately flow into more productive aquifers.

High EM-31 terrain conductivities were mapped around Anderson site # 2 (fig. 19) and Anderson site # 5 (fig. 20), associated with oil wells 5191 and 5184, respectively, that show movement of brine out of the reserve pit location to the adjacent areas. Although groundwater wells were not constructed at these sites, movement of brine plumes is suspected based on the mapped terrain conductivities and near-surface materials. The near-surface geologic materials at site 2 consist of sand and gravel glacial outwash. The relatively high permeability at this site would promote a wider spread of a developing plume along with increased dilution. In contrast, the lower permeability associated with the glacial till underlying site 5 would typically result in a more localized, higher-concentrated brine plume. Plume geometry would require additional test drilling to verify these hypotheses.

In addition to EM-31 surveys and groundwater analyses, soil samples were collected at selected monitoring well drilling sites and leachates were analyzed for specific conductivity and chlorides. When depths were compared, specific conductance and CI values were highly variable for all sites (table 2). This variability likely reflects the potential influence of contamination, geology, and the location of each site topographically. For instance, A-1MW, A-2MW, A-3MW, and A-5DMW share a similar increasing trend in specific conductance to a depth of 13–18 ft, while sites

Figure 11. Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within EM-31 survey site 3 of the Anderson WPA during 2005.

Figure 12. Major groundwater ionic compositions and associated contaminant index for monitoring wells present within EM-31 survey site 3 of the Anderson WPA during 2005.

Figure 13. Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within EM-31 survey site 4 of the Anderson WPA during 2005.

Figure 14. Major groundwater ionic compositions and associated contaminant index for monitoring wells present within EM-31 survey site 4 of the Anderson WPA during 2005.

Figure 15. Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 1.

A-8MW, A-10MW, and A-11MW showed a general decreasing trend in specific conductance with depth.

These differences reflect the permeability and transmissivity of the glacial outwash found at sites A-1MW, A-2MW, A-3MW, and A-5DMW and evaporative concentration effects seen in the near-surface lake sediments of A-8MW, A-10MW, and A-11MW. Similarly, the distribution of chlorides appeared to be largely dependent upon proximity to the contaminant source and hydrogeology, with A-1MW upgradient of the historic infiltration pit and sites A-10MW and A-11MW below the extent of downgradient impacts. Trends were less apparent at sites A-14MW, A-15MW, A-16MW, and A-17MW, although the consistently low CI values seen at A-15MW suggest this area is not impacted. Otherwise, the rather variable specific conductance and CI values seen throughout these soil profiles may reflect a different hydrogelogic condition, one dominated by glacial till. The low permeability of glacial till concentrates and stores ions throughout the profile as opposed to the shifting concentrations seen in outwash.

Figure 16. Hydrogeologic cross-section showing near-surface conditions below the Anderson site #1. Location: T. 37 N., R. 58 E., sec. 5.

Figure 17. Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within EM-31 survey site 1 of the Anderson WPA during 2005.

Figure 18. Major groundwater ionic compositions and associated contaminant index for monitoring wells present within EM-31 survey site 1 of the Anderson WPA during 2005.

Figure 19. Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 2.

Figure 20. Apparent terrain-conductivity based on EM-31 surveys at Anderson WPA Site 5.

Wetland Water Quality

Specific conductance and chloride concentrations of the sampled wetlands of the Anderson WPA ranged from around 260 to 90,000 µS/cm and 9 to 32,000 mg/L, respectively (table 3). Based on the CI, brine impacts (CI > 0.035) were seen at 5 of the 11 sites—AND2, AND4, AND8, AND9, and AND11— but five of the other sites visited were dry. In fact, AND 2 and AND 10 were the only sites to produce CI values less than the CI empirical lower limit, though on average, AND 2 exceeded the lower limit. Based on EM-terrain conductivity surveys and groundwater monitoring, it appears that AND 10 is not impacted by produced water. This may be because the migrating produced water brine plume has yet to interact with the wetland, the migratory path of the plume is completely missing AND 10, consequently impacting the wetland directly north, or this wetland may serve as a point of groundwater recharge. Unfortunately, there are no data for the seasonal wetland directly north of AND10. Although the average CI for AND 2 exceeds the empirical lower limit, it only slightly exceeds this limit, and this site's CI values are lower than most of the other sites measured at the Anderson WPA. Even though AND 2 is in close proximity to an oil pad, it appears to have minimal interaction with the migrating brine plume. Conversely, AND 4 consistently produced the highest CI values, indicative of its location downgradient of the tank battery and historic infiltration pit. Similarly, AND 11 is also located within the migrating brine plume flow path, which is likely contributing to its elevated CI. Interestingly, AND 8 and AND9, both of which are located in the same groundwater flow path as AND4 and AND11, produced elevated CI values, but water-quality samples from the surrounding groundwater wells A-10MW (GWIC ID 221733), A-11MW (GWIC ID 221687), and A-15MW (GWIC ID 221716) suggest that AND8 and AND9 are beyond the extent of the brine plumes detected at EM-31 survey sites 3 and 4. Historic oil production waste disposal methods, including the direct release of produced water to the surface, leaking pipelines, and increased surface connectivity between wetlands during periods of deluge, are possible explanations for the impacts seen at these two wetlands.

Co-occurring Contaminants

Analyses were done to quantify elemental concentrations from samples taken from every monitoring well and the three wetlands AND2, AND4, and AND11. Numerous trace elements were detected from every groundwater sample, but concentrations exceeding Montana numerical waterquality standards for human health in groundwater were detected in the three wells A-3MW (GWIC ID 221727), A-14MW (GWIC ID 221724), and A-16MW (GWIC ID 221715) for cadmium, the well A-15MW (GWIC ID 221716) for selenium, and all wells except A-1MW (GWIC ID 221721) and A-5DMW (GWIC ID 221731) for strontium (table 4). Both cadmium and strontium have significant positive correlations with the CI, suggesting that the elevated levels detected at monitoring wells A-3MW Table 2. Specific conductivity and CI of 1:1 (by weight) aqeuous leachates of soil samples at different depths in the Anderson WPA.

		A-1MW	A-2MW	A-3MW	A-5DMV	A-8MW	A-10MW	A-11MM	A-14MW	A-15MW	A-16MW	A-17MW
Depth (ft)	Soil Property				<							
0–3	SC (µS/cm)	292	5,930	15,770	675	6,470	20,600	21,400	26,000	10,410	32,200	7,110
	CI	NA	0.148	0.326	0.169	0.150	0.009	0.029	0.150	0.003	0.389	0.045
3_8	SC (µS/cm)	392	5,750	19,170	1,440	6,060	17,810	15,240	59,500	13,250	21,800	4,860
	CI	NA	0.195	0.295	0.176	0.131	0.006	0.014	0.315	0.006	0.327	0.181
8_13	SC (µS/cm)	341	17,310	16,700	2,350	4,100	10,970	6,950	53,400	11,340	13,840	11,190
0-13	CI	NA	0.271	0.255	0.219	0.044	0.006	0.008	0.352	0.021	0.199	0.148
13_18	SC (µS/cm)	1,284	17,730	12,720	4,810	NA	7,390	NA	21,300	9,500	15,990	9,900
10-10	CI	0.065	0.290	0.216	0.120	NA	0.007	NA	0.294	0.009	0.321	0.167
18-23	SC (µS/cm)	NA	8,700	6,200	3,380	NA	NA	NA	49,000	5,290	19,500	8,610
10 20	CI	NA	0.174	0.064	0.008	NA	NA	NA	0.255	0.011	0.321	0.228
23-28	SC (µS/cm)	NA	5,910	4,850	NA	NA	NA	NA	NA	NA	19,900	6,910
20 20	CI	NA	0.098	0.066	NA	NA	NA	NA	NA	NA	0.314	0.140
28-33	SC (µS/cm)	NA	NA	NA	NA	NA	NA	NA	NA	NA	12,830	4,900
20 00	CI	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.304	0.075
33_38	SC (µS/cm)	NA	NA	NA	NA	NA	NA	NA	NA	NA	7,930	4,510
	CI	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.191	0.048
38_/13	SC (µS/cm)	NA	NA	NA	NA	NA	NA	NA	NA	NA	7,590	NA
50-45	CI	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.200	NA

Note. NA, Data not available.

Table 3. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at Anderson WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
AND1	4/29/2004	_	_	_	Dry
AND2	4/28/2004	4,351	145	0.033	Oligosaline
AND2	7/27/2004	9,681	366	0.038	Mesosaline
AND2	9/9/2004	14,160	590	0.042	Mesosaline
AND2	7/8/2005	8,575	325	0.038	Mesosaline
AND3	4/28/2004	—	—	—	Dry
AND4	4/29/2004	82,463	27,293	0.331	Hypersaline
AND4	5/16/2004	43,626	14,540	0.333	Polysaline
AND4	7/27/2004	68,366	31,660	0.463	Hypersaline
AND4	7/8/2005	46,350	15,220	0.328	Eusaline
AND5	4/28/2004	—	—	—	Dry
AND6	4/28/2004	—	—	—	Dry
AND7	4/28/2004	—	—	—	Dry
AND8	4/28/2004	12,647	1,198	0.095	Mesosaline
AND8	7/27/2004	26,286	2,589	0.098	Mesosaline
AND9	5/15/2004	19,657	2,748	0.140	Mesosaline
AND9	7/27/2004	89,693	12,948	0.144	Hypersaline
AND10	4/29/2004	260.1	9	0.034	Fresh
AND11	5/16/2004	44,819	6,550	0.146	Polysaline

Table 4. Groundwater concentrations (μ g/L) of trace elements present in groundwater samples from monitoring wells present within the Anderson WPA during 2005.

	A-1MW	A-2MW	A-3MW	A-4MW	A-5DMW	A-8MW	A-10MW	A-11MW	A-14MW	A-15MW	A-16MW	A-17MW
AI	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
As	0.39	7.43	6.66	<0.5	3.18	2.39	4.07	<2.55	25.8	2.45	5.54	1.8
В	215	69,500	74,500	4,760	5,130	326	385	378	11,000	347	249	294
Ва	23	55	243	52	134	44	20	59	660	68	51	26
Be	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cd	0.05	2.26	16.9*	<0.1	0.33	0.18	0.27	<0.51	5.57 [*]	0.36	10.6 [*]	1.21
Co	<5	5	6	<5	8	<5	11	<5	<5	10	12	13
Cr	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cu	<5	5	7	<5	<5	<5	5	9	7	11	7	<5
Hg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Мо	<10	40	10	<10	10	<10	20	30	10	20	<10	<10
Ni	<5	53	59	5	14	<5	24	45	68	30	82	38
Pb	<0.01	0.58	<0.51	<0.1	<0.05	0.13	<0.2	<0.51	0.59	0.69	<0.1	<0.05
Se	6.24	1.86	9.13	6.07	0.47	24.9	3.4	4.96	1.9	145 [*]	13.9	33.7
Sr	450	15,300 [*]	48,000*	6,510 [*]	3,650	5,320*	6,200 [*]	7,170 [*]	152,000 [*]	7,540 [*]	15,300 [*]	5,610 [*]
Ti	<5	10	19	9	10	12	6	<5	77	10	21	9
V	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Zn	9	35	10	<5	10	40	65	<5	15	67	17	7

^{*}Indicates value exceeded Montana numerical water-quality standards for human health in groundwater.

(GWIC ID 221727), A-14MW (GWIC ID 221724), A-15MW (GWIC ID 221716), and A-16MW (GWIC ID 221715) are a result of oil production activities (table 5). In fact, cadmium and strontium are two commonly detected elements in produced waters, and cadmium is often associated with drilling fluid additives (Stephenson, 1992; Jacobs and others, 1992; Neff, 1982). We failed to detect a significant correlation between groundwater selenium concentrations and the CI (table 5), although selenium has been detected in produced water samples collected from produced water reinjection sites in the Williston Basin before (Chen-Northern, 1994). Regardless, the well in which the elevated selenium concentration was detected, A-15MW (GWIC ID 221716), does appear to be located beyond the extent of the brine plume detected at A-14MW (GWIC ID 221724), suggesting that the elevated level of selenium is a result of some other process.

Two wetland sites, AND4 an AND11, had aluminum concentrations that exceeded established benchmark values (table 6). Due to the large number of sites with aluminum concentrations below the analytical limit of detection, the relationship between surface-water aluminum concentrations and the CI was not formally assessed (table 7). In spite of this, it is important to note that these two wetland sites consistently had the highest CI values, providing evidence that the elevated levels of aluminum may be a result of oil production activities.

The elevated concentrations of cadmium and strontium are at levels that would likely elicit a toxicological response, but their exposure pathways are largely confined to the groundwater systems in which they were detected. On the other hand, a significant positive relationship was detected between wetland strontium concentrations and the CI, inferring a surface water–groundwater interaction in which groundwater brine plumes are contributing strontium to surface-water systems. Although we failed to detect a significant relationship between wetland cadmium concentrations and the CI, potentially due to the large number of samples that were below the analytical limits of detection, cadmium concentrations were slightly elevated at sites AND4 and AND11.

Numerous processes affect the mobilization and attenuation of trace elements, and when coupled with dilution effects, it is not surprising that elements associated with groundwater that are likely interacting with surface-water systems are found at lower levels, especially when insoluble complexes are not considered (EPA, 2007). Nevertheless, aqueous aluminum concentrations exceeded water-quality standards in wetlands AND4 and AND11, environments in which numerous organisms may be exposed. In fact, toxic effects have been reported in algae, macroinverterbrates, and fish at concentrations below those detected at sites AND4 and

Trace Element	Kendall's Tau Correlation Coefficient	<i>p</i> -value	Number of Samples
Sr	0.59	<0.001	83
Li	0.56	<0.001	47
Cu	0.49	<0.001	81
В	0.49	<0.001	81
Cd	0.48	<0.001	80
Ва	0.42	<0.001	42
Ti	0.36	<0.001	81
V	0.31	<0.001	81
Zn	0.30	<0.001	80
Se	0.17	0.14	39
As	0.02	0.80	74
Со	-0.04	0.67	75
U	-0.05	0.72	40
Be	NC	NC	76
Hg	NC	NC	73
Br	NC	NC	46
AI	NC	NC	80
Мо	NC	NC	42
Cr	NC	NC	79
Zr	NC	NC	44
Pb	NC	NC	50
V	NC	NC	81
Ni	NC	NC	81
Ag	NC	NC	44

Table 5. Kendall's tau correlation coefficients and resulting probabilities (*p*-values) between groundwater trace element concentrations and the CI with associated sample size from samples collected across the Northeast MT WMD.

Note. NC, not calculated due to high number (>50%) of values below detection limit. **Bolded text indicates** *p***<0.05**.

AND11; however, aluminum toxicity is pH-dependent, with increasing toxicity as water becomes more acidic (Gensemer and Playle, 1999). The water-borne aluminum concentrations detected in this survey are likely highly complexed, diminishing their bioavailability, but varying conditions may alter the availability of aluminum to aquatic organisms as well as increase the risk to terrestrial organisms that may be exposed to elevated aluminum concentrations through dietary uptake (Gensemer and Playle, 1999; Rosseland and others, 1990).

Five soil samples were collected in 2005 for total petroleum hydrocarbon analysis. Concentrations ranged from 50 mg/kg to 22,600 mg/kg dry weight (DW). Sites A-2S and A-4S produced the highest concentrations, 8,210 mg/kg (DW) and 22,600 mg/kg (DW), respectively, with the next highest concentration, 382 mg/kg (DW), found at A-14S (fig. 21). Interestingly, A-4S was collected at the tank battery historic infiltration pit location and A-14S was collected at the suspected reserve pit location associated with oil well 21351.

In 2006, A-14S and A-2S were resampled and soil samples were analyzed for aliphatic and polynuclear aromatic

hydrocarbons. These values were then compared to established toxic benchmark values to assess the relative toxicity at each site. For each hydrocarbon fraction assessed, concentrations detected at both sites, A-2S and A-14S, exceeded every benchmark value (table 8). Although both sites exceeded benchmark values, concentrations at site A-2S were consistently higher than those at A-14S. Although the toxicity criteria used in this assessment were developed to be protective of human health, values detected, specifically at A-2S, were at levels that have been reported as causing environmental impacts. For example, sublethal effects to plants, including reduced shoot and root length and reduced shoot and root biomass, and to invertebrates, including reduced reproductive success, as well as lethal effects, have been reported for values comparable to or less than the values detected at A-2S (Cermak and others, 2010). Additionally, impacts to microbial communities, including reduced microbial biomass and soil enzyme activity, have been reported for soils that possess hydrocarbon concentrations similar to those at A-2S (Megharaj and others, 2000). While the two soil samples taken at the Anderson WPA are not representative of large-scale hydrocarbon contamination to soil, they do illustrate that oil production practices

Table 6. Surface-water concentrations (µg/L) of trace
elements present in the sampled wetland AND2 during
2004 and the wetlands AND4 and AND11 during 2005.

			-
	AND2	AND4	AND11
AI	<50	328#	252 [#]
As	6.76	11.6	17.4
В	<500	19,800	1,610
Ва	56	106	126
Be	<0.5	0.5	<0.5
Br		1,340,000	1,030,000
Cd	0.1	0.17	0.26
Со	<5	<5	<5
Cr	<5	<5	<5
Cu	<5	<5	6
Hg	<0.1	<0.1	<0.1
Мо	<10	40	30
Ni	<5	7	5
Pb	<0.05	0.14	0.11
Se	0.58	1.21	4.5
Sr	1,990	19,100	7,720
Ti	6	—	—
V	<10	<10	<10
Zn	6	6	9

[#]Indicates value exceeded EPA's recommended

national water quality criteria

at the Anderson WPA are releasing petroleum hydrocarbons into the environment at potentially toxic levels.

In 2005, five groundwater samples were collected from five different wells and analyzed for total petroleum hydrocarbons. Hydrocarbons were detected at every well and concentrations ranged from $300 \mu g/l$ at A-2MW (GWIC ID 221574) to 810 μ g/l at A-4MW (GWIC ID 221737; fig. 22). Out of the five wells, four were resampled in 2006 and analyzed for aliphatic and polynuclear aromatic hydro-carbons. Many compounds were below detection limits and no individual chemical or chemical group exceeded any benchmark value when compared to multiple toxicity criteria (table 9).

Trace Element	Kendall's Tau Correlation Coefficient	<i>p</i> -value	Number of Samples
Li	0.69	0.07	7
Ba	0.45	<0.01	28
Sr	0.44	<0.01	28
Se	0.37	0.01	28
Br	0.17	0.60	9
Cd	0.03	0.90	20
Pb	0.01	0.97	20
As	-0.01	0.94	28
В	-0.08	0.53	28
Zn	NC	NC	20
Ni	NC	NC	21
AI	NC	NC	28
Ag	NC	NC	9
Ti	NC	NC	20
Be	NC	NC	28
Co	NC	NC	28
Cr	NC	NC	28
Cu	NC	NC	28
Hg	NC	NC	21
Мо	NC	NC	28
U	NC	NC	28
V	NC	NC	28
Zr	NC	NC	7

Table 7. Kendall's tau correlation coefficients and resulting probabilities (*p*-values) between surface-water trace element concentrations and the CI with associated sample size from samples taken across the Northeast MT WMD.

Note. NC, not calculated due to high number (>50%) of values below detection limit. **Bolded text indicates** *p***<0.05**.

Table 8. Concentrations (mg/kg DW) of hydrocarbon fractions from soil samples collected in 2006 within Anderson WPA with associated toxicity criteria.

	Toxicity	Criteria	Site Values			
Carbon	TPHCWG ¹	MADEP ²	A-2S	A-14S		
Range	(mg/kg/day)	(mg/kg/day)	(mg/kg)	(mg/kg)		
Aliphatic						
C9-C18	0.10	0.10	8,005	9.57		
C19-C32	2.00	2.00	11,216	5.99		
Aromatic						
C9-C16	0.04	0.03	137.16	0.27		
C17-C32	0.03	0.03	3.96	1.07		
¹ Total Potroloum Hydrocarbon Critoria Working Group						

¹Total Petroleum Hydrocarbon Criteria Working Group (Gustafson and others, 1997).

²Massachusetts Department of Environmental Protection (MADEP, 2003).

Anderson WPA

Figure 22. Concentrations (μ g/L) of total petroleum hydrocarbons from groundwater samples collected across the Northeast Montana WMD in 2005 with sites from the Anderson WPA bracketed. *Indicates concentrations were below the analytical limit of detection of 100 μ g/L.

	Toxicity	/ Criteria		Site Values			
-	MT						
	RBSL ¹	MADEP ²	A-2MW	A-3MW	A-4MW	A-14MW	
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Aliphatics							
Carbon Range C9–C18	1,000	50,000	0	6	0	2.1	
Carbon Range C19–C36	1,000	50,000	5.7	19.4	3.6	34.5	
Aromatics							
Carbon Range C9–C10		50,000	<0.3	<0.3	<0.3	<0.3	
Carbon Range C11–C22	1,000	5,000	0	0	0.5	0.3	
Acenaphthene	670	6,000	<0.3	<0.3	<0.3	<0.3	
Anthracene	2,100	30	<0.3	<0.3	<0.3	<0.3	
Benzo(a)pyrene	0.05	500	<0.3	<0.3	<0.3	<0.3	
Benzo(b)fluoranthene	0.5	400	<0.3	<0.3	<0.3	<0.3	
Benzo(k)fluoranthene	5	100	<0.3	<0.3	<0.3	<0.3	
Chrysene	50	70	<0.3	<0.3	<0.3	<0.3	
Dibenzo(a,h)anthracene	0.05	40	<0.3	<0.3	<0.3	<0.3	
Fluoranthene	130	200	<0.3	<0.3	<0.3	<0.3	
Flourene	1,100	40	<0.3	<0.3	<0.3	<0.3	
Indeno(1,2,3-cd)pyrene	0.5	100	<0.3	<0.3	<0.3	<0.3	
Naphthalene	100	20,000	<0.3	<0.3	<0.3	<0.3	
Pyrene	830	20	<0.3	<0.3	<0.3	<0.3	

Table 9. Concentrations (μ g/L) of hydrocarbon fractions from groundwater samples collected in 2006 within Anderson WPA with associated toxicity criteria.

¹Montana Tier 1 Risk-Based Corrective Action Guidance for Petroleum Release (MT DEQ, 2009). ²Massachusetts Department of Environmental Protection (MADEP, 2003).

Base Camp WPA

Base Camp WPA was established on 11/20/1968 with additional land purchases made on 6/18/1969, 8/11/1969, and 9/19/1969. The WPA encompasses an area of roughly 350 acres, with multiple wetlands located within or partially within its boundaries (fig. 23). Bird surveys have indicated that much of the WPA's habitat is suitable for breeding waterfowl during nesting season, with observations of 42-88 duck pairs per square mile (Brian DeVries, USFWS, written commun., 2009). Much of the upland habitat is intact native prairie, so management practices such as prescribed grazing and prescribed burning are implemented to maintain and increase the diversity of native prairie plants and the wildlife species that rely on that native prairie habitat. As of January 2010, there were no production wells within the WPA. Using the abbreviated API well number, well 21337, located within 700 ft north of the WPA, is the closest well to the WPA. It is a producing oil well that was completed in January 1981.

Geology

The surficial geology underlying the Base Camp WPA is depicted in figure 24. Most of the Base Camp WPA is underlain by glacial till. The thickness of this relatively low-permeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 50 to 100 ft. A relatively long and narrow deposit of moderate to high permeability alluvium is mapped trending north to south through the central part of the Base Camp.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Base Camp WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes.

Figure 23. Map depicting locations of sampling sites, oil wells, and bodies of water for the Base Camp WPA: T. 37 N., R. 58 E., sec. 9, 10, 15 & 16.

Figure 24. Near-surface geology of the Base Camp WPA: T. 37 N., R. 58 E., sec. 9, 10, 15 & 16.

Characterizing Oil Field Production Brine Migration

EM surveys were not conducted at this site and there are no monitoring wells.

Wetland Water Quality

Five wetlands were sampled to assess the potential influence from brine contamination on surface-water quality. Among the five surface-water sample locations at the Base Camp WPA, specific conductance, total dissolved solids, and chloride concentrations ranged from around 240 to 43,000 μ S/cm, 0.15 to 27 g/L, and 6 to 1,147 mg/L, respectively (table 10). Based on the chloride index, brine impacts (CI > 0.035) were seen at BC1, although one of the sites visited, BC2, was dry. While it is likely that brine plumes are associated with oil wells near this site, predicting the extent of contamination is difficult because of the complex geologic setting.

Co-occurring Contaminants

There were no additional analyses done for the Base Camp WPA.

Chandler WPA

The Chandler WPA was established on 3/20/1969 and encompasses an area of approximately 45.5 acres. The southern extent of a lake extends into the WPA, covering much of its area (fig. 25). Bird surveys have documented the use of the Chandler WPA by breeding bird pairs, with

observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no production wells present within the WPA and the nearest well, an approved plugged and abandoned dry hole completed in October 1978, is located around 1,000 ft northwest of the WPA.

Geology

The distribution of near-surface geologic materials is depicted in figure 26. As in many glaciated sites, glacial till, glacial lake sediments, and glacial outwash are all in

Table 10. Wetland sampling date, specific conductivity, chloride concentration,
contaminant index, and salinity classification based on inland salinity modifiers
developed by Cowardin and others (1979) for wetlands visited at the Base Camp WPA.

			1		
Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
BC1	4/29/2004	14454	823	0.057	Mesosaline
BC1	7/30/2004	17297	1147	0.066	Mesosaline
BC2	4/29/2004				Dry
BC3	4/29/2004	240.1	7	0.027	Fresh
BC4	4/29/2004	16872	141	0.008	Mesosaline
BC4	7/30/2004	25796	233	0.009	Mesosaline
BC7	9/11/2004	42264	954	0.023	Polysaline

Figure 25. Map depicting locations of sampling sites, oil wells, and bodies of water for the Chandler WPA: T. 37 N., R. 56 E., sec. 8.

Figure 26. Geology of the Chandler WPA: T. 37 N., R. 56 E., sec. 8.

Table 11. Wetland sampling date, specific conductivity, chloride concentration,
contaminant index, and salinity classification based on inland salinity modifiers
developed by Cowardin and others (1979) for the wetland visited at the Chandler WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
CHA1	6/14/2005	13,520	360	0.027	Mesosaline

close proximity at this site. Most of the Chandler WPA is underlain by glacial till. The thickness of this relatively low-permeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 50 to 100 ft.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Chandler WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes.

Characterizing Oil Field Production Brine Migration

EM-31 terrain conductivity surveys were not conducted on the Chandler WPA and there are no monitoring wells.

Wetland Water Quality

There was a single sample, CHA1, taken from the lake in the WPA. The specific conductivity was around 13,000 μ S/ cm and the chloride concentration was 360 mg/L (table 11). The CI for this site was 0.027, suggesting minimal brine impacts.

Co-occurring Contaminants

There were no additional analyses done for Chandler WPA.

Long Lake WPA

The Long Lake WPA was established on 10/13/69. It encompasses approximately 210 acres with multiple wetlands located within its boundary (fig. 27). The WPA also borders Long Lake. Bird surveys have documented the use of the Long Lake WPA by breeding waterfowl during nesting season, with observations of 42–88 duck pairs per square mile (Brian DeVries, USFWS, written commun., 2009). Much of the upland habitat is intact native prairie, so management practices, such as prescribed grazing and prescribed fire, are implemented to maintain and improve the diversity of native prairie plants and the wildlife species that rely on that native prairie habitat. As of January 2010, well 21457, an approved plugged and abandoned dry hole completed in December 1981, is the only production well located within the Long Lake WPA.

Geology

Glacial deposits underlie the Long Lake WPA (fig. 28). Most of the WPA is underlain by collapsed glacial outwash with lesser amounts of glacial till in the southeastern part of the area. The glacial deposits probably range from 100 to 200 ft thick in this area and the site overlies deeper outwash of the Clear Lake aquifer. Based on completions records from a nearby irrigation well, the most productive interval of the Clear Lake aquifer is at depths ranging from 50 to 150 ft.

Groundwater Hydrology

No monitoring wells were constructed to verify brine migration at this site. Groundwater of the Clear Lake aquifer underlies this site and, in general, flows to the southwest at this location.

Characterizing Oil Field Production Brine Migration

Only a few small areas of higher than background terrain conductivity were identified from the EM-31 survey of the Long Lake WPA (fig. 29). Based on the date of completion for well 21457, the area of high terrain conductivity to the east of the well may reflect the presence of a lined reserve pit that has since been reclaimed. There are no monitoring wells at this site.

Wetland Water Quality

Among the three wetlands sampled at the Long Lake WPA, specific conductance and chloride concentrations ranged from around 2,000 to 9,000 μ S/cm and 61 to 279 mg/L, respectively (table 12). The highest specific conductivity was seen at LL3, while LL2 (GWIC ID 214789) had the highest chloride concentrations. In fact, LL2 (GWIC ID 214789) was the only site that exceeded a CI value of 0.035. However, CI values were slightly lower for LL2 (GWIC ID 214789) during 2005. The slight reduction in chlorides, coupled with the increase in sulfates, contributed to the diminished CI. Fluctuating water volumes or flushing and dilution by rainfall may have contributed to the differences seen in ionic composition between years (Reiten, 1992).

Co-occurring Contaminants

Among trace element concentrations, the selenium concentration from the 2004 LL2 (GWIC ID 214789) sample and the nickel concentration from the 2005 LL2 (GWIC ID

Figure 27. Map depicting locations of sampling sites, oil wells, and bodies of water for the Long Lake WPA: T. 32 N., R. 58 E., sec. 3.

Figure 28. Geology of the Long Lake WPA: T. 32 N., R. 58 E., sec. 3.

Long Lake WPA: Oil Well 21457

Figure 29. Location of EM-31 terrain-conductivity surveys conducted at the Long Lake WPA: T. 32 N., R. 58 E., sec. 3.

214789) sample were the only elements to exceed EPA's recommended national water-quality criteria (table 13). Although slight, a significant positive relationship was detected between surface-water selenium concentrations and the CI (table 7). Selenium has been detected in produced water samples collected from produced water reinjection sites in the Williston Basin before (Chen-Northern, 1994). Food chain bioaccumulation and reproductive failure in certain fish and wildlife species has been reported for aqueous selenium concentra1989). Interestingly, selenium concentrations, along with other elemental concentrations including chromium and strontium, were greatly reduced during the 2005 sampling event. Fluctuating water volumes or flushing and dilution by rainfall may have contributed to the differences seen in trace element concentrations between years (Reiten, 1992).

Due to differences in analytical methodologies between 2004 and 2005, the lower limit of detection for the 2004 sample was greater than the value detected in 2005. Therefore, we are unable to accurately describe the temporal trend for nickel concentrations in LL2 (GWIC ID 214789). In spite of this, if nickel is behaving similarly in this wetland as other elements such as arsenic, chromium, selenium, and strontium, we would expect nickel to be slightly greater in 2004 than the value detected in 2005. Nickel is a naturally occurring element and is considered an essential element for certain organisms (Chau and Kulikovsky-Cordeiro, 1995; Phipps and others, 2002). It is present in the environment due to natural processes, as well as anthropogenic activities such as mining, smelting, fuel combustion, and waste incineration (Chau and Kulikovsky-Cordeiro, 1995). Moreover, nickel has been detected in produced water samples (EPA, 1981). Aquatic nickel toxicity is typically inhibited by the presence of competing ions, so a site-specific hardness factor is incorporated into the benchmark concentration. LL2 (GWIC ID 214789) has a relatively low hardness value, which lowers the benchmark concentration. Consequently, the 2005 nickel concentration, albeit a concentration exceeding EPA's hardness-dependent benchmark concentration, is not particularly elevated when compared to values from other sites across the Northeast Montana WMD. Regardless, nickel toxicity has been reported for aquatic and terrestrial organisms, including birds, but at concentrations greater than those detected at LL2 (Phipps and others, 1995; Outridge and Scheuhammer, 1993). Whereas oil production activities may be contributing nickel to the environment, it is difficult to determine if those activities are contributing significantly to the concentrations detected at LL2 (GWIC ID 214789).

Table 12. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Long Lake WPA.

,	Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
	LL1	4/27/2004	2,481	61	0.025	Oligosaline
	LL1	9/10/2004	3,631	68	0.019	Oligosaline
	LL2	7/21/2004	5,966	216	0.036	Oligosaline
	LL2	9/10/2004	6,900	279	0.040	Oligosaline
	LL2	7/11/2005	7,280	168	0.023	Oligosaline
/	LL2	7/8/2005	7,834	228	0.029	Oligosaline
	LL3	7/21/2004	8,950	184	0.021	Mesosaline

tion as low as $2 \mu g/l$. Therefore, the concentration detected at LL2 (GWIC ID 214789) in 2004 of 62.6 µg/L posed a great risk to many wildlife species, particularly sensitive species like aquatic birds. Reproductive failure has been reported in birds exposed to dietary concentrations of selenium as low as 4 µg/ kg (Heinz and others,

Table 13. Surface-water concentrations $(\mu g/L)$ of trace elements present in the sampled wetland LL2 during 2004 and 2005

Derger I unu WIA	Berger	Pond	WPA
------------------	--------	------	-----

The Berger Pond WPA was established on 3/14/1968 and encompasses an

2005.	ed wettand LLZ d	unng 2004 and	area of 12.79 acres. Much of the WPA is the southeastern portion of a lake (fig. 30) Bird surveys have documented the use of the Berger Pond WPA
	LL2 (9/10/2004)	LL2 (7/11/2005)	by breeding bird pairs, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written com-
Al	<100	<50	within, or in close proximity to, the WPA.
As	33.3	17.3	, , , , , , , , , , , , , , , , , , ,
В	1471	1510	Geology
Ba	<20	7	Glacial deposits underlie the Berger Pond WPA (fig. 31) Most of the
Be	<20	<0.5	WPA is underlain by collapsed glacial outwash, with limited glacial till in
Br	7710		the southeastern part of the area. The glacial deposits are up to 200 ft thick
Cd	<10	<0.05	in this area and the site overlies several permeable zones of the Clear Lake
Co	<20	<5	aquifer. The glacial materials overlie sandstone and mudstone of the Fort
Cr	33.5	<5	Union Formation.
Cu	<20	<5	Groundwater Hydrology
Hg		<0.1	
Li	221		No shallow monitoring wells were constructed at this site. Groundwater of the Clear I are aquifer underlies this site and in general flows to the
Мо	<100	<10	southwest at this location.
Ni	<20	6#	
Pb	<20	<0.05	Characterizing Oil Field Production Brine Migration
Se	62.6 [#]	0.13	No oil wells or other oil field activities are located on or near the Berger
Sr	153	85	Pond WPA. No EM-31 surveys were conducted on the Berger Pond WPA
Ti	<10	<5	and no test wells were constructed.
U	<5		Watland Water Quality
V	<50	<10	
Zn	<20	<5	One wetland was sampled over three sampling events. Specific conduc-
[#] Indica	ates value exceed	led EPA's	tance and chloride concentrations ranged from around 10,600 to 11,300

recommended national water-quality criteria.

 μ S/cm and 198 to 357 mg/L, respectively. There were no apparent brine impacts based on the CI.

Co-occurring Contaminants

There were no additional analyses done for the Berger Pond WPA.

Figure 30. Map depicting locations of sampling sites, oil wells, and bodies of water for the Berger Pond WPA: T. 32 N., R. 58 E., sec. 10.

Figure 31. Geology of the Berger Pond WPA: T. 32 N., R. 58 E., sec. 3.

Melby WPA

The Melby WPA was established on 7/17/1968 and encompasses an area of 20.08 acres. Portions of one seasonal wetland and one lake extend into the WPA (fig. 32). Bird surveys have documented the use of the Melby WPA by breeding bird pairs, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no production wells present within the WPA, but one approved plugged and abandoned oil well is located approximately 100 ft from the southwestern boundary. This well, API well 21102, was completed in October 1987. Furthermore, an adjacent landowner allowed reserve pit waste to be land-farmed on land located just southeast of the WPA.

Geology

The Melby WPA is underlain by glacial till deposits (fig. 33). These deposits are estimated to be from 50 to 100 ft thick based on nearby test drilling. Fort Union Sandstone and mudstone underlies the glacial materials. Glacial outwash deposits are located east of the Melby WPA. These

sand and gravel deposits may be associated with tributaries to the Clear Lake aquifer.

Groundwater Hydrology

Shallow groundwater flow in the Melby WPA is northwest towards the lake based on fall 2005 water-level measurements (figs. 34, 35). The general flow of the tributaries to the Clear Lake aquifer is to the southwest at this location (figs. 34, 35).

Characterizing Oil Field Production Brine Migration

EM-31 terrain conductivity surveys identified higher than background conditions near the abandoned oil well site and downgradient of the site towards the north and west (fig. 36). These areas of high terrain conductivity appear to be associated with brine plumes migrating offsite. Additionally, small patches of elevated conductivity along the southeastern boundary of the WPA likely reflect the land-farming of pit wastes that once occurred (fig. 36). Among the five groundwater sampling sites, specific conductivity ranged from around 1,300 to 21,000 μ S/ cm and chloride concentrations ranged from 16.5 to 7087

Figure 32. Map depicting locations of sampling sites, oil wells, and bodies of water for the Melby WPA: T. 33 N., R. 58 E., sec. 2.

Figure 33. Geology of the Melby WPA: T. 33 N., R. 58 E., sec. 2.

mg/L. Based on the CI, brine impacts (CI > 0.035) were seen at two of the five monitoring wells: M-3MW (GWIC ID 221714) and M-4MW (GWIC ID 221595). Additionally, the ionic concentrations (fig. 37) and compositions (fig. 38) of samples collected from M-3MW (GWIC ID 221714) and M-4MW (GWIC ID 221595) are indicative of brineimpacted systems, dominated by Cl-, whereas M-5MW (GWIC ID 221725), M-1MW (GWIC ID 221690), and M-2MW (GWIC ID 221712) reflect a more naturally mineralized shallow aquifer dominated by SO₄⁻². In summary, groundwater impacts were evident where a reserve pit once existed but not where land framing of pit waste took place. The distribution of average CI values measured across the Melby WPA is shown in figure 39.

In addition to EM-31 surveys and groundwater analyses, soil samples were collected at all of the monitoring well drilling sites and leachates were analyzed for specific conductivity and chlorides. Generally, specific conductance increased to a depth of 3-8 ft, then began to decrease at depth at most sites except M-4MW (table 14). Chlorides followed a similar trend, as indicated by stable CI values across varying depths, although the elevated CI values at sites M-3MW and M-4MW suggest these sites have chloride contamination to depths of 23 and 13 ft, respectively (table 14). This contamination reflects the residual impacts of the past use of a reserve pit at this site. While all of the sites are largely comprised of glacial till, indicative of the conserved patterns across different sites, artificial fill was identified at M-4MW, which may explain the different patterns seen at this site.

Wetland Water Quality

Three surface-water sites were sampled, two of which, MEL1 and MEL2 (GWIC ID 221718), were sampled from different locations within the same lake. Among the sampling locations, specific conductivity ranged from around 13,000 to 63,000 µS/cm and chloride concentrations ranged from 405 to 6,053 mg/L (table 15). Sites MEL1 and MEL2 (GWIC ID 221718) had CI values at or just below 0.035 in 2004, but a sample in 2005 at MEL2 (GWIC ID 221718) indicated there was a substantial increase in chlorides, characterized by a three-fold increase in the chloride concentration and a CI value over double what it was a year earlier. Furthermore, MEL3, a smaller seasonal wetland just south of the lake, showed clear signs of brine impacts based on the elevated CI. Based on EM-31 surveying and groundwater monitoring, it appears that M-5MW (GWIC ID 221725), M-1MW (GWIC ID 221690), and M-2MW (GWIC ID 221712) are beyond the extent of the brine plume's flow path, which suggests that impacts seen at sites MEL1 and MEL2 (GWIC ID 221718) are from some other source. Conversely, it appears quite evident that MEL3 is receiving contaminated water via groundwater transport based on the elevated CI associated with wells M-3MW (GWIC ID 221714) and M-4MW (GWIC ID 221595). Furthermore, it is likely that MEL3 is a potential source of contamination to MEL1 and MEL2 (GWIC ID 221718), either through surface-water interactions, groundwater interactions, or both.

Figure 34. Groundwater flow at the Melby WPA: T. 33 N., R. 58 E., sec. 2.

Table 14. Specific conductivity and CI of 1:1 (by weight) aqueous leachates of soil
samples at different depths in the Melby WPA.

Depth (ft)	Soil Property	M-1MW	M-2MW	M-3MW	M-4MW	M-5MW
0_3	SC (µS/cm)	644	4,580	20,275	639	11,990
0.0	CI	NA	0.007	0.273	0.169	0.008
3_8	SC (µS/cm)	12,050	10,800	77,700	1,708	12,480
5.0	CI	0.005	0.004	0.386	0.086	0.007
8_13	SC (µS/cm)	8,830	8,270	64,500	9,740	6,370
0-13	CI	0.005	0.004	0.388	0.170	0.007
13_18	SC (µS/cm)	5,560	3,330	10,410	9,100	4,420
10 10	CI	0.005	NA	0.205	0.041	0.007
18_23	SC (µS/cm)	5,160	3,420	6,950	NA	2,940
10 20	CI	0.006	NA	0.153	NA	NA
22.20	SC (µS/cm)	2,890	2,700	3,310	NA	1,721
20-20	CI	NA	NA	0.028	NA	NA

Note. NA, data not available.

Figure 35. Hydrogeologic cross-sec. at the Melby WPA oil well site: T. 33 N., R. 58 E., sec. 2.

Figure 36. Location of EM-31 terrain-conductivity surveys conducted at the Melby WPA: T. 33 N., R. 58 E., sec. 2.

tions and the CI was not formally assessed (table 7). Therefore, it is difficult to determine the effect of oil production activities on aluminum concentrations in neighboring water bodies. Nevertheless, the concentration of aluminum at MEL2 (GWIC ID 221718) was at a level in which toxic effects have been reported in algae, macroinverterbrates, and fish (Gensemer and Playle, 1999). Aluminum toxicity is considered pH-dependent, with increasing toxicity as water becomes more acidified (Gensemer and Playle, 1999). With a pH around 9 at MEL2 (GWIC ID 221718), the water-borne aluminum concentrations detected in this survey are likely highly complexed, diminishing its bioavailability. In spite of this, varying conditions may alter the availability of aluminum to aquatic organisms, as well as increase the risk to terrestrial organisms, like birds, that may be exposed to elevated aluminum concentrations through dietary uptake (Gensemer and Playle, 1999; Rosseland and others, 1990).

When compared to the Montana numerical water-quality standards for human health in groundwater, two sites, M-4MW (GWIC ID 221595) and M-5MW (GWIC ID 221725), had exceedances for strontium and arsenic, respectively (table 16). There does not appear to be a relationship between arsenic and the CI suggestion that the elevated arsenic concentration detected at M-5MW (GWIC ID 221725) is from some other source (table 5). Conversely, there is a significant positive relationship between the CI and groundwater strontium concentrations (table 5). Strontium is a commonly detected element in produced waters (Stephenson, 1992) and has been shown to be a useful indicator of produced water impacts through the use of isotopic fractions (Peterman and others, 2010).

Co-occurring Contaminants

One sample from MEL2 (GWIC ID 221718) was analyzed for metals (table 16). Based on those data. aluminum was the only element to exceed EPA's national recommended water-quality criteria. Due to the large number of sites with aluminum concentrations below the analytical limit of detection, the relationship between surface-water aluminum concentra-

Figure 37. Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within the Melby WPA during 2005.

Figure 38. Major groundwater ionic compositions and associated contaminant index for monitoring wells present within the Melby WPA during 2005.

Table 15. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Melby WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
MEL1	5/14/2004	13,233	405	0.031	Mesosaline
MEL2	5/14/2004	13,207	464	0.035	Mesosaline
MEL2	7/21/2004	15,637	414	0.026	Mesosaline
MEL2	9/16/2005	22,800	1,338	0.059	Mesosaline
MEL3	7/21/2004	62,540	6,053	0.097	Hypersaline

Figure 39. Distribution of the mean chloride contamination index measured in wells and wetlands associated with the Melby WPA: T. 33 N., R. 58 E., sec. 2.

Figure 40. Concentrations (mg/kg) of total petroleum hydrocarbons from soil samples collected across the Northeast Montana WMD in 2005 with the site located in the Melby WPA bracketed.

·	·	(Groundwate	r		Surface Water
	M-1MW	M-2MW	M-3MW	M-4MW	M-5MW	MEL2
AI	<50	<50	<50	<50	<50	215 [#]
As	5.06	4.47	5.16	2.79	13.8 [*]	46.5
В	273	228	288	671	230	5,800
Ва	42	27	76	79	36	26
Be	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cd	0.11	0.04	0.18	0.18	0.04	<0.2
Co	<5	<5	<5	<5	<5	<5.00
Cr	<5	<5	<5	<5	<5	<5.00
Cu	<5	<5	<5	6	<5	<5.00
Hg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Мо	20	<10	10	10	<10	20
Ni	<5	<5	8	<5	<5	5
Pb	0.1	0.02	<0.05	<0.1	<0.01	0.82
Se	1.76	<0.1	0.88	32.7	<0.1	0.81
Sr	435	590	2,570	7,630 [*]	435	220
Ti	<5	<5	<5	7	<5	10
V	<10	<10	<10	<10	<10	<10
Zn	<5	12	<5	14	<5	

Table 16. Surface-water and groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring wells and wetland of the Melby WPA in 2005.

^{*}Indicates value exceeded Montana numerical water-quality standards for human health in groundwater.

[#]Indicates value exceeded EPA's recommended national water-quality criteria.

While elevated strontium concentrations have been linked to reduced eggshell thickness in birds (Matz and Rocque, 2007), the elevated concentrations at the Melby WPA are confined to groundwater, and therefor unavailable to most organisms.

One soil sample, M-3S, was collected in 2005 for total petroleum hydrocarbon analysis (fig. 40). With a concentration of 89,200 mg/kg (DW), this sample had the highest concentration of total petroleum hydrocarbons of all of the soil samples taken at the Northeast Montana WMD. In 2006, two grab samples were taken at M-3S and were analyzed for aliphatic and polynuclear aromatic hydrocarbons. Average hydrocarbon values from 2006 were compared to established toxic

benchmark values to assess the relative toxicity at each site. For each hydrocarbon fraction assessed, average concentrations detected exceeded every benchmark value (table 17).

Although the toxicity criteria used in this assessment were developed to be protective of human health, values detected were at levels that have been reported as causing environmental impacts. For example, sublethal effects to plants and invertebrates as well as lethal effects to invertebrates have been reported for values comparable to those detected at M-3S (Cermak and others, 2010). Additionally, impacts to microbial communities, including reduced microbial biomass and soil enzyme activity, have been reported for soils that possess hydrocarbon levels comparable to those at M-3S (Megharaj and others, 2000). While the two soils samples taken at the Melby WPA are not representative of large-scale soil contamination, they do illustrate that oil production practices at this WPA are releasing petroleum hydrocarbons into the environment at potentially toxic levels.

In 2005, one groundwater sample was collected from M-3MW and analyzed for total petroleum hydrocarbons. Total petroleum hydrocarbons were present at a concentration of 810 μ g/L, which was one of the highest concentrations detected (fig. 41). M-3MW was resampled in 2006 and analyzed for aliphatic and polynuclear aromatic hydrocarbons. Numerous compounds were present at concentrations greater than the analytical detection limits, with one individual compound, dibenz(a,h)anthracene, exceeding toxicity criteria (table 18). Dibenz(a,h)anthracene is classified Table 17. Concentrations (mg/kg DW) of hydrocarbon fractions from soil samples collected in 2006 within the Melby WPA with associated toxicity criteria.

_	Toxicity	Criteria	Site Values
Carbon	TPHCWG ¹	MADEP ²	M-3S
Range	(mg/kg/day)	(mg/kg/day)	(mg/kg)
Aliphatic			
C9–C18	0.10	0.10	11,311
C19–C32	2.00	2.00	1,665.45
Aromatic			
C9–C16	0.04	0.03	90
C17–C32	0.03	0.03	6.81

¹Total Petroleum Hydrocarbon Criteria Working Group (Gustafson and others, 1997).

²Massachusetts Department of Environmental Protection (MADEP, 2003).

by EPA as a probable human carcinogen and is considered toxic to many wildlife species. However, groundwater is largely unavailable to most organisms, and if dibenz(a,h) anthracene was transported to a surface-water body, it would likely be associated with the sediments. MacDonald and others (2000) proposed a consensus-based toxic effect concentration of 33 μ g/kg, below which harmful effects are unlikely to occur. Groundwater may contribute trace levels of dibenz(a,h)anthracene to wetlands through groundwater–surface-water interactions, but runoff from contaminated soils will more likely contribute concentrations of dibenz(a,h)anthracene or other soil-bound hydrocarbons at toxic levels. No other individual compound or chemical group exceeded toxicity benchmarks, but many of these values were consistently higher than other samples taken throughout the Northeast Montana WMD. For instance, the lighter aliphatic fraction (C9–C18) concentration for M-3MW was greater than 18 times the concentration found at A-3MW, the site with the next highest lighter aliphatic (C9-C18) fraction concentration. The concentration of the lighter aromatic fraction (C9–C10) was at least twice that of the next highest concentration, although all other sites had concentrations below detection limits. Both of

the heavier fractions of aliphatic (C19–C36) and aromatic (C11–C22) hydrocarbons were slightly less than two times the values found at A-14MW and A-4MW, the sites with the next highest concentrations of the heavier fractions of aliphatic (C19–C36) and aromatic (C11–C22) hydrocarbons, respectively.

Figure 41. Concentrations (μ g/L) of total petroleum hydrocarbons from groundwater samples collected across the Northeast Montana WMD in 2005 with the site located in the Melby WPA bracketed. *Indicates concentration is below the analytical detection limit of 100 μ g/L.

Table 18. Concentrations (μ g/L) of hydrocarbon fractions from groundwater samples collected in 2006 within the Melby WPA with associated toxicity criteria.

	Toxicity Criteria		Site Values
	MT RBSL ¹	MADEP ²	M-3MW
	(µg/L)	(µg/L)	(µg/L)
Aliphatics			
Carbon range C9–C18	1,000	50,000	108.9
Carbon range C19–C36	1,000	50,000	57.1
Aromatics			
Carbon range C9–C10	_	50,000	0.7
Carbon range C11–C22	1,000	5,000	0.8
Acenaphthene	670	6,000	<0.3
Anthracene	2,100	30	<0.3
Benzo(a)pyrene	0.05	500	<0.3
Benzo(b)fluoranthene	0.5	400	<0.3
Benzo(k)fluoranthene	5	100	<0.3
Chrysene	50	70	<0.3
Dibenzo(a,h)anthracene	0.05	40	0.3 [†]
Fluoranthene	130	200	<0.3
Flourene	1,100	40	<0.3
Indeno(1,2,3-cd)pyrene	0.5	100	<0.3
Napthalene	100	20,000	0.7
Pyrene	830	20	<0.3

¹Montana Tier 1 Risk-Based Corrective Action Guidance for Petroleum Release (MT DEQ, 2009).

²Massachusetts Department of Environmental Protection (MADEP, 2003). [†]Indicates value exceeds a toxicity benchmark.

Mallard Pond WPA

The Mallard Pond WPA was established on 3/14/1968 and encompasses an area of approximately 160 acres with multiple bodies of water extending on to the property (fig. 42). Bird surveys have documented the use of the Mallard Pond WPA by breeding waterfowl during nesting season, with observations of 42-88 duck pairs per square mile (Brian DeVries, USFWS, written commun., 2009). Much of the upland habitat is intact native prairie, so management practices, such as prescribed grazing and prescribed fire, are implemented to maintain and improve the diversity of native prairie plants and the wildlife species that rely on that native prairie habitat. As of January 2010, well 21236, an approved plugged and abandoned oil well, was the only production well found within the WPA. The closest production well outside of the WPA was a producing oil well located within 800 ft of the northern WPA boundary (fig. 42). Well 21236 was completed in June 1979. Historical aerial photos reveal that a tank battery was present at the

section shown in figure 44 depicts the outwash overlying the aquifer and the similar water levels in monitoring wells constructed at the Mallard Pond WPA and Mallard Pond.

Characterizing Oil Field Production Brine Migration

EM terrain conductivity surveys indicated higher than background readings in an area east of the abandoned oil well (fig. 45). These appear to be related to well construction activities where brine or brine-saturated materials were either spilled or buried. These could also reflect the salt scars identified in the historical aerial photos. Among the three monitoring well samples, specific conductance ranged from around 680 to 16,300 μ S/cm and chloride concentrations ranged from 4.57 to 8581 mg/L. Based on the CI, brine impacts (CI > 0.035) were seen at two of the three monitoring wells: MP-1MW (GWIC ID 221735) and MP-2MW (GWIC ID 221704). The ionic concentrations (fig. 46) and compositions (fig. 47) of groundwater samples

location of well 21236, as well as a salt scar located just to the east.

Geology

The Mallard Pond WPA is underlain by glacial outwash deposits (fig. 43). These deposits are estimated to be from 50 to 150 ft thick based on nearby test drilling. Fort Union sandstone and mudstone underlies the glacial materials. Quaternary alluvial deposits are located underlying the western part of the Mallard Pond WPA and are associated with swales and lowlands along Lake Creek and its tributaries. The sand and gravel glacial outwash deposits are associated with the upper permeable zone of the Clear Lake aquifer.

Groundwater Hydrology

The Mallard Pond site overlies the Clear Lake aquifer. Water levels at Mallard Pond and other wetlands in this area approximate the water table of the Clear Lake aquifer. Flow in the aquifer is generally towards the west or southwest. The cross

Figure 42. Map depicting locations of sampling sites, oil wells, and bodies of water for the Mallard Pond WPA: T. 33 N., R. 58 E., sec. 33.

Waterfowl Production Area

Mallard Pond

Figure 43. Geology of the Mallard Pond WPA: T. 33 N., R. 58 E., sec. 33.

Figure 44. Cross section showing hydrogeologic conditions in the vicinity of the of the Mallard Pond WPA.

Figure 45. Location of EM-31 terrain-conductivity surveys conducted at the Mallard Pond WPA: T. 33 N., R. 58 E., sec. 33.

taken from wells MP-1MW (GWIC ID 221735) and MP-2MW (GWIC ID 221704) are indicative of brine impacts, dominated by Cl- ions, whereas well MP-RW (GWIC ID 161782) lacks that Cl- dominance. The distribution of mean CI values associated with the Mallard Pond WPA is shown in figure 48.

In addition to EM-31 surveys and groundwater analyses, soil samples were collected at the monitoring well drilling sites of MP-1MW and MP-2MW, and leachates were analyzed for specific conductivity and chlorides (table 19). MP-1MW consistently had high specific conductivity and CI values throughout the various sampled depths, while MP-2MW had a clearer increasing trend in values with depth. The differences between the two sites may reflect proximity to the contaminant source. For example, MP-1MW may have been the location of a chronic leak or waste site associated with oil well 21236, and the permeable outwash in which both sites are located have allowed chloride contamination to migrate to a point in which subsurface impacts are seen at MP-2MW.

Wetland Water Quality

One wetland, Mallard Pond, was sampled four times between 1990 and 2005 (table 20). Results from the 1990 sample were reflective of the drought conditions that existed during the 1980s that had evapoconcentrated water in the pond, resulting in an elevated specific conductivity value of 2,590 µS/cm. However, the chloride concentration of 25.7 mg/L and the CI value of 0.01 were similar to the values seen during the 2004 sampling event. The specific conductivity in 2004, though, reflected the wetter conditions that existed after 1980 that improved the overall water quality. Much like the 2004 samples, the 2006 specific conductivity value reflected the wetter conditions that existed after 1980, although the chloride concentration increased to 54.9 mg/L with a resultant CI of 0.03, approaching the lower limit indicative of brine contamination. The variation in chloride concentrations seen at Mallard Pond is likely the result of regional influences.

Figure 46. Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within the Mallard Pond WPA during 2005.

Figure 47. Major groundwater ionic compositions and associated contaminant index for monitoring wells present within the Mallard Pond WPA during 2005.

Figure 48. Distribution of the mean chloride contamination index measured in wells and wetlands associated with the Mallard Pond WPA: T. 33 N., R. 58 E., sec. 33.

Co-occurring Contaminants

Inorganic analyses were completed on samples taken from the wetland MP1A and the three monitoring wells MP-1MW (GWIC ID 221735), MP-2MW (GWIC ID 221704), and MP-RW (GWIC ID 161782). Numerous trace elements were detected in the wetland sample, as well as the groundwater samples. For surface water, zinc exceeded EPA's national recommended water-quality criteria (table 21). The relationship between surface-water zinc concentrations and the CI was not formally assessed due to the large number of values below the analytical detection level (table 7), but there does appear to be a slight positive relationship with groundwater zinc concentrations and the CI (table 5). Regardless, EM-31 surveys and groundwater surveys provide evidence that there is little to no interaction between the MP1A wetland sample and the brine plume present within the WPA. This does not account for other interactions that occur between the lake and neighboring surface-water bodies that may be intermittently connected. Nevertheless, it is difficult to determine the influence that oil production activities may have had on the present zinc concentration

detected at MP1A, but zinc is often considered a commonly occurring trace element in produced waters (Stephenson, 1992; Jacobs and others, 1992). Many species respond differently to elevated zinc levels and there are numerous interactions that may influence zinc toxicity, but effects have been reported for various species including some plants, macroinvertebrates, and amphibians at concentrations less than the concentration detected at MP1A (Eisler, 1993).

When groundwater concentrations were compared to the Montana numerical water-quality standards for human health in groundwater, sites MP-2MW (GWIC ID 221704) and MR-RW (GWIC ID 161782) had exceedances for arsenic, and sites MP-1MW (GWIC ID 221735) and MP-2MW (GWIC ID 221704) had exceedances for strontium (table 21). There does not appear to be a relationship between arsenic and the CI, suggesting that the elevated arsenic concentrations detected at MP-RW (GWIC ID 161782) and MP-2MW (GWIC ID 221704) are from some other source (table 5). Conversely, there is a significant positive

Depth (ft.)	Soil Property	MP-1MW	MP-2MW
0_3	SC (µS/cm)	7,270	265
0 0	CI	0.209	NA
3_8	SC (µS/cm)	4,460	261
5.0	CI	0.238	NA
8_13	SC (µS/cm)	8,720	638
0 10	CI	0.316	0.174
13_18	SC (µS/cm)	7,130	2,220
13-16	CI	0.294	0.284
18_23	SC (µS/cm)	7,420	8,970
10-23	CI	0.306	0.350
23-28	SC (µS/cm)	3,240	5,010
23-20	CI	0.310	0.330
28–33	SC (µS/cm)	787	2,410
	CI	0.241	0.317
33-38	SC (µS/cm)	4,530	3,820
	CI	0.310	0.287

Table 19. Specific conductivity and CI of 1:1 (by weight) aqueous leachates of soil samples at different depths in the Mallard Pond WPA.

Note. NA, data not available.

Table 20. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for the wetland visited at the Mallard Pond WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
MP1A	8/25/1990	2,590	26	0.010	Oligosaline
MP1A	4/27/2004	1,049	24	0.023	Oligosaline
MP1A	9/12/2004	1,194	16	0.014	Oligosaline
MP1A	9/16/2005	1,650	55	0.033	Oligosaline

	Groundwater			Surface Water
	MP-1MW	MP-2MW	MP-RW	MP1A
AI	<50	<50	<50	<50
As	3.21	13.3 [*]	13.8 [*]	4.39
В	8,560	90	106	562
Ba	640	3,440	545	12
Be	<0.5	<0.5	<0.5	<0.5
Cd	2.16	1.79	0.08	0.03
Co	<5	<5	<5	<5
Cr	<5	<5	<5	<5
Cu	<5	<5	<5	<5
Hg	<0.1	<0.1	<0.1	<0.1
Мо	<10	<10	10	<10
Ni	17	<5	<5	<5
Pb	<0.05	<0.05	0.12	0.05
Se	2.26	2.8	0.14	0.16
Sr	15,000 [*]	6,930 [*]	240	95
Ti	9	24	<5.00	<5
V	<10	<10	<10	<10
Zn	<5	7	<5	11 [#]

Table 21. Surface-water and groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring wells and wetland of the Mallard Pond WPA in 2005.

^{*}Indicates value exceeded Montana numerical water-quality standards for human health in groundwater.

[#]Indicates value exceeded EPA's recommended national water-quality criteria.

Table 22. Concentrations (mg/kg DW) of hydrocarbon fractions from the soil sample collected in 2006 within the Mallard Pond WPA with associated toxicity criteria.

	Toxicity	Site Values	
Carbon Range	TPHCWG ¹ (mg/kg/day)	MADEP ² (mg/kg/day)	MP-1S (mg/kg)
Aliphatic			
C9–C18	0.10	0.10	0.248
C19–C32	2.00	2.00	0.518
Aromatic			
C9–C16	0.04	0.03	0
C17–C32	0.03	0.03	0.003

¹Total Petroleum Hydrocarbon Criteria Working Group (Gustafson and others, 1997).

²Massachusetts Department of Environmental Protection (MADEP, 2003).

Figure 49. Concentrations (mg/kg DW) of total petroleum hydrocarbons from soil samples collected across the Northeast Montana WMD in 2005 with the site located in the Mallard Pond WPA bracketed.

Figure 50. Concentrations (μ g/L) of total petroleum hydrocarbons from groundwater samples collected across the Northeast Montana WMD in 2005 with the site located in the Mallard Pond WPA bracketed. *Indicates concentration is below the analytical detection limit of 100 μ g/L.

relationship between the CI and groundwater strontium concentrations (table 5). Strontium is a commonly detected element in produced waters (Stephenson, 1992). The concentrations detected in MP-1MW (GWIC ID 221735) and MP-2MW (GWIC ID 221704) are at levels that could elicit a toxicological response (Matz and Rocque, 1997), but the exposure pathway is largely confined to the groundwater systems in which it was detected, rendering this element unavailable to many organisms.

One soil sample, MP-1S, was collected in 2005 for total petroleum hydrocarbon analysis. This sample had a total petroleum hydrocarbon concentration of 524 mg/kg (DW) (fig. 49). In 2006, another grab sample were taken at MP-1S and was analyzed for aliphatic and polynuclear aromatic hydrocarbons. Hydrocarbon fractions from 2006 were then compared to established toxic benchmark values. Only the C9–C18 aliphatic fraction exceeded a benchmark value (table 22). The toxicity criteria used to assess toxicity were developed to be protective of human health, and as they do serve as a useful frame of reference, the concentrations present in the soil at MP-1S will have little impact on

wildlife. In 2005, one groundwater sample was collected from MP-1MW (GWIC ID 221735) and analyzed for total petroleum hydrocarbons. Total petroleum hydrocarbons were present at a concentration of 240 μ g/l (fig. 50). There were no further organic analyses done for MP-1MW (GWIC ID 221735). It appears that oil production activities have contaminated groundwater with petroleum hydrocarbons, but at levels that will unlikely produce a significant toxicological impact to wildlife.

Northeast WPA

The Northeast WPA was established on 7/17/1968, although additional land purchases were made until 8/11/1969. Currently, the Northeast WPA includes an area of 218.5 acres with multiple wetlands (fig. 51). Bird surveys have documented the use of the Northeast WPA by breeding bird pairs, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no oil wells present within the WPA, but four are located in close proximity. Wells 05173 and

Figure 51. Map depicting locations of sampling sites, oil wells, and bodies of water for the Northeast WPA: T. 37 N., R. 58 E., sec. 3 & 10.

05182 are both oil-producing wells that were completed in November 1965 and August 1965, respectively. Well 05250 is an approved plugged and abandoned dry hole that was completed in December 1965 and well 05181 is an active injection EOR well that was completed in July 1965.

Geology

The surficial geology underlying the Northeast WPA is depicted in figure 52. Most of the Northeast WPA is underlain by glacial till. The thickness of this relatively low-permeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 50 to 100 ft. A relatively long and narrow deposit of moderate to high-permeability alluvium is mapped trending north to south through the central part of the Northeast WPA.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Northeast WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. No regional glacial outwash aquifers have been identified in this area.

Characterizing Oil Field Production Brine Migration

EM surveys were not conducted at this site and no monitoring wells were established.

Wetland Water Quality

Three wetlands were sampled, two of which, NE3 and NE5, were dry. For NE2, the specific conductivity was around 94,000 μ S/cm and the chloride concentration was 5,179 mg/L (table 21). Based on the CI value for NE2, chloride impacts (CI >0.035) were evident. Further investigations, such as EM-31 surveys and groundwater monitoring, would be required to determine the source of contamination for NE2.

Co-occurring Contaminants

There were no additional analyses done for the Northeast WPA.

North Root WPA

The North Root WPA was established on 6/19/1988 and contains an area of 320 acres (fig. 53). Bird surveys have documented the use of the North Root WPA by breeding bird pairs, with observations of 42–88 duck pairs per square mile in the eastern half of the

WPA and 20–42 duck pairs per square mile in the western half during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, well 05101, an active injection EOR well completed in February 1965, was the only well present within the WPA. Well 05091, an approved plugged and abandoned dry hole completed in March 1965, is located just south of the WPA (fig. 53).

Geology

The surficial geology underlying the North Root WPA is depicted in figure 54. Most of the North Root WPA is underlain by glacial till. The thickness of this relatively low-permeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 50 to 100 ft. A deposit of moderate to high-permeability glacial outwash underlies the western part of this WPA in the vicinity of mapped oil field location 05101.

Groundwater Hydrology

Little information is available on groundwater flow underlying the North Root WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. At this location there is a strong potential for a brine plume associated with the oil well site to migrate towards the wetland to the west of the site. No regional glacial outwash aquifers have been identified in this area.

Figure 53. Map depicting locations of sampling sites, oil wells, and bodies of water for the North Root WPA: T. 36 N., R. 58 E., sec. 34.

Figure 54. Geology of the North Root WPA: T. 36 N., R. 58 E., sec. 34.

North Root WPA: Oil Well 05101

Figure 55. Location of EM-31 terrain-conductivity surveys conducted at the North Root WPA: T. 36 N., R. 58 E., sec. 34.

Characterizing Oil Field Production Brine Migration

EM terrain conductivity surveys indicated higher than background readings in an area west of oil well location 05101 (fig. 55). The area of high conductivity closest to the well is likely the location of a reserve pit, while the other elevated areas show a plume migrating downslope ending along the county road. There are no groundwater wells associated with this site to characterize groundwater chemistry.

Wetland Water Quality

One surface-water location, NR1, was sampled and had an average specific conductivity of 24,731.5 μ S/cm and an average chloride concentration of 3067.5 mg/L. Based on the average CI value for NR1, 0.121, chloride impacts (CI >0.035) were evident. Based on the EM-31 survey, it appears that a brine plume is moving offsite and is impacting NR1. Additionally, several flow lines and produced water lines have been observed along the shoreline of the NR1 wetland. These may serve, or have served, as a contaminant source to the wetland through leaks or spills that may have occurred over time.

Co-occurring Contaminants

There were no additional analyses done for the North Root WPA.

Big Slough WPA

The Big Slough WPA was established on 12/20/1968, with additional land acquired on 12/30/1968 and 4/16/1969, ultimately encompassing an area of approximately 850 acres. Multiple water bodies are located within the WPA, including lakes, semi-permanent, seasonal, and temporary wetlands (fig. 56). Bird surveys have documented the use of the Big Slough WPA by breeding waterfowl, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). Additionally, there is designated Piping Plover critical habitat located in the Big Slough WPA. Much of the upland habitat is managed as dense nesting cover through selective planting, prescribed having, prescribed fire, and limited grazing. As of January 2010, well 05056, an approved plugged and abandoned dry hole completed in September 1964, was the only well within the WPA. However, numerous wells, including an unapproved plugged and abandoned dry hole, approved plugged and abandoned dry wells, and a producing oil well were all located in close proximity to the WPA boundary (fig. 56).

Geology

The Big Slough WPA is located near the western edge of a major glacial outwash deposit (fig. 57). The entire WPA is underlain by glacial outwash deposits. These deposits are estimated to be from 50 to 150 ft thick based on nearby test drilling. Fort Union sandstone and mudstone underlies the glacial materials. Quaternary alluvial and lacustrine deposits are located underlying relatively small areas of the Big Slough WPA and are associated with swales and lowlands along wetlands and lakes.

Groundwater Hydrology

The Big Slough WPA overlies the Clear Lake aquifer. Several highly productive irrigation wells are located within 1 mile to the south and east of the WPA. Flow in the aquifer is generally towards the south or southwest. There is a good potential for groundwater flow to be from oil well location 05056 towards nearby wetlands.

Characterizing Oil Field Production Brine Migration

EM-31 terrain conductivity surveys indicated higher than background readings in an area north of oil well location 05056 (fig. 58). These appear to be related to well construction activities, and based on the date of well construction, may reflect the location of a historic unlined reserve pit. Among the four monitoring wells sampled, specific conductance ranged from around 1,600 to 8320 μ S/cm and chloride concentrations ranged from 14.7 to 2,094 mg/L.

Figure 56. Map depicting locations of sampling sites, oil wells, and bodies of water for the Big Slough WPA: T. 34 N., R. 58 E., sec. 2, 10 & 11.

Waterfowl **Production Area** EM Survey Sites Waterfowl Production Area Glacial Outwash Glacial Till Water Glacial Lake Quaternary Alluvium 05056 - Oil Well Showing Abbreviated API #

> Figure 57. Geology of the Big Slough WPA: T. 34 N., R. 58 E., sec. 2, 10 & 11.

Figure 58. Location of EM-31 terrain-conductivity surveys conducted at the Big Slough WPA: T. 34 N., R. 58 E., sec. 2, 10 & 11.

As indicated by the calculated CI values from the well samples, produced water impacts were evident at sites BS-1DMW (GWIC ID 221706), BS-1SMW (GWIC ID 221736), and BS-2MW (GWIC ID 221689). The ionic concentrations (fig. 59) and compositions (fig. 60) of groundwater samples taken from wells BS-1DMW (GWIC ID 221706), BS-1SMW (GWIC ID 221736), and BS-2MW (GWIC ID 221689) are less indicative of brine impacts than other groundwater sites sampled in the Northeast Montana WMD, which are typically more clearly dominated by Cl- ions. Rather, impacted well sites in the Big Slough WPA show only a slight displacement of naturally dominant ions, like HCO3-, by Cl- ions, although impacts are more clearly seen in BS-2MW (GWIC ID 221689). In agreement with the EM-31 survey, it appears that wells BS-1DMW (GWIC ID 221706) and BS-1SMW (GWIC ID 221736) are along the edge of the brine plume, while BS-2MW (GWIC ID 221689) is situated in a more concentrated, highly impacted area. Although no EM-31 surveys were conducted surrounding BS-RW (GWIC ID161785), this site appears to reflect background groundwater conditions.

In addition to EM-31 surveys and groundwater analyses, soil samples were collected at the monitoring well drilling sites of BS-1DMW and BS-2MW, and leachates were analyzed for specific conductance and chlorides (table 23). Impacts are evident at both sites based on the elevated CI values, although the distribution of ions between the soil profiles differs. For instance, specific conductance, including the contribution of chlorides, was more pronounced at depths greater than 8 ft at BS-1DMW, while surficial impacts were evident at BS-2MW. Hyrdogeologic differences between the two sites, as well as proximity to

Figure 59. Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within the Big Slough WPA during 2005.

Figure 60. Major groundwater ionic compositions and associated contaminant index for monitoring wells present within Big Slough WPA during 2005.

the contaminant source, may explain the differences seen between these two sites. For example, BS-1DMW is more representative of glacial outwash, with unequal distributions of ions reflecting the permeability and transmissivity of these deposits, while BS-2MW, located in alluvium, is exhibiting elevated near-surface concentrations due to evaporative concentration effects. Furthermore, EM-31 surveys show areas of high terrain conductivity closer to BS-2MW, where brine or brine-saturated materials were either spilled or buried.

Wetland Water Quality

Among the five wetlands sampled, specific conductance ranged from around 1,700 to 34,000 μ S/cm and chloride concentrations ranged from 16 to 1,198 mg/L (table 24).

Based on the CI values for the Big Slough WPA, there was only one site, BS4A, displaying chloride impacts. The results from the EM-31 surveys conducted onsite and the groundwater analyses suggest that past oil production and exploration activities are likely impacting BS4A though brine contamination.

Co-occurring Contaminants

Analyses for co-occurring contaminants were not conducted for wetlands, but were completed on samples taken from every groundwater monitoring well. When compared to the Montana numerical water-quality standards for human health in groundwater, there were no constituents that exceeded any benchmark value (table 25).

DIG SIDUGII WPA.					
Depth (ft)	Soil Property	BS-1DMW	BS-2MW		
0_3	SC (µS/cm)	479	7,750		
0-3	CI	NA	0.113		
3-8	SC (µS/cm)	630	3,300		
5-0	CI	0.044	0.138		
8-13	SC (µS/cm)	3,040	NA		
0-10	CI	0.185	NA		
13-18	SC (µS/cm)	1,147	NA		
	CI	0.121	NA		

Table 23. Specific conductivity and CI of 1:1 (by weight) aqueous leachates of soil samples at different depths in the Big Slough WPA.

Note. NA, data not available.

Table 24. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Big Slough WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
BS1	5/15/2004	2,216	32	0.014	Oligosaline
BS2	5/15/2004	1,768	16	0.009	Oligosaline
BS3A	5/15/2004	8,834	222	0.025	Mesosaline
BS4A	5/15/2004	34,017	1,198	0.035	Polysaline
BS8	5/15/2004	4,616	109	0.024	Oligosaline

Table 25. Groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring wells of the Big Slough WPA in 2005.

	Groundwater				
	BS-1DMW	BS-1SMW	BS-2MW	BS-RW	
AI	<50	<50	<50	<50	
As	1.06	1.03	1.57	11.3	
В	284	272	1450	439	
Ba	91	12	77	35	
Be	<0.5	<0.5	<0.5	<0.5	
Cd	0.06	0.12	0.14	0.02	
Co	<5	<5	<5	<5	
Cr	<5	<5	<5	<5	
Cu	<5	<5	<5	<5	
Hg	<0.1	<0.1	<0.1	<0.1	
Мо	<10	10	<10	<10	
Ni	<5	<5	<5	<5	
Pb	<0.01	0.02	<0.05	<0.01	
Se	2.72	3.6	0.49	<0.1	
Sr	670	445	3,240	1,140	
Ti	<5	<5	6	<5	
V	<10	<10	<10	<10	
Zn	<5	<5	8	<5	

Rabenberg WPA

The Rabenberg WPA encompasses an area of approximately 320 acres. Multiple bodies of water are located in, or partially located in, the WPA, including seasonal and semi-permanent wetlands (fig. 61). Bird surveys have documented the use of the Rabenberg WPA by breeding bird pairs, with observations of 42–88 duck pairs per square mile in the eastern half of the WPA and 20–42 duck pairs per square mile in the western half during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, API wells 05105 and 21056, two shutin oil wells completed in September 1965 and November 1968, respectively, were located within the WPA. Furthermore, one producing oil well was located within 700 ft east of the WPA, a shut-in oil well was located within 1,000 ft of the western WPA boundary, and a tank battery and producing oil well were located just over a quarter of a mile north of the northwestern corner of Rabenberg WPA (fig. 61). A slough located downslope of the tank battery creates a surface-water pathway for contaminants from the tank battery to the refuge. An expanded report detailing oil and gas impacts identified at the Goose Lake Oil Field, including Rabenberg WPA, is found in appendix A.

Geology

The Rabenberg WPA is underlain by collapsed glacial

Figure 61. Map depicting locations of sampling sites, oil wells, and bodies of water for the Rabenberg WPA: T. 34 N., R. 58 E., sec. 2, 10 & 11.

Figure 62. Geology of the Rabenberg WPA: T. 36 N., R. 58 E., sec. 27.

outwash overlying glacial till (fig. 62). These sediments overlie sandstone and mudstone of the Fort Union Formation. The depth to bedrock has not been clearly defined, but is estimated at 50 to 100 ft below land surface. Details of the near-surface geology are expanded in Appendix A.

Groundwater Hydrology

The Rabenberg WPA overlies a tributary to the Clear Lake aquifer. Flow in the aquifer is generally towards the east or southeast. Groundwater flows towards a western extension of Goose Lake near the eastern boundary of the WPA. Details of groundwater flow are expanded in the Goose Lake report in Appendix A that also compares results of the 1989 sampling to samples collected from the same wells in 2006.

Characterizing Oilfield Production Brine Migration

EM surveys were conducted in three separate locations within and directly outside of the WPA boundaries (fig. 63). For instance, surveys conducted at site 1 characterized an area of elevated apparent terrain conductivity associated with the tank battery just north of the northwest corner of the WPA (fig. 64). Surface salt scars from historic improper disposal of produced water are apparent along the slough

Rabenberg EM-31 Survey Areas

Figure 63. Location of EM-31 terrain-conductivity surveys conducted at the Rabenberg WPA: T. 34 N., R. 58 E., sec. 2, 10 & 11.

500 m

250

on the west side of the road, and historic photos show the presence of a produced water pit just upslope of the slough. Surveys conducted at site 2 characterized another area of elevated apparent terrain conductivity associated with the oil well 05105 that appears to extend northward into the slough area (fig. 65). Based on the drilling date for well 05105, the reserve pit associated with this well would have been unlined. Last, surveys conducted at site 3 identified areas of elevated apparent terrain conductivity associated with oil well 21056 (fig. 66), but less extensive than at sites 1 and 2. This well would have also had an unlined reserve pit associated with it based on its drilling date.

Four monitoring wells are located within the WPA, but numerous wells are located in close proximity to the WPA as well. However, only six wells outside the WPA have been sampled within the past 10 years. These include those wells located in Rabenberg Slough-RS-1MW (GWIC ID 890940), RS-2MW (GWIC ID 890445), RS-3MW (GWIC ID 890446), and RS-4MW (GWIC ID 890939), which are northwest and upslope of the WPA-as well as two MBMG research wells, 124K (GWIC ID 220937) and 124B (GWIC ID 220932), located north of the eastern portion of the WPA. Of the wells sampled within 10 years, including

Figure 64. Location of EM-31 terrain-conductivity survey conducted at Site 1 of the Rabenberg WPA.

Figure 65. Location of EM-31 terrain-conductivity survey conducted at Site 2 of the Rabenberg WPA.

those located within the WPA, specific conductance ranged from around 760 to 807,299 µS/cm, and chloride concentrations ranged from 12.31 to 66,900 mg/L. According to the CI values calculated for the groundwater samples, produced water impacts were evident at every site, except RS-7MW (GWIC ID 890937), which is located along the eastern WPA boundary. A decreasing trend in chloride contamination is obvious following the Rabenberg Slough downslope from the tank battery south and to the east. Based on the concentrations (fig. 67) and compositions (fig. 68) of the dominant ions in the shallow groundwater samples, it appears that the brine plume is largely present between RS-1MW (GWIC ID 890940) and RS-6MW (GWIC ID 890936). When data were reviewed from 1989 for samples from wells located in the upper part of the slough, RS-1MW (GWIC ID 890940), RS-2MW (GWIC ID 890445), RS-3MW (GWIC ID 890446), and RS-4MW (GWIC ID 890939), the overall concentrations were generally higher (fig. 69), while compositionally most of the wells were very similar (fig. 70). However, the 2005 RS-1MW (GWIC ID 890940) sample begun to reflect a more background composition, with an increasing presence of SO4- and HCO3-, although chloride impacts were still evident based on the CI. Based on these observations, similar trends of groundwater improvement over time at

 Rabenberg WPA Site 3: Oil Well 21056

 Soil Conductivity (mS/m)
 N

 * Oil Well
 0 - 50
 101 - 150

 • Survey Points
 51 - 100
 151 - 200

 0
 50
 100 m

Figure 66. Location of EM-31 terrain-conductivity survey conducted at Site 3 of the Rabenberg WPA.

sites in the upper slough would be expected, while areas located downslope like RS-6MW (GWIC ID 890936) and RS-7MW (GWIC ID 890937) might continue to reflect impairment as the brine continues to migrate downslope. However, precipitation and unimpacted recharge waters will also continue to dilute the plume over time, slowly improving groundwater quality. A more detailed report of oil production impacts to the Goose Lake Oilfield, including the Rabenberg WPA, is located in Appendix A.

In addition to EM-31 surveys and groundwater analyses, soil samples were collected at the monitoring well drilling sites of R-1MW and R-2MW, and leachates were analyzed

Table 26. Specific conductivity and CI of 1:1 (by weight) aqeuous leachates of soil samples at different depths in the Rabenberg WPA.

Depth (ft)	Soil Property	R-1MW	R-2MW
0_3	SC (µS/cm)	833	1,904
0-3	CI	0.108	0.113
3_8	SC (µS/cm)	1,021	1,177
5-0	-3 SC (μS/cm) -3 CI -8 SC (μS/cm) CI 13 SC (μS/cm) CI	0.202	0.155
0 10	SC (µS/cm)	2,890	902
0-15	CI	0.290	0.184

Figure 67. Major groundwater ionic concentrations and associated contaminant index for monitoring wells present within and around the Rabenberg WPA during 2005.

Figure 68. Major groundwater ionic compositions and associated contaminant index for monitoring wells present within and around the Rabenberg WPA during 2005.

Figure 69. Comparison of major groundwater ionic concentrations and associated contaminant indices for selected monitoring wells present within and around the Rabenberg WPA during 1989 and 2005.

Figure 70. Comparison of major groundwater ionic compositions and associated contaminant indices for selected monitoring wells present within and around the Rabenberg WPA during 1989 and 2005.

for specific conductance and chlorides (table 26). Based on the elevated CI values, chloride impacts are likely at both sites across all sampled depths, with values slightly increasing with depth. However, specific conductivity increases with depth at R-1MW, while there is a decreasing trend with depth at R-2MW. The differences seen between the two sites likely reflect the influence of multiple contaminant sources. For instance, R-2MW reflects impacts from oil well 05105, while R-2MW may reflect both well 05105 influences and upgradient contaminant sources such as the tank battery.

Wetland Water Quality

Among the seven sites visited for surface-water samples, specific conductance ranged from around 2,700 to 22,500 μ S/cm and chloride concentrations ranged from 633.91 to 8,362 mg/L (table 27). Based on the calculated CI for each site, produced water impacts were seen at each sampled wetland. It is quite apparent from EM-31 surveys and groundwater analyses that migrating brine plumes are likely contributing to the chloride impacts identified across the wetlands sampled. However, the influence from seasonal surface-water connectivity cannot be discounted due the likelihood that constituents from one wetland may be transported during periods of runoff to another wetland.

Co-occurring Contaminants

Metals analyses were done on all but four of the sampled wetland sites. The results from these analyses indicate that only selenium concentrations exceeded EPA's national recommended water-quality criteria in four samples across four sites, including RABE1 (GWIC ID 214791), RABE2 (GWIC ID 214792), RABE4 (GWIC ID 214790), and RABE5+ (GWIC ID 214788) (table 28). Although slight, a significant positive relationship was detected between surface-water selenium concentrations and the CI (table 7). Selenium has been detected in produced water samples collected from produced water reinjection sites in the Williston Basin before (Chen-Northern, 1994). Food chain bioaccumulation and reproductive failure in certain fish and wildlife species have been reported for aqueous selenium concentrations as low as $2 \mu g/L$. Therefore, the concentrations detected at RABE1 (GWIC ID 214791), RABE2 (GWIC ID 214792), RABE4 (GWIC ID 214790), and RABE5+ (GWIC ID 214788) posed a great risk to many wildlife species, particularly sensitive species like aquatic birds. Reproductive failure has been reported in birds exposed to dietary concentrations of selenium as low as 4 μ g/kg (Heinz and others, 1989). Interestingly, selenium concentrations, along with other elemental concentrations including chromium and strontium, were greatly reduced during the 2005 sampling event. Fluctuating water volumes or flushing and dilution by rainfall may have contributed to the differences seen in trace element concentrations between years (Reiten, 1992).

For groundwater, there were only three different elements in 2005 with concentrations that exceeded Montana numerical water-quality standards for human health in groundwater (table 29). Specifically, there was one exceedance for cadmium at site RS-2MW (GWIC ID 890445), two total exceedances for strontium at sites RS-2MW (GWIC ID 8904445) and RS-3MW (GWIC ID 890446), and two exceedances for aluminum at RS-4MW (GWIC ID 890939) and RS-6MW (GWIC ID 890936). However, when data from 1989 were reviewed, there were additional historical exceedances, including aluminum at wells RS-1MW (GWIC ID 890940) and RS-4MW (GWIC ID 890939); cadmium at wells RS-1MW (GWIC ID 890940), RS-2MW (GWIC ID 890445), RS-3MW (GWIC ID 890446), and RS-4MW (GWIC ID 890939); nickel at well RS-2MW (GWIC ID 890445); lead at wells RS-1MW (GWIC ID 890940) and RS-4MW (GWIC ID 890939); and strontium

Table 27. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for the wetlands visited at the Rabenberg WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
RABE1	5/13/2004	22,480	8,362	0.372	Mesosaline
RABE1	7/25/2004	12,002	4,181	0.348	Mesosaline
RABE1	9/14/2004	19,131	7,380	0.386	Mesosaline
RABE1	6/13/2005	13,360	3,349	0.251	Mesosaline
RABE2	5/13/2004	4,130	953	0.231	Oligosaline
RABE2	7/20/2004	3,942	961	0.244	Oligosaline
RABE2	9/14/2004	5,150	1,485	0.288	Oligosaline
RABE2	6/13/2005	3,530	634	0.180	Oligosaline
RABE3	4/27/2004	2,731	650	0.238	Oligosaline
RABE3	7/23/2004	4,011	908	0.226	Oligosaline
RABE3	6/13/2005	5,650	1,172	0.207	Oligosaline
RABE4	5/13/2004	4,788	1,198	0.250	Oligosaline
RABE4	7/27/2004	3120	705	0.226	Oligosaline
RABE4	9/14/2004	8,658	3,145	0.363	Mesosaline
RABE4	6/13/2005	6,550	1,794	0.274	Oligosaline
RABE5	7/27/2004	7,509	2,420	0.322	Oligosaline
RABE5	8/31/2004	8,126	2,690	0.331	Mesosaline
RABE5+	8/31/2004	8,437	2,908	0.345	Mesosaline
RABE5+	9/14/2004	8,613	3,405	0.395	Mesosaline
RABE5+	6/13/2005	7,270	2,687	0.370	Oligosaline
RABE6	7/27/2004	8,812	2,614	0.297	Mesosaline

Rabenberg WPA

	Surface Water							
	20	04 Sampl	es		20	005 Sampl	es	
	RABE1	RABE2	RABE4	RABE1	RABE2	RABE3	RABE4	RABE5+
Ag	<20	<10	<10					<10
AI	<200	<100	<100	<50	<50	<50	<50	<100
As	43.4	10.5	14.7	8.4	3.93	9.89	5.57	16.3
В	1,704	1,186	368	1,180	1,140	453	446	826
Ba	536	233	239	300	102	150	325	236
Be	<40	<20	<20	<0.5	<0.5	<0.5	<0.5	<20
Br	10,400	1,640	3,780					2880
Cd	<20	<10	<10	<0.05	<0.01	0.02	<0.02	<10
Co	<40	<20	<20	<5	<5	<5	<5	<20
Cr	<40	<20	<20	<5	<5	<5	<5	<20
Cu	<40	<20	<20	<5	<5	<5	<5	<20
Hg				<0.1	<0.1	<0.1	<0.1	
Li	863	298	317					349
Мо	<200	<100	<100	<10	<10	<10	<10	<100
Ni	<40	<20	<20	<5	<5	<5	<5	<20
Pb	<40	<20	<20	<0.05	0.04	0.06	0.06	<20
Se	112 [#]	24.6#	48.1#	0.22	0.22	0.35	0.21	45.3 [#]
Sr	4,203	1,261	1,586	2,350	720	995	1,020	1,635
Ti	<20	<10	<10	7	<5	<5	<5	<10
U	<10	<5	<5					<5
V	<100	<50	<50	<10	<10	<10	<10	<50
Zn	<40	<20	<20	<5	<5	<5	<5	<20
Zr	<30	<20	<20					<20

Table 28. Surface-water concentrations (μ g/L) of trace elements present in the sampled wetlands of the Rabenberg WPA in 2004 and 2005.

[#]Indicates value exceeded EPA's recommended national water-quality criteria.

at wells RS-1MW (GWIC ID 890940), RS-2MW (GWIC ID 890445), RS-3MW (GWIC ID 890446), and RS-4MW (GWIC ID 890939) (table 30). Of the elements that exceeded water-quality standards, cadmium and strontium both had significant positive relationships with the CI (table 5). Unfortunately, the relationships between aluminum, nickel, and lead and the CI were not formally assessed due to the large number of values below the limit of detection. In 2005, groundwater samples were collected from wells RS-1MW (GWIC ID 890940), RS-2MW (GWIC ID 890445), RS-3MW (GWIC ID 890446), and RS-4MW (GWIC ID 890939) and analyzed for total petroleum hydrocarbons. Total petroleum hydrocarbons were below the detection limit for the samples taken from wells RS-1MW (GWIC ID 890940) and RS-4MW (GWIC ID 890939), while concentrations of 460 and 410 μ g/L were detected at RS-2MW (GWIC ID 890445) and RS-3MW (GWIC ID

890446), respectively (fig. 71). Wells RS-2MW (GWIC ID 890445) and RS-3MW (GWIC ID 890446) are in close proximity to the shut-in oil well 05105, suggesting that the hydrocarbon contamination detected in these samples are a result of activities associated with this well. Analyses for aliphatic and polynuclear aromatic hydrocarbons were not done for this site.

				Grour	ndwater			
	R-1MW	R-2MW	RS-1MW	RS-2MW	RS-3MW	RS-4MW	RS-6MW	RS-7MW
AI	<50	<50	70	<50	<50	1,840 [*]	178 [*]	<50
As	1.45	1.76		5.04	1.85	4.44	9.93	7.5
В	1,510	764	156	36,200	10,300	3,700	252	170
Ba	204	146		620	97	163	370	96
Be	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
Br			200					
Cd	0.44	0.06	<5	14.7*	0.64	0.7	<0.05	0.1
Co	<5	<5		<5	<5	<5	<5	<5
Cr	<5	<5	<5	<5	8	13	<5	<5
Cu	6	<5	6	7	7	10	<5	<5
Hg	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
Li			81					
Мо	<10	<10	<40	<10	10	<10	<10	<10
Ni	12	<5	<20	55	28	14	<5	<5
Pb	<0.05	<0.01		<0.2	1.1	3.82	0.43	<0.01
Se	0.26	1.35		8.58	0.43	0.32	0.29	<0.1
Sr	1930	1020	590	21,800 [*]	7,000*	3,120	1,570	990
Ti	<5	<5	4	16	7	48	12	<5
U								
V	<10	<10	7	<10	<10	<10	<10	<10
Zn	40	<5	<7	6	16	126	7	<5
Zr			<6					

Table 29. Groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring wells of the Rabenberg WPA in 2005.

^{*}Indicates value exceeded Montana numerical water-quality standards for human health in groundwater.

			Groun	dwater		
	RS-1MW	RS-2MW	RS-3MW	RS-4MW	RS-6MW	RS-7MW
Ag	18	15	3	10	<4	<4
AI	100 [*]	40	<30	120 [*]	70	43
В	89,700	20,600	12,200	6,200	156	114
Ba	803					
Br	2,200	<100	<100	7,100	200	<100
Cd	25*	71 [*]	11*	12 [*]	<5	<5
Cr	9	24	10	5	<5	<5
Cu	39	77	47	15	6	<4
Li	22,200	6,280	3,280	2,030	81	28
Мо	<40	30	<20	<40	<40.	<40
Ni	40	120 [*]	80	40	<20	<20
Pb	680 [*]			180 [*]		
Sr	80,100 [*]	25,400 [*]	16,600 [*]	7,750 [*]	590	230
Ti	<4	<1	<1	17	4	4
V	30	51	29	19	7	6
Zn	11	17	14	16	<7	7
Zr	25	29	<4.	9	<6	<6

Table 30. Groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring wells of the Rabenberg WPA in 1989.

^{*}Indicates value exceeded Montana numerical water-quality standards for human health in groundwater.

Hansen WPA

The Hansen WPA was established on 7/16/1968 and encompasses an area of approximately 54.4 acres. One lake is located within the WPA (fig. 72). Bird surveys have documented the use of Hansen WPA by breeding waterfowl, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). Much of the upland habitat is managed as dense nesting cover through selective planting, prescribed having, prescribed fire, and limited grazing. As of January 2010, there were no production wells present within the WPA, but three wells, one approved plugged and abandoned EOR injection well, one permitted injection oil well, and one shut-in oil well, were all located within 700 ft of the WPA (fig. 72). API well 21350, the permitted injection oil well, is the closest of the wells to the WPA and was completed in January 1981.

Geology

The Hansen WPA is underlain by a complex mix of glacial and post-glacial deposits (fig. 73). It is near the east edge of an ice-walled glacial lake plain deposited as the stagnant ice melted. Glacial till is the predominant geologic unit at the site and, based on nearby well logs, ranges from about 100 to 150 ft thick. Glacial outwash and glacial lake deposits make up a relatively minor portion of the glacial deposits. Although no regional glacial outwash aquifers have been identified in this area, smaller discontinuous outwash sand and gravel deposits often overlie and are interbedded within the glacial till. These outwash deposits form locally significant aquifers supplying landowners and wetlands. The Quaternary alluvial deposits are probably relatively thin layers of fine sand and silt associated with swales forming modern wetlands. The Quaternary eolium is composed of windblown silt and fine sand associated with the shoreline of the ice-walled lake. This material is likely only 2 to 3 ft thick.

Figure 72. Map depicting locations of sampling sites, oil wells, and bodies of water for the Hansen WPA: T. 34 N., R. 58 E., sec. 2, 10 & 11.

Figure 73. Geology of the Hansen WPA: T. 37 N., R. 57 E., sec. 11.

Figure 74. Location of EM-31 terrain-conductivity surveys conducted at the Hansen WPA: T. 37 N., R. 57 E., sec. 11.

Groundwater Hydrology

Hansen

Waterfowl

Production Area

Waterfowl Production Area

EM Survey Sites

Quaternary Eolium

Glacial Outwash Glacial Till 21350 - Oil Well Showing Abbreviated API#

Glacial Lake Quaternary Alluvium

Legend

In 1989, monitoring well HAN-1MW (GWIC ID 890447) was completed in interbedded glacial till and glacial outwash. Based on the change in water quality at this well from 1989 to 2005, local groundwater flow is towards the east. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes.

Characterizing Oilfield Production Brine Migration

EM-31 terrain conductivity surveys identified higher than background conditions near the abandoned oil well site and downgradient of the site towards the east (fig. 74). Although a reserve pit associated with well 21350 would have been lined based on its date of completion,

these areas of high terrain conductivity appear to be associated with brine plumes migrating downgradient towards the east. There is one monitoring well present within the Hansen WPA that was sampled on 4/22/1989 (GWIC Sample 1989Q0510) and again on 9/14/2005 (GWIC Sample 2006Q0305). In 1989, the specific conductivity was around 1,900 µS/cm, and in 2005, the specific conductivity was close to 8,000 µS/cm. In 1989, the chloride concentration was 138 mg/L, and in 2005, the chloride concentration was 2,781 mg/L. During both sampling events, produced water impacts were evident based on their respective CI values, but the 2005 value was greater than 20 times the value in 1989. Brine impacts have increased from 1989 to 2005 at HAN-1MW (GWIC ID 890447), characterized by increased ion concentrations (fig. 75) and a shift towards an ionic composition dominated by Cl- ions (fig. 76). This is due to the migration of brine waste offsite from where it was originally released.

Wetland Water Quality

Two locations, HAN1 (GWIC ID 214749) and HAN2, were visited to collect surface-water samples, but are likely both part of the same lake system. At these sites, specific conductance ranged from around 2,300 to 3,200 μ S/cm and chloride concentrations ranged from 200 to 250 mg/L (table 31). Both sites had CI values indicating produced water impacts. It is clear from the EM-31 survey and groundwater monitoring efforts that activities associated with oil well 21350 have contributed to the impacts observed at HAN1 (GWIC ID 214749) and HAN2.

Co-occurring Contaminants

Metals analyses were done on samples taken from HAN1 (GWIC ID 214749) and HAN-1MW (GWIC ID 890447).

Figure 75. Comparison of major groundwater ionic concentrations and associated contaminant indices between 1989 and 2005 for the groundwater well HAN-1MW.

Figure 76. Comparison of major groundwater ionic compositions and associated contaminant indices between 1989 and 2005 for the groundwater well HAN-1MW.

Table 31. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for the wetland visited at the Hansen WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
HAN1	4/28/2004	2,313	205	0.089	Oligosaline
HAN1	7/24/2004	3,160	250	0.079	Oligosaline
HAN1	6/13/2005	2,950	200	0.068	Oligosaline
HAN2	4/28/2004	2,368	231	0.098	Oligosaline

The results from these analyses indicate that many elements are present within these samples, but are often found in trace amounts (table 32). There were no concentrations that exceeded either EPA's national recommended water-quality criteria or Montana numerical water-quality standards for human health in groundwater.

Ward WPA

The Ward WPA was established on 6/18/1969 and encompasses an area of approximately 86 acres. Multiple bodies of water are located in, or partially located in, the WPA, including seasonal and semipermanent wetlands (fig. 77). Bird surveys have documented the use of the Ward WPA by breeding waterfowl, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no production wells present within the WPA, but five existed within 1,000 ft of the boundary. This included one oil-producing well; one approved, plugged, and abandoned EOR injection well; one approved, plugged, and abandoned dry hole; and two shut-in oil wells.

Geology

The Ward WPA is underlain by glacial till deposits (fig. 78). These deposits are estimated to be from 50 to 100 ft thick based on nearby test drilling. Fort Union Sandstone and mudstone underlies the glacial materials. Previous test drilling identified an outwash channel underlying the Ward WPA. A long narrow south- to north-trending swale spans the WPA and appears to be a remnant of a glacial meltwater channel. The soils did not indicate these materials as outwash, but drilling in 1989 encountered a thin outwash aquifer. A private well referred to asWD-3MW (GWIC ID 48284) appears to be constructed in glacial outwash.

Groundwater Hydrology

Monitoring wells completed in 1989 were completed in interbedded glacial till and glacial outwash. Most of the groundwater flows through the outwash aquifer towards the north. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes.

Characterizing Oilfield Production Brine Migration

There were no EM-31 surveys conducted at the Ward WPA. There are four monitoring wells present within the WPA. One well, 167B (GWIC ID 890436), is a Sheridan County Conservation District well that was sampled on 4/22/1989. The other three wells, WD-1MW (GWIC ID 220958), WD-2MW (GWIC ID 221688), and WD-3MW (GWIC ID 48284), were sampled on 9/14/2005, although chloride and

Table 32. Surface-water concentrations (μ g/L) of trace elements from HAN1 in 2005 and groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring well HAN-1MW in 1989 and 2005.

	Groundwater		Surface Water
	1989 Sample	2005 Sample	2005 Sample
	HAN-1MW	HAN-1MW	HAN1
Ag	<2		
AI	<30	<50	<50
As		1.58	4.03
В	480	2,420	149
Ва		228	74
Be		<0.5	<0.5
Br	<100		
Cd	<2	<0.05	0.02
Со		<5	<5
Cr	<2	<5	<5
Cu	<2	<5	<5
Hg		<0.1	<0.1
Li	100		
Мо	<20	<10	<10
Ni	<10	<5	<5
Pb		<0.05	0.06
Se		12.2	0.25
Sr	290	2,150	600
Ti	<1	<5	<5
V	<1	<10	<10
Zn	<3	5	<5

specific conductivity data were not collected for WD-1MW (GWIC ID 220958). For those wells with specific conductivity and chloride values available, specific conductance ranged from around 500 to 11,930 µS/cm and chloride concentrations ranged from 35.1 to 4,751 mg/L. The calculated CI value for each groundwater sample indicated produced water impacts at each well. Well 167B (GWIC ID 890436) was the least impacted, but without recent data to compare it to, it is difficult to determine whether the differences in concentrations (fig. 79) and compositions (fig. 80) seen between this well and others are due to a temporal factor. a spatial factor, or a combination of the two. Furthermore, Reiten and Tischmak (1993) have reported vertical density gradients in outwash aquifer sites such as 167B (GWIC ID 890436), in which the concentrations of salts vary depending on where in the water column the sample is collected. Regardless, the 2005 data indicate that WD-3MW (GWIC ID 48284) is the most impacted, which is most likely due to its location in the outwash channel. Reiten and Tischmak (1993) identified historic infiltration pits to the east of Ward WPA as significant sources of contamination to this area.

Figure 77. Map depicting locations of sampling sites, oil wells, and bodies of water for the Ward WPA: T. 37 N., R. 57 E., sec. 12.

Ward Waterfowl

Figure 78. Geology of the Ward WPA: T. 37 N., R. 57 E., sec. 12.

Figure 79. Major groundwater ionic concentrations and associated contaminant index values for the monitoring well 167B in 1989 and the wells WD-2MW and WD-3MW in 2005 present within the Ward WPA.

Figure 80. Major groundwater ionic compositions and associated contaminant index values for the monitoring well 167B in 1989 and the wells WD-2MW and WD-3MW in 2005 present within the Ward WPA.

Wetland Water Quality

Two wetlands were visited to collect surface-water samples, but one of those sites was dry. The sampled wetland, WD1, had a specific conductivity value close to 182 μ S/ cm and a chloride concentration of 5.3 mg/L (table 33). The CI value for this site, 0.029, suggests that there are no produced water impacts. However, based on the measured specific conductivity, WD1 is a freshwater system, and although the CI index does not exceed 0.035, the calculated CI is elevated compared to that of other sites within the Northeast Montana WMD. This suggests that this site is either just beginning to reflect brine impacts, that there is a significant freshwater source diluting contaminants migrating to this system, or certain geologic features are reducing

the connectivity between contaminated groundwater plumes and the surface water.

Co-occurring Contaminants

Metals analyses were done on groundwater samples taken from WD-1MW (GWIC ID 220958), WD-2MW (GWIC ID 221688), and WD-3MW (GWIC ID 48284). Numerous elements were present in the samples at varying concentrations (table 34). Typically, WD-3MW (GWIC ID 48284) possessed some of the higher concentrations, although there were no concentrations from any well sample that exceeded Montana numerical water-quality standards for human health in groundwater.

Table 33. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Ward WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
WD1	4/28/2004	181.2	5	0.029	Fresh
WD2	4/28/2004				Dry

Table 34. Groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring wells of the Ward WPA in 2005.

1110111	toring mone of		2000.
-		Groundwater	
	WD-1MW	WD-2MW	WD-3MW
AI	<50	<50	<50
As	0.57	1.33	2.38
В	30	40	184
Ba	197	560	105
Be	<0.5	<0.5	<0.5
Cd	0.02	0.04	0.2
Со	<5	<5	<5
Cr	<5	<5	<5
Cu	<5	<5	<5
Hg	<0.1	<0.1	<0.1
Мо	<10	<10	<10
Ni	<5	<5	<5
Pb	0.02	<0.01	<0.05
Se	1.79	0.1	1.14
Sr	180	245	3,000
Ti	<5	<5	8
V	<10	<10	<10
Zn	10	9	264

Jerde WPA

The Jerde WPA was established on 5/16/1968 and encompasses an area of 187 acres. It is largely covered by a single lake, but two smaller wetlands are also present (fig. 81). Bird surveys have documented the use of the Jerde WPA by breeding waterfowl, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, API well 05262, an oil-producing well completed in May 1966, was the only well present within the WPA. Numerous other wells are located in close proximity to the WPA, including two oil-producing wells, two shut-in oil wells, one completed water source, and one expired oil well (fig. 81). A tank battery that used an infiltration pit to dispose of produced water was located near the southwestern border of the WPA.

Geology

The Jerde WPA is underlain by a complex mix of glacial and post-glacial deposits (fig. 82). Glacial till is the predominant geologic unit at the site and, based on nearby well logs, ranges from about 100 to 150 ft thick. Glacial outwash and glacial lake deposits make up a relatively minor portion of the glacial deposits. Although no regional glacial outwash aquifers have been identified in this area, smaller discontinuous outwash sand and gravel deposits often overlie and are interbedded within the glacial till. These outwash deposits form locally significant aquifers supplying landowners and wetlands. The lake at this site is mapped as Larson Slough on USGS 7.5-minute topographic maps. It appears to be located near the east edge of a former icewalled glacial lake. The cross section in figure 83 shows the stratigraphic relationships between the glacial till and the lake sediment. The glacial lake sediments overlie glacial till and pinch out between wells JP2 and JP1. The upper till unit is yellow or yellowish-brown with bright red-red ochre fragments, indicating strongly oxidizing conditions. Below this unit is a light brown till that forms a transitional zone to the basal dark blue till, indicating unoxidized or reduced conditions.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Jerde WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. At this location there is a strong potential for a brine plume associated with the oil well site to migrate towards the wetland to the west of the site. No regional glacial outwash aquifers have been identified in this area. The cross section in figure 80 shows the water table dropping towards Larson Slough, indicating flow to the west.

Characterizing Oilfield Production Brine Migration

EM-31 surveys were conducted at two sites (fig. 84). Site 1 surveys identified an area of terrain conductivity higher than background conditions surrounding oil well 05262 (fig. 85). Based on the date of completion for well 05262,

Figure 81. Map depicting locations of sampling sites, oil wells, and bodies of water for the Jerde WPA: T. 37 N., R. 57 E., sec. 15.

Figure 82. Geology of the Jerde WPA. Location: T. 37 N., R. 57 E., sec. 15.

Figure 83. Cross section showing hydrogeologic conditions at the Jerde WPA. Location: T. 37 N., R. 57 E., sec. 15.

Jerde WPA EM-31 Survey Areas

Jerde WPA Site 1: Oil Well 05262 Soil Conductivity (mS/m) * Oil Well 0 - 50 251 - 300 Survey Points 51 - 100 301 - 350 WPA Boundary 101 - 150 351 - 400 151 - 200 401 - 450 50 m 25 201 - 250

Figure 84. Location of EM-31 terrain-conductivity surveys conducted at the Jerde WPA: T. 37 N., R. 57 E., sec. 15.

Figure 85. Location of EM-31 terrain-conductivity site 1 surveys conducted at the Jerde WPA: T. 37 N., R. 57 E., sec. 15.

Figure 86. Location of EM-31 terrain-conductivity site 2 surveys conducted at the Jerde WPA: T. 37 N., R. 57 E., sec. 15.

the reserve pit associated with this well would have been unlined. Site 2 surveys identified another area of terrain conductivity higher than background conditions surrounding the Jerde Pit and tank battery located close to the southeast corner of Jerde WPA (fig. 86). These areas of high terrain conductivity appear to be associated with brine plumes migrating downgradient towards Larson Slough. Three monitoring wells located within the EM-31 survey site 2 were sampled in 2005. Among the three monitoring wells sampled, specific conductance ranged from around 32,700 to 43,200 μ S/cm and chloride concentrations ranged from 15,549 to 27,655 mg/L. As indicated by the calculated CI values for the well samples, produced water impacts were evident at each well site. In fact, the ionic compositions of the three wells are very similar (fig. 87), with concentrations slightly varying (fig. 88).

JP-1MW (GWIC ID 221692) is located close to the site of the infiltration pit. The chloride concentrations at this site are 15,549 mg/L. Down the flow path to the west, the concentration increases to 27,655 mg/L at JP-2MW (GWIC ID 221722) and then decreases slightly to 22,888 mg/L at JP-3MW (GWIC ID 221720).

In addition to EM-31 surveys and groundwater analyses, soil samples were collected at the monitoring well drilling sites of JP-1MW, JP-2MW, and JP-3MW, and leachates were analyzed for specific conductance and chlorides (table 35). Impacts are evident at all sites based on the elevated CI values, with impacts seen relatively evenly distributed to depths of 18 ft at JP-1MW, while impacts are more pronounced between 3 and 13 ft at sites JP-2MW and JP-3MW. This likely reflects the capacity for glacial till to hold and concentrate ions as well as proximity to the historical infiltration pit.

Wetland Water Quality

Two wetland samples were taken from opposite ends of a single lake system. One of the samples at JER1 (GWIC ID 120874) was taken in 1990; all other samples were taken either in 2004 or 2005. On average, JER1 (GWIC ID 120874) and JER2 had specific conductivity values

Figure 87. Major groundwater ionic compositions and associated contaminant index values for monitoring wells present within the Ward WPA during 2005.

Figure 88. Major groundwater ionic concentrations and associated contaminant index values for monitoring wells present within the Ward WPA during 2005.

Depth (ft)	Soil Property	JP-1MW	JP-2MW	JP-3MW
0_3	SC (µS/cm)	14770	12780	8760
0.0	CI	0.348	0.141	0.189
3_8	SC (µS/cm)	9330	16840	16240
	CI	0.229	0.278	0.317
8–13	SC (µS/cm)	15460	16890	16350
	CI	0.231	0.277	0.286
13–18	SC (µS/cm)	15290	6010	NA
	CI	0.255	0.076	NA
18–23	SC (µS/cm)	NA	7920	NA
	CI	NA	0.080	NA
<u></u>	SC (µS/cm)	5150	6130	NA
20 20	CI	0.088	0.036	NA

Table 35. Specific conductivity and CI of 1:1 (by weight) aqeuous leachates of soil samples at different depths in the Jerde WPA.

Note. NA, data not available.

Table 36. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Jerde WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
JER1	8/27/1990	1,746	50	0.028	Oligosaline
JER1	4/28/2004	1,223	78	0.064	Oligosaline
JER1	7/23/2004	2,035	118	0.058	Oligosaline
JER1	6/13/2005	2,140	99	0.046	Oligosaline
JER2	4/28/2004	1,212	83	0.068	Oligosaline
JER2	9/14/2004	2,341	136	0.058	Oligosaline

of around 1668 and 1777 μ S/cm and chloride concentrations of 86.2 and 109.3 mg/L, respectively (table 36). The average CI values for each site, 0.049 for JER1 (GWIC ID 120874) and 0.063 for JER2, indicate that produced waters are likely impacting this system. Interestingly, the CI value for JER1 (GWIC ID 120874) in 1990 was less than 0.035, but samples taken in 2004 and 2005 had CI values that were all above 0.035. Most likely, impacts have increased at JER1 (GWIC ID 120874) from 1990 due to the migrating plume of brine waste on to the WPA and subsequent interaction with surface water. Although large volumes of fresh groundwater and surface water are diluting brines that are entering into the wetland, signs of oilfield contamination are increasing and should be monitored in the future to evaluate water-quality degradation. (GWIC ID 120874) and all three of the monitoring wells groundwater samples taken from JP-1MW (GWIC ID 221692), JP-2MW (GWIC ID 221722), and JP-3MW (GWIC ID 221720) (table 37). The results for JER1 (GWIC ID 120874) from 1990 indicated that the concentration for aluminum exceeded EPA's national recommended waterquality criteria; otherwise, no other benchmark concentration was exceeded. Interestingly, aluminum concentrations were well below EPA's national recommended waterquality criteria for aluminum in 2005 at a concentration less than $50 \mu g/L$. This, however, was not a common trend for all of the other elemental concentrations. In fact, many concentrations increased in 2005 compared to 1990 values.

Co-occurring Contaminants

Metals analyses were done on the wetland site JER1

Due to the large number of sites across the Northeast Montana WMD with aluminum concentrations below the analytical limit of detection, the relationship between surface-water aluminum concentrations and the CI was not formally assessed (table 7). Therefore, it is difficult to

Table 37. Surface-water concentrations (μ g/L) of trace elements from JER1 in 1990 and 2005 and groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring wells of the Jerde WPA in 2005.

	Surface Water		Groundwater		
	1990 Sample	2005 Sample	2	2005 Sample	S
	JER1	JER1	JP-1MW	JP-2MW	JP-3MW
Ag	26				
AI	222 [#]	<50	<50	<50	<50
As	14	16.1	4.23	5.08	5.39
В	50	117	22,600	31,400	2,700
Ba	54	110	179	270	167
Be		<0.5	<0.5	<0.5	<0.5
Br	100				
Cd	<5	0.06	2.47	2.4	0.38
Co		<5	<5	<5	<5
Cr	<5	<5	<5	<5	<5
Cu	<4	<5	7	6	8
Hg		<0.1	<0.1	<0.1	<0.1
Li	50				
Мо	<40	<10	10	10	10
Ni	<20	<5	14	22	<5
Pb	<50	0.09	<0.2	<0.31	<0.2
Se	0.6	0.38	4.57	74.5 [*]	248 [*]
Sr	401	565	19,800	29,900	23,200
Ti	<5	<5	12	17	18
V	<5	<10	<10	<10	<10
Zn	<6	<5	10	<5	80

[#]Indicates value exceeded EPA's recommended national water-quality criteria. ^{*}Indicates value exceeded Montana numerical water-quality standards for human health in groundwater.

determine the effect of oil production activities on aluminum concentrations in neighboring water bodies. Nevertheless, aqueous aluminum concentrations exceeded waterquality standards in JER1 (GWIC ID 120874) in 1990, impacting environments in which numerous organisms may be exposed. In fact, toxic effects have been reported in algae, macroinverterbrates, and fish at concentrations below those detected at JER1 (GWIC ID 120874), although aluminum toxicity is often considered pH-dependent. with increasing toxicity as water becomes more acidified (Gensemer and Playle, 1999). The water-borne aluminum concentrations detected in this survey are likely highly complexed, diminishing their bioavailability, but varying conditions may alter the availability of aluminum to aquatic organisms as well as increase the risk to terrestrial organisms, like birds, that may be exposed to elevated aluminum concentrations through dietary uptake (Gensemer and Playle, 1999; Rosseland and others, 1990).

Numerous elements were present in the groundwater samples at varying concentrations (table 37). Selenium concentrations from wells JP-2MW (GWIC ID 221722) and JP-3MW (GWIC ID 221720) were the only values to exceed Montana numerical water-quality standards for human health in groundwater. Although JP-2MW (GWIC ID 221722) and JP-3MW (GWIC ID 221720) were impacted by brine contamination as indicated by the CI, when groundwater data from across the entire Northeast Montana WMD was used to compare the relationship between the CI and groundwater selenium concentrations, we failed to detect a significant correlation (table 5). In spite of this, selenium has been detected in produced water samples collected from produced water reinjection sites in the Williston Basin before (Chen-Northern, 1994). Regardless, selenium concentrations are elevated at these sites, but appear to have little influence on surface-water selenium concentrations (table 37).

One soil sample, JP-1S, was collected in 2005 for total petroleum hydrocarbon analysis. With a concentration of 50 mg/kg (DW), this sample had one of the lowest concentrations of total petroleum hydrocarbons of all the soil samples taken across the Northeast Montana WMD (fig. 89). This site was resampled in 2006 and analyzed for aliphatic and polynuclear aromatic hydrocarbons. When multiple hydrocarbon fractions were compared to toxicity criteria, this sample failed to exceed any benchmark category (table 38).

In 2005, one groundwater sample was collected from each of the wells JP-1MW and JP-2MW and analyzed for total petroleum hydrocarbons. Total petroleum hydrocarbons were present at concentrations of 500 and 210 μ g/L in the samples collected from JP-1MW and JP-2MW, respectively (fig. 90). JP-2MW was resampled in 2006 and analyzed for aliphatic and polynuclear aromatic hydrocarbons. The majority of the compounds screened for were below the limits of detection, although a few compounds, mostly aliphatic, were present at levels above the analytical detection limit. There were no compounds that exceeded the selected toxicity criteria (table 39).

Figure 89. Concentrations (mg/kg DW) of total petroleum hydrocarbons from soil samples collected across the Northeast Montana WMD in 2005 with the site located in Jerde WPA bracketed.

	Toxicity	Site Values	
Carbon	TPHCWG ¹	MADEP ²	JP-1S
Range	(mg/kg/day)	(mg/kg/day)	(mg/kg)
Aliphatic			
C9–C18	0.10	0.10	0.029
C19–C32	2.00	2.00	0.034
Aromatic			
	0.04	0.03	0
C_{17} C_{22}	0.04	0.03	0.016
	0.03	0.03	0.010

Table 38. Concentrations (mg/kg DW) of hydrocarbon fractions from soil samples collected in 2006 within the Jerde WPA with associated toxicity criteria.

¹Total Petroleum Hydrocarbon Criteria Working Group (Gustafson and others, 1997).

²Massachusetts Department of Environmental Protection (MADEP, 2003).

Table 39. Concentrations (μ g/L) of hydrocarbon fractions from the groundwater sample collected in 2006 within the Jerde WPA with associated toxicity criteria.

	Toxicity (Criteria	Site Values
	MT RBSL ¹	MADEP ²	JP-2MW
	(µg/L)	(µg/L)	(µg/L)
Aliphatics			
Carbon Range C9–C18	1,000	50,000	0
Carbon Range C19–C36	1,000	50,000	6.9
Aromatics			
Carbon Range C9–C10	-	50,000	<0.3
Carbon Range C11–C22	1,000	5,000	0.4
Acenaphthene	670	6,000	<0.3
Anthracene	2,100	30	<0.3
Benzo(a)pyrene	0.05	500	<0.3
Benzo(b)fluoranthene	0.5	400	<0.3
Benzo(k)fluoranthene	5	100	<0.3
Chrysene	50	70	<0.3
Dibenzo(a,h)anthracene	0.05	40	<0.3
Fluoranthene	130	200	<0.3
Flourene	1,100	40	<0.3
Indeno(1,2,3-cd)pyrene	0.5	100	<0.3
Napthalene	100	20,000	<0.3
Pyrene	830	20	<0.3

¹Montana Tier 1 Risk-Based Corrective Action Guidance for Petroleum Release (MT DEQ, 2009).

²Massachusetts Department of Environmental Protection (MADEP, 2003).

Figure 90. Concentrations (μ g/L) of total petroleum hydrocarbons from groundwater samples collected across the Northeast Montana WMD in 2005 with the sites located in the Jerde WPA bracketed. *Indicates concentration is below the analytical detection limit of 100 μ g/L.

Erickson WPA

The Erickson WPA was established on 10/02/1974 and encompasses an area of 1,097 acres. Various water bodies exist throughout the WPA, including lakes, plus seasonal, temporary, and semi-permanent wetlands (fig. 91). Bird surveys have documented the use of the Erickson WPA by breeding waterfowl, with observations of 42-88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). Additionally, there is designated Piping Plover critical habitat located in this area. Much of the upland habitat is managed as dense nesting cover through selective planting, prescribed having, prescribed fire, and limited grazing. As of January 2010, well 05050, an approved plugged and abandoned dry hole completed in March 1961, was the only well located within the WPA. The next closest well is over a quarter of a mile north of the WPA.

Geology

The Erickson WPA is underlain by glacial outwash deposits (fig. 92). These deposits are estimated to be from 50 to 300 ft thick based on nearby test drilling. Fort Union sandstone and mudstone underlies the glacial materials. Quaternary alluvial deposits are located underlying the western part of the Erickson WPA and are associated with swales and low-lands along streams. The sand and gravel glacial outwash deposits are associated with the upper permeable zone of the Clear Lake aquifer.

Groundwater Hydrology

The Erickson WPA overlies the Clear Lake aquifer. Based on nearby lithologic logs, several permeable zones of the Clear Lake aquifer underlie this site. The shallowest zone is 10 to 31 ft below land surface and the deepest is at depths of 300 to 350 ft. Both the deep ancestral Missouri River alluvium and glacial outwash of Late Wisconsinan meltwater channels make up the aquifer zones. The log for GWIC ID 3867 indicated that Fort Union bedrock was encountered at depths of 335 ft. This well was completed in the ancestral Missouri River zone of the Clear Lake aquifer. The depth of this zone is 318 to 335 ft below land surface. Flow in the aquifer is generally towards the west or southwest.

Characterizing Oilfield Production Brine Migration

EM-31 terrain conductivity surveys indicated higher than background readings in an area east of abandoned oil well 05050 (fig. 93). These likely reflect a migrating brine plume that originated from an associated reserve pit that, based on the date of the well completion, was unlined. There are no monitoring wells associated with this site.

Wetland Water Quality

Among the seven wetlands sampled at the Erickson WPA, specific conductance ranged from around 500 to 52,700 μ S/cm and chloride concentration ranged from 20 to 2,303 mg/L (table 40). Four sites, ERK2, ERK4, ERK5, and ERK7, showed signs of produced water impacts based on their calculated CI values. ERK5 is located in Horseshoe

Figure 91. Map depicting locations of sampling sites, oil wells, and bodies of water for the Erickson WPA: T. 33 N., R. 58 E., sec. 24 & 25.

05050 - Oil Well Showing

Abbreviated API#

.

Figure 92. Geology of the Erikson WPA: T. 33 N., R. 58 E., sec. 24 & 25.

Figure 93. Location of EM-31 terrain-conductivity surveys conducted at the Erickson WPA: T. 33 N., R. 58 E., sec. 24 & 25.

Lake, which was sampled in 1990 (GWIC ID 120885). The chloride concentration was 7690 mg/L in 1990 and the calculated CI from that sample was 0.08. Although ERK5 is still impacted from brine contamination, the most recent surveys indicate that water quality has improved, most likely due to the influx of non-contaminated water since the 1990s.

ERK3

ERK4

ERK5

ERK6

ERK7

5/14/2004

5/14/2004

5/14/2004

5/14/2004

5/14/2004

Ferguson WPA

The Ferguson WPA was established on 5/17/1968 and encompasses and area of 105.1 acres. Much of the area is covered by a lake, but two seasonal wetlands are located in, or partially located in, the WPA as well (fig. 94). Bird surveys have documented the use of the Ferguson WPA by breeding waterfowl, with observations of 88–111 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no production wells present within the WPA, but an approved plugged and abandoned dry hole and an approved plugged and abandoned oil well are located in close proximity to the WPA. There is also a tank battery that is located in the same watershed as this WPA.

Geology

The Ferguson WPA is underlain by glacial deposits (fig. 95). The surficial materials are largely glacial till. These deposits are estimated to be from 50 to 200 ft thick based on limited test drilling. Glacial outwash deposits are located at depths between 100 and 160 ft. Fort Union sandstone and mudstone underlies the glacial materials. The sand and gravel glacial outwash deposits are associated with the upper permeable zone of the Clear Lake aquifer.

Groundwater Hydrology

Limited drilling data and interpretations indicate that a buried channel reaching depths up to 150 ft underlies this WPA. This aquifer appears to be a northern extension of the Clear Lake aquifer. Groundwater flow is towards the south.

Characterizing Oilfield Production Brine Migration

There were no EM-31 surveys conducted at this site and there are no established groundwater monitoring wells within the Ferguson WPA.

0.029

0.092

0.037

0.018

0.038

Co-occurring Contaminants Table 40. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Erickson WPA.

There were no additional analyses done for the Erickson WPA.

developed by Cowardin and others (1979) for wetlands visited at the Erickson WPA.						
Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification	
ERK1	5/14/2004	9,680	259	0.027	Mesosaline	
ERK1	7/21/2004	10,400	291	0.028	Mesosaline	
ERK2	5/14/2004	36,789	1,749	0.048	Polysaline	

1,547

2,303

1,678

53

20

52,686

25,072

45,169

3,013

520.2

Eusaline

Mesosaline Eusaline

Oligosaline

Fresh

Figure 94. Map depicting locations of sampling sites, oil wells, and bodies of water for the Redhead Retreat WPA: T. 35 N., R. 58 E., sec. 10 & 15.

Ferguson Waterfowl Production Area

Figure 95. Geology of the Ferguson WPA: T. 37 N., R. 58 E., sec. 29.

Table 41. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for the wetland visited at the Ferguson WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
FERG3	5/13/2004	21,881	527	0.024	Mesosaline

Wetland Water Quality

One wetland site, FERG3, was visited that had a specific conductivity value close to 22,000 μ S/cm and a chloride concentration of 527 mg/L (table 41). The CI value for this wetland, 0.024, indicates that there were no produced water impacts at this site at the time of sampling. In comparison, a previous sample collected in 1990 at this location (GWIC ID 120875) had a specific conductivity value close to 28,000 μ S/cm and a chloride concentration of 865 mg/L. The CI value of 0.031 is just below the value indicating brine contamination.

Co-occurring Contaminants

There were no additional analyses done for the Ferguson WPA.

Gjesdal East WPA

The Gjesdal East WPA was established on 6/18/1974 and spans an area of 121.69 acres. Two lakes are present in the western half of the WPA (fig. 96). Bird surveys have documented the use of the Gjesdal East WPA by breeding bird pairs during nesting season, with observations of 42–88

Figure 96. Map depicting locations of sampling sites, oil wells, and bodies of water for the Gjesdal East WPA: T. 37 N., R. 58 E., sec. 26 & 27.

duck pairs per square mile over much of the WPA, although 88–111 duck pairs per square mile have been documented in the southern extent of the WPA (Brian DeVries, USFWS, written commun., 2009). Additionally, there is designated Piping Plover critical habitat. As of January 2010, there were no production wells present within the WPA and the closest well, an active injection-disposal well, was located within 1,000 ft south of the WPA.

Geology

The surficial geology underlying the Gjesdal East WPA is depicted in figure 97. Most of the Gjesdal East WPA is underlain by glacial till. The thickness of this relatively low-permeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 50 to 100 ft. A relatively long and narrow deposit of moderate to high-permeability glacial outwash is mapped south of the area covered by the Base Camp geologic map (fig. 24). This appears to be an extension of the Clear Lake aquifer.

Groundwater Hydrology

0

0.125

Limited drilling data and interpretations from mapping in North Dakota (North Dakota State Water Commission file

Gjesdal East

0.25

data) indicate that a buried channel reaching depths up to 150 ft underlies this WPA. This appears to be a tributary of the Clear Lake aquifer. Groundwater flow is towards the south.

Characterizing Oilfield Production Brine Migration

There were no EM-31 surveys conducted at this site and there are no groundwater monitoring wells located within this WPA.

Wetland Water Quality

The two lakes present within the Gjesdal East WPA were visited for surface-water sampling on 5/17/2004. These sites, GE1 and GE2, had specific conductance values of around 8,000 and 3,000 μ S/cm and chloride concentrations of 405.5 and 49.5 mg/L, respectively (table 42). Based on the calculated CI values for each site, GE1, which had a CI value of 0.05, showed signs of produced water impacts, but GE2, which had a CI value of 0.018, did not (table 42). The source of contamination to GE1 is unknown and would require further investigation.

Co-occurring Contaminants

There were no additional analyses done for the Gjesdal East WPA.

Figure 97. Geology of the Gjesdal East WPA: T. 37 N., R. 58 E., sec. 26 & 27.

Table 42. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Gjesdal East WPA.

0.5 Miles

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
GE1	5/17/2004	8,150	406	0.050	Mesosaline
GE2	5/17/2004	2,740	50	0.018	Oligosaline

Redhead Retreat WPA

The Redhead Retreat WPA was established on 2/17/1970, but additional land was acquired on 4/23/1970. This WPA encompasses an area of approximately 206.26 acres, including parts of three separate water bodies (fig. 98). Bird surveys have documented the use of the Redhead Retreat WPA by breeding waterfowl, with observations of 20–42 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no production wells located within the WPA, but two wells, both approved plugged and abandoned dry holes, are located within a quarter of a mile to the southeast of the WPA. Additionally, one approved plugged and abandoned disposal-injection well is located just over a quarter of mile northwest of the WPA.

Geology

The Redhead Retreat WPA is underlain largely by glacial deposits (fig. 99). Glacial till makes up most of this and relatively thin deposits of Quaternary alluvium are associated with the wetlands. These alluvial deposits are probably composed of organic silts and clays. A borehole located in the NE quarter section of Section 10 (GWIC ID 154227) penetrated about 40 ft of glacial till before encountering Fort Union bedrock.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Redhead Retreat WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. At this location there is a strong potential for a brine plume associated with the oil well site to migrate towards the wetland to the west of the site. No regional glacial outwash aquifers have been identified in this area.

Characterizing Oilfield Production Brine Migration

No EM-31 surveys were conducted at this site, and there are no groundwater monitoring wells associated with this WPA.

Figure 98. Map depicting locations of sampling sites, oil wells, and bodies of water for the Redhead Retreat WPA: T. 35 N., R. 58 E., sec. 10 & 15.

Redhead Retreat Waterfowl Production Area

Figure 99. Geology of the Redhead Retreat WPA: T. 35 N., R. 58 E., sec. 10 & 15.

Wetland Water Quality

One seasonal wetland was visited to assess surface-water condition. The specific conductivity at this site was around 16,000 μ S/cm and the chloride concentration was 560.5 mg/L (table 43). The CI for this site is just below the empirical lower limit of contamination, indicating that this site may be receiving contaminated water from some source. Since EM-31 surveys were not conducted and monitoring wells are not established, identifying that source would require future monitoring efforts.

Co-occurring Contaminants

There were no additional analyses done for the Redhead Retreat WPA.

Westgard WPA

The Westgard WPA was established on 5/21/1968 and encompasses an area of approximately 120 acres. Multiple water bodies are located in, or partially located in, the WPA, including lakes, plus seasonal and semi-permanent wetlands (fig. 100). Bird surveys have documented the use of the Westgard WPA by breeding waterfowl, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no production wells present within the WPA, but three wells, two approved plugged and abandoned dry holes and one producing oil well, are located within a quarter of a mile of the WPA.

Geology

The surficial geology underlying the Westgard WPA is depicted in figure 101. Most of this WPA is underlain by glacial sediments. The thickness of the relatively lowpermeability glacial till is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 100 to 200 ft. A deeper outwash aquifer was encountered about 1 mile west of this site. A relatively long and narrow deposit of moderate to high-permeability glacial outwash is mapped trending north to south through the central part of the Westgard WPA geologic map. A small area of relatively thin Quaternary eolium overlies the till along the eastern and northeastern part of this WPA.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Westgard WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. Although some deep glacial outwash wells have

Table 43. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for the wetland visited at the Redhead Retreat WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
RR1	5/13/2004	21,881	527	0.024	Mesosaline

Figure 100. Map depicting locations of sampling sites, oil wells, and bodies of water for the Westgard WPA: T. 37 N., R. 58 E., sec. 17.

Westgard Waterfowl Production Area

Figure 101. Geology of the Westgard WPA: T. 37 N., R. 58 E., sec. 17.

Table 44. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Westgard WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
WG1	5/16/2004	25,955	433	0.017	Mesosaline
WG1	7/23/2004	31,520	444	0.014	Polysaline
WG2	5/16/2004	15,530	405	0.026	Mesosaline
WG3	5/16/2004	11,863	377	0.032	Mesosaline
WG3	9/9/2004	19,041	1,423	0.075	Mesosaline

been constructed in this area, no regional glacial outwash aquifers have been identified, and these permeable zones appear to be isolated.

Characterizing Oilfield Production Brine Migration

EM-31 terrain conductivity surveys indicated higher than background readings in an area north of oil well location 05144 (fig. 102). Well 05144 was completed in 1965; therefore, the elevated conductivity may reflect buried brine-saturated material in an unlined reserve pit. There

Figure 102. Location of EM-31 terrain-conductivity surveys conducted at the Westgard WPA: T. 37 N., R. 58 E., sec. 17.

are no groundwater monitoring wells associated with this WPA, so the groundwater chemistry was not characterized for this site.

Wetland Water Quality

Three sites, WG1, WG2, and WG3 (GWIC ID 214793), were visited for surface-water analyses. Specific conductance and chloride concentrations for these sites ranged from around 11,900 to 31,500 µS/cm and 377 to 1,423 mg/L, respectively (table 44). With the exception of one site, site WG3 (GWIC ID 214793), produced water impacts were not evident based on CI values. On 5/16/2004, the CI for WG3 (GWIC ID 214793) was actually below 0.035, but was elevated during the 9/9/2004 sampling event (table 44). This result may be a result of seasonal variation within a wetland. For instance, a similar trend is seen in WG1 for specific conductivity in that conductance increased from May to July, although the CI remained relatively stable. On the other hand, the large increase in the CI for WG3 (GWIC ID 214793) indicates that the Cl- ions are accumulating disproportionately to other ions, suggesting WG3 (GWIC ID 214793) is receiving contaminated water.

Co-occurring Contaminants

Metals data are available for WG3 (GWIC ID 214793) from the 9/9/2004 sampling event (table 45). Various elements were present in the sample, although many were below the limits of detection. When compared to EPA's national recommended water-quality criteria, the only concentration that exceeded any established benchmark was selenium. Although slight, a significant positive relationship was detected between surface-water selenium concentrations and the CI (table 7). Selenium has been detected in produced water samples collected from produced water reinjection sites in the Williston Basin before (Chen-Northern, 1994). Food chain bioaccumulation and reproductive failure in certain fish and wildlife species has been reported for aqueous selenium concentrations as low as 2 μ g/L. Therefore, the concentration detected at WG3 (GWIC ID 214793) in 2004, 81 μ g/L, posed a great risk to many wildlife species, particularly sensitive species like aquatic birds.
Table 45. Surface-water
concentrations (µg/L) of trace
elements present in the
sampled wetland WG3 in 2004.

oumpied wettai	la 1100 lii 200 l.
	WG3
Ag	<20
AI	<200
As	26.4
В	3472
Ва	<49
Be	<40
Br	5,860
Cd	<20
Co	<40
Cr	<40
Cu	<40
Li	1,438
Мо	<200
Ni	<40
Pb	<40
Se	81 [#]
Sr	461
Ti	<20
U	<10
V	<100
Zn	<40
7r	<40

[#]Indicates value exceeded EPA's recommended national water-quality criteria.

Dog Leg WPA

The Dog Leg WPA was established on 5/17/1968 and encompasses an area of approximately 70 acres. The WPA is largely covered by two bodies of water, a lake and a semi-permanent wetland (fig. 103). Bird surveys have documented the use of the Dog Leg WPA by breeding waterfowl, with observations of 42-88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). Additionally, this area contains designated Piping Plover critical habitat. As of January 2010, there were no production wells present within the WPA, but there are three wells located within a quarter of a miles of the WPA. These include API wells 21075, a shutin oil well completed in August 1969; 21074, an approved plugged and abandoned oil well completed in July 1969; and 21101, a shut-in oil well completed in June 1970. A tank battery is associated with well 21101, but it appears to not be currently operational.

Geology

The surficial geology underlying the Dog Leg WPA is depicted in figure 104. Most of this WPA is underlain by glacial deposits. A nearby stock well (GWIC ID 190801) encountered about 15 ft of outwash sand and gravel overlying soft gray clay (either clayey till or lake deposits) before completing the well in a coalbed of the Fort Union bedrock at a depth of 110 ft. The glacial outwash shown on the geologic map probably makes up the thin deposit of moderate to high-permeability glacial outwash underlying most of this WPA.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Dog Leg WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. At this location there is a strong potential for a brine plume associated with the oil well sites to migrate towards the wetland east of well 21075 and northwest of well 21101. No regional glacial outwash aquifers have been identified in this area.

Characterizing Oilfield Production Brine Migration

EM surveys were conducted at three sites close to oil wells that are near the Dog Leg WPA (fig. 105). Terrain conductivity surveys identified higher than background conditions near and downgradient from the three oil well sites (figs. 106–108). The largest plume is associated with the tank battery, while the other areas likely reflect buried brine-saturated waste in unlined reserve pits. These areas of high terrain conductivity appear to be associated with brine plumes migrating downgradient towards nearby wetlands. There are no groundwater monitoring wells associated with this WPA to characterize groundwater chemistry.

Wetland Water Quality

The two bodies of water located in the Dog Leg WPA were visited for surface-water analyses. Specific conductance ranged from around 3,000 to 38,200 μ S/cm and chloride concentrations ranged from 49.5 to 1,547 mg/L (table 46). Based on the calculated CI values for each site, DL1 (GWIC ID 214746), which had an average CI value of 0.015, had no produced water impacts, but DL2, which had a CI value of 0.041, did (table 46). Although these two wetlands are in close proximity to each other, DL1 (GWIC ID 214746) was clearly unimpacted, suggesting that there is little to no connectivity between the two water bodies. The EM-31 survey at site 2 reflects extensive brine contamination that may be one source of contamination to DL2.

Co-occurring Contaminants

There were no additional analyses done for the Dog Leg WPA.

Figure 103. Map depicting locations of sampling sites, oil wells, and bodies of water for the Dog Leg WPA: T. 37 N., R. 58 E., sec. 20.

Figure 104. Geology of the Dog Leg WPA: T. 37 N., R. 58 E., sec. 20.

Dog Leg WPA EM-31 Survey Areas

Figure 105. Location of EM-31 terrain-conductivity surveys conducted at the Dog Leg WPA: T. 37 N., R. 58 E., sec. 20.

Figure 106. Location of EM-31 terrain-conductivity survey conducted at Site 1 of the Dog Leg WPA.

Table 46. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Dog Leg WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
DL1	5/16/2004	3,067	50	0.016	Oligosaline
DL1	7/23/2004	3,850	56	0.015	Oligosaline
DL2	4/29/2004	38,152	1,547	0.041	Polysaline

Dog Leg WPA Site 2: Oil Well 21101 Soil Conductivity (mS/m) 0 - 20 36 - 50 * Oil Well Tank Battery 21 - 35 51 - 65 Survey Points 25 50 m WPA Boundary

Figure 107. Location of EM-31 terrain-conductivity survey conducted at Site 2 of the Dog Leg WPA.

Goose Lake WPA

The Goose Lake WPA was established on 7/24/1968, but additional land purchases continued until 7/30/1980. Ultimately, around 1,665 acres were acquired for the Goose Lake WPA. Numerous water bodies are located within this WPA, including lakes, plus seasonal and semi-permanent wetlands (fig. 109). Bird surveys have documented the use of Goose Lake WPA by breeding waterfowl, with observations of 42-88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). Additionally, this area contains designated Piping Plover critical habitat. As of January 2010, there was one approved plugged and abandoned dry hole (well 05082) located within the WPA; there were no other production wells located within the Goose Lake WPA. There are, however, three approved plugged and abandoned dry holes located within 700 ft of the WPA. Most of the reserve pits associated with these wells would have been unlined based on their dates of completion. A produced water disposal facility could result in contamination of wetland GL12.

Geology

The Goose Lake WPA overlies a major glacial outwash deposit that makes up the Clear Lake aquifer (fig. 110). The entire WPA is underlain by glacial outwash deposits. Figure 108. Location of EM-31 terrain-conductivity survey conducted at Site 3 of the Dog Leg WPA.

These deposits are estimated to be from 50 to 150 ft thick based on nearby test drilling. Fort Union sandstone and mudstone underlie the glacial materials. Quaternary alluvial and lacustrine deposits are located underlying relatively small areas of the Goose Lake WPA and are associated with swales and lowlands along wetlands and lakes.

Groundwater Hydrology

The Goose Lake WPA overlies the Clear Lake aquifer. Several highly productive irrigation wells are located east of the WPA. Regional groundwater flow in the aquifer is generally towards the south or southwest. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes.

Characterizing Oilfield Production Brine Migration

There were no EM-31 surveys conducted at this WPA, and there are no groundwater monitoring wells associated with this site. Appendix A contains a supplemental report that contains a detailed investigation and assessment of brine contamination across the Goose Lake Oilfield.

Figure 109. Map depicting locations of sampling sites, oil wells, and bodies of water for the Goose Lake WPA: T. 35 N., R. 58 E., sec. 1, 11, 12 & 13.

Quaternary Alluvium

Figure 110. Geology of the Goose Lake WPA: T. 35 N., R. 58 E., sec. 1, 11, 12 & 13.

Table 47. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Goose Lake WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
GL1	5/13/2004	3,859	53	0.014	Oligosaline
GL1	7/8/2005	3,702	39	0.011	Oligosaline
GL2	5/14/2004	9,655	222	0.023	Mesosaline
GL3	5/14/2004	5,209	46	0.009	Oligosaline
GL3	7/9/2004	4,198	52	0.012	Oligosaline
GL6	5/13/2004	278	5	0.019	Freshwater
GL7	5/13/2004	6,610	120	0.018	Oligosaline
GL7	7/8/2005	8,370	137	0.016	Mesosaline
GL8	5/13/2004	2,145	39	0.018	Oligosaline
GL8	7/8/2005	2,532	52	0.021	Oligosaline
GL9	5/13/2004	1,887	23	0.012	Oligosaline
GL11	5/13/2004	1,829	61	0.033	Oligosaline
GL12	5/13/2004	3,024	78	0.026	Oligosaline

Wetland Water Quality

Nine surface-water sites were visited that had specific conductance ranging from around 300 to 10,000 μ S/cm and chloride concentrations ranging from around 5 to 200 mg/L (table 47). There were no sites that showed signs of produced water impacts based on their calculated CI values (table 47). However, a water sample was collected in 1990 along the southeast shore of Goose Lake at GWIC ID 120850. At that time, there appeared to be an indication of brine contamination with a specific conductance of 28,790 μ S/cm, chloride concentration of 1070 mg/L, and calculated CI of 0.037.

Co-occurring Contaminants

Metals data are available for sites GL1, GL3, anTad GL7 from the 7/11/2005 sampling event. Based on that data, GL1 had cadmium and nickel concentrations that exceeded established water-quality benchmarks, while GL3 had cadmium and lead concentrations that exceeded established water quality benchmarks (table 48). Due to the lack of brine impacts at these sites, oil production and exploration activities appear to have little influence on the surfacewater concentrations of cadmiuTablem, nickel, and lead at these sites. There are no monitoring wells associated with this WPA. Table 48. Surface-water concentrations (μ g/L) of trace elements present in select wetlands of the Goose Lake WPA in 2005.

	GL1	GL3	GL7	
AI	<50	<50	<50	
As	143	92.9	19.3	
В	23,100	2,540	1,490	
Ba	14	109	7	
Be	<0.5	<0.5	<0.5	
Cd	1.35 [#]	0.22#	0.05	
Co	<5	<5	<5	
Cr	<5	<5	<5	
Cu	<5	<5	<5	
Hg	<0.1	<0.1	<0.1	
Мо	<10	<10	<10	
Ni	16 [#]	11	<5	
Pb	<0.51	$0.58^{\#}$	<0.05	
Se	0.31	0.43	<0.1	
Sr	40	410	<25	
Ti	<5	<5	<5	
V	<10	<10	<10	
Zn	<5	<5	<5	

[#] Indicates value exceeded EPA's recommended national water-quality criteria.

Gjesdal West WPA

The Gjesdal West WPA was established on 6/18/1974 and encompasses an area of approximately 400 acres. There are numerous seasonal wetlands scattered throughout the WPA, and as of January 2010, there was one approved plugged and abandoned well (21171) within the WPA, cpmpleted in 1976 (fig. 111). Based on its date of completion, there was likely a lined reserve pit associated with this well for waste storage and disposal. There are no other wells within the WPA, but the next closest well is an approved plugged and abandoned dry hole located within 700 ft northwest of the WPA. Bird surveys have documented the use of the Gjesdal West WPA by breeding waterfowl, with observations of 42–88 duck pairs per square mile throughout much of the WPA during the nesting season (Brian DeVries, USFWS, written commun., 2009).

Geology

The surficial geology underlying the Gjesdal West WPA is depicted in figure 112. Most of the Northeast WPA is underlain by glacial till. The thickness of this relatively

low-permeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 50 to 150 ft. Nearby well logs indicate layers of glacial outwash within the thicker till deposits. The glacial till or outwash deposits directly overlie Fort Union bedrock.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Gjesdal West WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. No regional glacial outwash aquifers have been identified in this area, although in several cases productive zones of glacial outwash have been identified. For example, in the NE quarter of Section 8 at GWIC ID 206182, water is produced from an outwash aquifer at a depth of 132 to 141 ft.

Characterizing Oilfield Production Brine Migration

EM-31 surveys were conducted at one site surrounding oil well 21171. These terrain conductivity surveys indicated

Figure 111. Map depicting locations of sampling sites, oil wells, and bodies of water for the Gjesdal West WPA: T. 35 N., R. 58 E., sec. 1, 11, 12 & 13.

N 0 0.125 0.25 0.5 Miles

Gjesdal West WPA: Oil Well 21171 Image: Constraint of the second second

Figure 113. Location of EM-31 terrain-conductivity surveys conducted at the Gjesdal West WPA: T. 36 N., R. 58 E., sec. 7, 8, 17 & 18.

Figure 112. Geology of the Gjesdal West WPA: T. 36 N., R. 58 E., sec. 7, 8, 17 & 18.

higher than background readings in an area east and north of oil well location 21171 (fig. 113). These appear to be related to well construction activities where brine or brinesaturated materials were either spilled or buried. There are no groundwater monitoring wells associated with this site to characterize groundwater chemistry.

Wetland Water Quality

Five sites were visited at the Gjesdal West WPA to assess surface-water conditions. Specific conductance ranged from around 100 to 800 μ S/cm and chloride concentrations ranged from 0 to 123 mg/L (table 49). Chloride concentrations were below detection in the field for GW4. Its position upslope of the migrating plume provides protection from contaminant influences. Conversely, sites GW1 and GW5 appear to be more vulnerable to brine impacts and are receiving contaminant impacts from oil well 21171. The source of contamination for GW3 is unclear. With the exception of sites GW4 and GW2 (missing chloride data), every site had an average CI value that exceeded 0.035, indicating produced water impacts.

Co-occurring Contaminants

When compared to EPA's recommended national waterquality criteria, GW1 and GW5 had exceedances for cadmium, while GW5 also exhibited lead and zinc concentrations that exceeded benchmark values (table 50). The influence of oil production and exploration activities on wetland cadmium, lead, and zinc concentrations is unclear. There were no significant relationships detected between the CI and surface-water cadmium and lead concentrations, while the relationship between surface-water zinc concentrations and the CI was not assessed due the large number of zinc values below the analytical detection limit (table 7). Regardless, all three elements have been detected in produced water samples collected from produced water reinjection sites in the Williston Basin (Chen-Northern, 1994), and coupled with the fact that both groundwater cadmium and zinc concentrations have positive significant relationships with the CI suggests that oil production activities may have had some influence on the elevated element concentrations detected at GW1 and GW5 (table 5).

Table 49. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Gjesdal West WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
GW1	5/17/2004	754	123	0.163	Freshwater
GW1	6/13/2005	521	78	0.150	Freshwater
GW2	5/17/2004	179.3	No Data	No Data	Freshwater
GW3	5/17/2004	120.9	4	0.036	Freshwater
GW4	5/17/2004	166	0	0	Freshwater
GW5	5/17/2004	94.4	4	0.047	Freshwater
GW5	6/13/2005	156	4	0.025	Freshwater

Table 50. Surface-water concentrations $(\mu g/L)$ of trace elements present in select wetlands of the Gjesdal West WPA in 2005.

	GW1	GW5	
AI	<50	60	
As	2.53	1.29	
В	403	90	
Ва	65	54	
Be	<0.5	<0.5	
Cd	0.51 [#]	0.15 [#]	
Со	<5	<5	
Cr	<5	<5	
Cu	<5	<5	
Hg	<0.1	<0.1	
Мо	<10	<10	
Ni	<5	<5	
Pb	0.21	0.31#	
Se	0.28	0.83	
Sr	190	30	
Ti	<5	<5	
V	<10	<10	
Zn	12	26 [#]	

[#] Indicates value exceeded EPA's national recommended water-quality criteria.

Olson WPA

The Olson WPA was established on 5/1/1969 and encompasses approximately 16 acres. There is one lake system that partially extends into the WPA (fig. 114). Bird surveys have documented the use of the Olson WPA by breeding waterfowl, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009 . As of January 2010, there were no production wells present within or in close proximity to the WPA. In fact, the closest well was located greater than half a mile away.

Geology

The Olson WPA is underlain by glacial outwash deposits and pre-glacial alluvial deposits (fig. 115). These deposits are estimated to be from 250 to 350 ft thick based on nearby test drilling. Fort Union sandstone and mudstone underlies the glacial materials. These sand and gravel deposits form the regionally important Clear Lake aquifer.

Groundwater Hydrology

The Olson WPA site overlies the Clear Lake aquifer. Based on nearby well logs, both permeable zones of the Clear Lake aquifer underlie this WPA, with the shallow glacial outwash zone at depths of about 100 to 200 ft and the deeper ancestral Missouri River alluvial zone from 250 to 350 ft. Flow in the aquifer is generally towards the west or southwest.

Characterizing Oilfield Production Brine Migration

EM surveys were not conducted at this site and there are no monitoring wells associated with this WPA.

Figure 114. Map depicting locations of sampling sites, oil wells, and bodies of water for the Olson WPA: T. 33 N., R. 58 E., sec. 26 & 27.

Waterfowl Production Area

Olson

Figure 115. Geology of the Olson WPA: T. 33 N., R. 58 E., sec. 26 & 27.

Table 51. Wetland sampling date, specific conductivity, chloride concentration,
contaminant index, and salinity classification based on inland salinity modifiers
developed by Cowardin and others (1979) for the wetland visited at the Olson WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
OLS	8/24/1990	9,409	75	0.008	Mesosaline
OLS	7/21/2004	4,314	30	0.007	Oligosaline
OLS	9/12/2004	4,772	33	0.007	Oligosaline
OLS	7/9/2005	4,602	33	0.007	Oligosaline

Wetland Water Quality

For site OLS, specific conductance ranged from around 4,300 to 4,800 μ S/cm and chloride concentrations ranged from 30 to 33 mg/L (table 51). Based on the CI, there are no apparent produced water impacts. Additionally, this wetland was sampled in a previous in 1990 (GWIC ID 120886). Although specific conductance and the chloride concentration were higher in 1990, the CI was similar to current conditions, indicating that this system has remained free of brine contamination and that the differences seen in conductivity and chlorides are likely reflecting the natural variation of drought and non-drought conditions (table 51).

Table 52. Surface-water concentrations (μ g/L) of trace elements present in the OLS site at the Olson WPA in 2005.

	OLS
AI	<50
As	18.7
В	2,250
Ba	4
Be	<0.5
Cd	0.06#
Co	<5
Cr	<5
Cu	<5
Hg	<0.1
Мо	<10
Ni	<5
Pb	< 0.02
Se	<0.1
Sr	<25
Ti	<5
V	<10
Zn	<5
[#] Indicates	value exceeded

EPA's national recommended waterquality criteria.

Co-occurring Contaminants

One sample from 2005 was analyzed for metals (table 52). Based on those data, the only constituent that exceeded any of EPA's national recommended water-quality criteria was cadmium. EPA's national recommended water-quality criteria for cadmium is corrected for hardness, in that organisms inhabiting a system with reduced hardness will be more vulnerable to cadmium toxicity. So while cadmium exceeds the hardnesscorrected toxicity value at OLS, the actual concentration detected, 0.06 μ g/L, is relatively low compared to other values detected in surfacewater sites across the

Northeast Montana WMD and is not associated with brine contamination. More importantly, since cadmium does appear to be associated with brine contamination for much of the Northeast Montana WMD (table 5), it becomes apparent that systems similar to OLS are more vulnerable to trace element toxicity due to reduced hardness and should be protected from future contamination.

Rivers WPA

The Rivers WPA was established on 5/21/1984 and encompasses an area of approximately 160 acres. Seasonal and semi-permanent wetlands partially extend into the WPA (fig. 116). Bird surveys have documented the use of the Rivers WPA by breeding waterfowl, with observations of 20–42 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no production wells present within the WPA, with the closest well, an oil-producing well, located greater than a quarter of a mile northeast of the WPA.

Geology

The surficial geology underlying the Rivers WPA is depicted in figure 117. Most of the Rivers WPA is underlain by glacial till. The thickness of this relatively low-permeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 50 to 100 ft. A deposit of moderate to high-permeability glacial outwash underlies parts of this WPA. These outwash deposits appear to be thin veneers overlying glacial till. Lithologic logs from nearby wells indicate isolated outwash deposits at depths as great as 100 ft.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Rivers WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. Although isolated glacial aquifers have been encountered and in many cases produce significant volumes of water, no regional glacial outwash aquifers have been identified in this area.

Figure 116. Map depicting locations of sampling sites, oil wells, and bodies of water for the Rivers WPA: T. 35 N., R. 58 E., sec. 7 & 8.

Figure 117. Geology of the Rivers WPA: T. 35 N., R. 58 E., sec. 7 & 8.

Table 53. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for the wetland visited at the Rivers WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
RIV1	4/27/2004	326	15	0.046	Freshwater
RIV1	6/13/2005	1,090	24	0.022	Oligosaline

Characterizing Oilfield Production Brine Migration

There were no EM-31 surveys conducted at this WPA, and there are no groundwater monitoring wells associated with this site.

Wetland Water Quality

One surface-water site, RIV1, was visited for water-quality assessment. Based on laboratory and field measurements taken during two separate sampling events for RIV1, specific conductance ranged from around 300 to 1100 μ S/ cm and chloride concentrations ranged from 15 to 24 mg/L (table 53). Using data collected from the field measurements taken on the 4/17/2004 sampling event, the CI indicated that there were produced water impacts at this site. Conversely, the CI value calculated using laboratory data from the 6/13/2005 sampling event suggests there were no produced water impacts. On average, the CI value for RIV1 is just below the 0.035 threshold value for produced water impacts (table 53).

Table 54. Surf concentrations elements pres the Rivers WF	<i>Co-occurring</i> <i>Contaminants</i> One sample was	
	RIV1	collected for
AI	<50	metals analysis,
As	8.06	and based on lab
В	101	results, cadmium
Ba	168	was the only ele-
Be	<0.5	ment that exceed-
Cd	0.21#	ed EPA's national
Co	<5	recommended
Cr	<5	water-quality
Cu	<5	criteria (table 54).
Hg	<0.1	This sample
Мо	<10.0	was collected in
Ni	<5	2005 when brine
Pb	0.13	contamination was
Se	0.23	not evident based
Sr	165	on the CI, so it
Ti	<5	appears that its
V	<10	presence is not a
Zn	<5	result of produced
[#] Indicates valu	- water encroach- ment.	

"Indicates value exceeded EPA's national recommended water-quality criteria.

Rich Johnson WPA

The Rich Johnson WPA was established on 5/23/1995 and encompasses an area of 320 acres. Many smaller wetlands are located in, or partially located in, this WPA (fig. 118). Much of the upland habitat is managed as dense nesting cover through selective planting, prescribed haying, prescribed fire, and limited grazing. Additionally, one approved plugged and abandoned dry hole, API well 21554, was located within the WPA as of January 2010. This well was completed in September 1985, and any reserve pit associated with this well would have been lined.

Geology

The surficial geology underlying the Rich Johnson WPA is depicted in figure 119. Most of the Rich Johnson WPA is underlain by glacial till. The thickness of this relatively lowpermeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 10 to 50 ft.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Rich Johnson WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands. At this location there is a strong potential for a brine plume associated with the oil well site to migrate towards the wetland to the west of the site. No regional glacial outwash aquifers have been identified in this area.

Characterizing Oilfield Production Brine Migration

There were no EM-31 surveys conducted at this WPA and there are no groundwater monitoring wells associated with this site.

Wetland Water Quality

Three wetland sites were visited during 6/15/2005. The specific conductivity for these sites ranged from around 3,200 to 3,600 μ S/cm and chloride concentrations ranged from 39 to 68 mg/L (table 55). The CI values for all three sites showed no indication of brine contamination.

Co-occurring Contaminants

There were no additional analyses done for the Rich Johnson WPA.

Figure 118. Map depicting locations of sampling sites, oil wells, and bodies of water for the Rich Johnson WPA: T. 37 N., R. 53 E., sec. 14 & 15.

Le	gend
	RichJohnsonWPA
	Quaternary Alluvium
	Glacial Outwash
	Glacial Till
	Waterl

Figure 119. Geology of the Rich Johnson WPA: T. 37 N., R. 53 E., sec. 14 & 15.

Table 55. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Rich Johnson WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
RJ1	6/15/2005	3593	45	0.013	Oligosaline
RJ2	6/15/2005	3298	39	0.012	Oligosaline
RJ4	6/15/2005	3244	68	0.021	Oligosaline

Parry WPA

The Parry WPA was established on 7/16/1968 and covers an area of 566.68 acres. There are five bodies of water located in, or partially located in, this WPA, including one lake and four semi-permanent wetlands (fig. 120). Bird surveys have documented the use of the Parry WPA by

and intact native prairie. Management practices, such as prescribed grazing and prescribed fire, are implemented to maintain and improve the diversity of native prairie plants and the wildlife species that rely on that native prairie habitat. As of January 2010, there were no production wells located within the WPA and the closest well, an expired oil well, is located greater than a quarter of mile away northwest of the WPA.

breeding wa-

terfowl. with

observations

of 42–88 duck

pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). Additionally, there is designated Piping Plover critical habitat

Figure 120. Map depicting locations of sampling sites, oil wells, and bodies of water for the Parry WPA: T. 33 N., R. 58 E., sec. 26 & 27.

Figure 121. Geology of the Parry WPA: T. 33 N., R. 58 E., sec. 26 & 27.

Geology

The Parry WPA is underlain by glacial outwash deposits (fig. 121). These deposits are estimated to be from 50 to 300 ft thick based on nearby test drilling. Fort Union sandstone and mudstone underlie the glacial materials. The sand and gravel glacial outwash deposits are associated with both the upper permeable glacial outwash zone and the deeper ancestral Missouri River alluvial zone of the Clear Lake aquifer.

Groundwater Hydrology

The Parry WPA overlies the Clear Lake aquifer. Based on nearby lithologic logs, several permeable zones of the Clear lake aquifer underlie this site. The shallowest zone is 10 to 31 ft below land surface and the deepest is at depths of 300 to 350 ft. Both the deep ancestral Missouri River alluvium and glacial outwash of Late Wisconsinan meltwater channels make up the aquifer zones. The log for GWIC ID 3867 indicated Fort Union bedrock was encountered at depths of 335 ft. This well was completed in the Ancestral Missouri River zone of the Clear Lake aquifer. The depth of this zone is 318 to 335 ft below land surface. Flow in the regional aquifer is generally towards the west or southwest. It is likely that the shallow localized flow is dominated by topography with groundwater flowing from upland hummocks to the low-

lying wetlands and lakes.

Characterizing Oil Field Production Brine Migration

There were no EM-31 surveys conducted at this WPA, and there are no groundwater monitoring wells associated with this site.

Wetland Water Quality

Four wetland sites were visited during the months of May and September 2004. Among the wetlands assessed, the specific conductivity ranged from around 2,700 to 55,200 μ S/cm and the chloride concentrations ranged from 27 to 1,547 mg/L (table 56). From a previous investigation, samples were collected and analyzed from PAR1 (GWIC

Table 56. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Parry WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
PAR1	8/24/1990	24,490	365	0.015	Mesosaline
PAR1	5/14/2004	4,902	53	0.011	Oligosaline
PAR1	5/14/2004	4,680	53	0.011	Oligosaline
PAR2	5/14/2004	55,185	1,547	0.028	Eusaline
PAR3	8/31/1990	14,846	258	0.017	Mesosaline
PAR3	5/14/2004	4,351	61	0.014	Oligosaline
PAR3	9/2/2004	5,928	84	0.014	Oligosaline
PAR4	9/31/1990	17,952	262	0.015	Mesosaline
PAR4	5/14/2004	2,669	27	0.010	Oligosaline
PAR4	9/2/2004	3,396	30	0.009	Oligosaline

ID 120847), PAR3 (GWIC ID 120887), and PAR4 (GWIC ID 120866) in 1990. Although specific conductance and chloride concentrations were substantially higher, the CI remained stable, suggesting that the observed elevated parameters were due to natural variation, rather than historic brine impacts (table 56). The CI values for all of the sampled wetlands suggest that there were no produced water impacts.

Co-occurring Contaminants

There were no additional analyses done for the Parry WPA.

Shoveler Puddle WPA

The Shoveler Puddle WPA was established on 10/24/1968 and encompasses an area of approximately 30 acres. A semi-permanent wetland extends into much of the WPA (fig. 122). Bird surveys have documented the use of the Shoveler Puddle WPA by breeding waterfowl, with observations of 42–88 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). As of January 2010, there were no production wells within, or in close proximity to, the WPA. The wetland present within the Shoveler Puddle WPA was visited on 6/14/2004 for water-quality assessment, but the site was dry. There are no metals data available and no monitoring wells established for this WPA.

Geology

The Shoveler Puddle WPA is underlain by a complex mix of glacial deposits (fig. 123). It is near the southwest edge of an ice-walled glacial lake plain deposited as the stagnant ice melted. Glacial till is the predominant geologic unit at the site and, based on limited nearby well logs, ranges from about 50 to 100 ft thick. Glacial outwash and glacial lake deposits make up a relatively minor portion of the glacial deposits. Although no regional glacial outwash aquifers have been identified in this area, smaller discontinuous outwash sand and gravel deposits often overlie and are interbedded within the glacial till. These outwash deposits

Figure 122. Map depicting locations of sampling sites, oil wells, and bodies of water for the Shoveler Puddle WPA: T. 37 N., R. 56 E., sec. 3.

Figure 123. Geology of the Shoveler Puddle WPA: T. 37 N., R. 56 E., sec. 3.

form locally significant aquifers supplying landowners and wetlands.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Shoveler Puddle WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. At this location there is a strong potential for a brine plume associated with the oil well site to migrate towards the wetland to the west of the site. No regional glacial outwash aquifers have been identified in this area.

Characterizing Oil Field Production Brine Migration

EM surveys were not conducted at this site, and there are no monitoring wells associated with the Shoveler Puddle WPA.

Wetland Water Quality

One site, SP1, was visited on 6/14/2005, but it was dry.

Co-occurring Contaminants

There were no samples collected at this WPA.

Shoveler Puddle Waterfowl Production Area

State Line WPA

The State Line WPA was established on 6/19/1969 and covers an area of approximately 607 acres. Numerous wetlands are located in, or partially located in, the WPA (fig. 124). Bird surveys have documented the use of the State Line WPA by breeding waterfowl, with observations of 88-111 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). Additionally, the State Line WPA is located within the Westby Prairie-Wetland Complex, a globally significant important bird area designated by the Audubon Society. As of January 2010, there were no production wells present within the WPA, but the closest well, an approved plugged and abandoned dry hole, is located within 700 ft of the WPA.

Geology

The surficial geology underlying the State Line WPA is depicted in figure 125. Most of the State Line WPA is underlain by glacial till. The thickness of this relatively low-permeability unit is unknown, but based on nearby test holes and wells, the till thickness probably ranges from 200 to 300 ft. Interbedded within the till are fine-grained glacial lake deposits and coarse-grained glacial outwash deposits. The glacial outwash is part of the Clear Lake aquifer (referred to as the Skjermo Lake aquifer in North Dakota). A relatively long and narrow deposit of alluvium is mapped trending east to west through the central part of the State Line geologic map. This appears to underlie low-lying areas. Deposits of glacial lake clays ring modern lakes and lowlands near the lakes. Surficial glacial outwash deposits underlie an area along the east edge of the WPA.

Groundwater Hydrology

Little information is available on groundwater flow underlying the State Line WPA. It is likely that the localized flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. Flow in the Clear Lake (Skjermo Lake aquifer) is towards the south. The northern limit of this aquifer is near Skjermo Lake located a few miles northeast of this WPA, close to the North Dakota–Saskatchewan border.

Characterizing Oil Field Production Brine Migration

There were no EM-31 surveys conducted at this WPA, and there are no groundwater monitoring wells associated with this site.

Figure 124. Map depicting locations of sampling sites, oil wells, and bodies of water for the State Line WPA: T. 36 N., R. 58 E., sec. 1, 2 & 12.

Figure 125. Geology of the State Line WPA: T. 36 N., R. 58 E., sec. 1, 2 & 12.

Table 57. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the State Line WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
SL1	5/13/2004	9,228	222	0.024	Mesosaline
SL1	7/8/2005	21,460	1,336	0.062	Mesosaline
SL2	7/11/2005	7,040	102	0.014	Oligosaline
SL3	5/13/2004	2,988	39	0.013	Oligosaline
SL3	7/8/2005	5,846	77	0.013	Oligosaline
SL3	7/11/2005	5,710	68	0.012	Oligosaline
SL3A	9/10/2004	6,260	68	0.011	Oligosaline
SL4	9/10/2004	22,648	1,678	0.074	Mesosaline
SL5	9/10/2004	23,569	1,547	0.066	Mesosaline
SL6	8/26/1990	7,291	80	0.011	Oligosaline
SL6	7/25/2004	7,155	77	0.011	Oligosaline
SL6	9/11/2004	8,713	86	0.010	Mesosaline
SL6	7/8/2005	7,371	73	0.010	Oligosaline
SL6	7/11/2005	6,890	57	0.008	Oligosaline

Wetland Water Quality

Seven locations were visited to assess surface-water condition. Of the wetlands sampled, specific conductance ranged from around 3,000 to 23,600 µS/cm and chloride concentrations ranged from 39 to 1,678 mg/L (table 57). Two sites, SL4 and SL5, had CI values that exceeded the benchmark CI value indicating produced water impacts (table 57). Both of these sites are in close proximity to oil well 21746, which was completed in 1999. Based on its date of completion, any associated reserve pit would have been lined. However, the contamination detected in SL4 and SL5 are likely associated with oil well 21746 and may be the result of a reserve pit that was trenched prior to burying. Additionally, SL1 had an average CI value, 0.043, that exceeded the benchmark CI value indicating produced water impacts, but the 2004 CI value for SL1 was below 0.035 (table 57). From a previous investigation, a sample (GWIC ID 120852) was collected in 1990 from the same water body as SL6. Specific conductance, chloride concentration, and the resultant CI for SL6 are all similar to values observed in 2004 and 2005.

Co-occurring Contaminants

Three sites, SL2, SL3, and SL6, had samples analyzed for metals. Based on these analyses, there were no sites that exceeded established water-quality benchmarks for metals (table 58).

Table 58. Surface-water concentrations $(\mu g/L)$ of trace elements present in select wetland sites at the State Line WPA in 2005.

	SL2	SL3	SL6
AI	<50	<50	<50
As	15.5	4.12	12.5
В	1,760	670	1,770
Ва	105	72	8
Be	<0.5	<0.5	<0.5
Cd	0.09	<0.05	0.06
Co	<5	<5	<5
Cr	<5	<5	<5
Cu	<5	<5	<5
Hg	<0.1	<0.1	<0.1
Мо	<10	<10	<10
Ni	<5	<5	<5
Pb	0.52	0.13	<0.05
Se	1.16	0.47	0.13
Sr	1,000	1,300	245
Ti	<5	<5	<5
V	<10	<10	<10
Zn	5	12	<5

Wigeon Slough WPA

The Wigeon Slough WPA was established on 3/07/1968 and encompasses an area of approximately 552 acres. Numerous water bodies are present within the WPA, including lakes, plus temporary, semi-permanent, and seasonal wetlands (fig. 126). Bird surveys have documented the use of the Wigeon Slough WPA by breeding waterfowl, with density observations ranging from 42-88 duck pairs per square mile to 88-111 duck pairs per square mile during the nesting season (Brian DeVries, USFWS, written commun., 2009). Additionally, there is designated Piping Plover critical habitat and intact native prairie. Management practices, such as prescribed grazing and prescribed fire, are implemented to maintain and improve the diversity of native prairie plants and the wildlife species that rely on that native prairie habitat. As of January 2010, API well 21383, an approved plugged and abandoned dry hole, was located within the WPA. Just to the east outside the WPA is API well 05165, an oil-producing well. Wells 21383 and 05165 were completed in August 1981 and April 2003, respectively, and any reserve pits associated with these

wells would be lined.

Geology

The Wigeon Slough WPA is underlain by a complex mix of glacial deposits (fig. 127). It is near the northeast edge of an ice-walled glacial lake plain deposited as the stagnant ice melted. Glacial till is the predominant geologic unit at the site and, based on limited nearby well logs, ranges from about 100 to 200 ft thick. Glacial outwash and glacial lake deposits make up a relatively minor portion of the glacial deposits. Although no regional glacial outwash aquifers have been identified in this area, smaller discontinuous outwash sand and gravel deposits often overlie and are interbedded within the glacial till. These outwash deposits form locally significant aquifers supplying landowners and wetlands.

Groundwater Hydrology

Little information is available on groundwater flow underlying the Wigeon Slough WPA. It is likely that the localized

Figure 126. Map depicting locations of sampling sites, oil wells, and bodies of water for the Wigeon Slough WPA: T. 37 N., R. 57 E., sec. 7 & 8.

Wigeon Slough WPA EM-31 Survey Areas

Figure 128. Location of EM-31 terrain-conductivity surveys conducted at the Wigeon Slough WPA: T. 37 N., R. 57 E., sec. 7 & 8.

flow is dominated by topography and groundwater flows from upland hummocks to the low-lying wetlands and lakes. At this location there is a strong potential for a brine plume associated with the oil well site to migrate towards the wetlands east of oil-well sites 21383 and 05165. Although isolated glacial aquifers have been encountered and in many cases produce significant volumes of water, no regional glacial outwash aquifers have been identified in this area.

Characterizing Oil Field Production Brine Migration

A total of three EM-31 surveys were completed on or adjacent to Wigeon Slough WPA. Two EM-31 terrain conductivity surveys were conducted within the WPA surrounding two separate oil-wells, wells 21383 and 05165, while one other survey was conducted just south of

the WPA surrounding API well 21799, an approved plugged and abandoned dry hole that was completed in November 2003 (fig. 128). Terrain conductivity surveys identified higher than background conditions near the three sites (figs. 129-131). The EM-31 survey completed on well 21383 showed elevated conductivity that is likely associated with the reserve pit adjacent to the well and a plume moving out of this reserve pit and migrating to the southwest. This plume could be degrading water quality in the wetland, as indicated by monitoring completed at site WS-7. The other EM-31 survey conducted surrounding well 05165 identified a reserve pit that appears to be located on the south side of the well; based on the water monitoring completed on the adjacent wetlands, oilfield exploration and production activities at this site appear to have impacted adjacent wetlands (WS-1 and WS-2). The last well surveyed, API well 21799, was completed a year after the well was first spudded. This survey shows a very distinct location of the reserve pit. This pit should be lined, and would be a good site to monitor again in the future to determine if reserve pit wastes are migrated outside of the existing boundary. No groundwater monitoring wells were installed at this WPA to characterize groundwater chemistry.

Wetland Water Quality

Wigeon Slough

Waterfowl

Production Area

Waterfowl Production Area

21383 - Oil Well Showing Abbreviated API#

EM Survey Sites

Glacial Outwash Glacial Till

Glacial Lake

Water

.

Legend

There are no monitoring wells located in this WPA; however, seven wetlands were visited to assess surface-water condition. Of the wetlands sampled, specific conductance ranged from around 2,600 to 25,100 μ S/cm and chloride concentrations ranged from 30 to 349 mg/L (table 59). Sites WS1 and WS2 were the only sites that had CI values indicating brine impacts. Both of these are most likely impacted due to past activities, or present activities associated with the oil well 05165. The WS2 terrain conductivity survey appears to reflect areas of high conductivity that flow southwest, towards WS1. However, since WS2 is located much closer to the oil well than WS1, impacts seen there

Figure 129. Location of EM-31 terrain-conductivity survey conducted at Site 1 of the Wigeon Slough WPA.

Figure 130. Location of EM-31 terrain-conductivity survey conducted at Site 2 of the Wigeon Slough WPA.

Table 59. Wetland sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for wetlands visited at the Wigeon Slough WPA.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
WS1	4/28/2004	6,145	205	0.033	Oligosaline
WS1	6/13/2005	14,160	537	0.038	Mesosaline
WS2	9/14/2004	2,191	106	0.048	Oligosaline
WS4	4/28/2004	4,251	109	0.026	Oligosaline
WS5A	4/28/2004	2,607	39	0.015	Oligosaline
WS6	4/28/2004	2,972	30	0.010	Oligosaline
WS7	4/28/2004	5,895	189	0.032	Oligosaline
WS8	5/16/2004	25,072	349	0.014	Mesosaline

Figure 131. Location of EM-31 terrain-conductivity survey conducted at Site 3 of the Wigeon Slough WPA.

may be the result of spills, leaks, or chronic discharges that are directly entering the wetland. Additionally, site WS7 had a CI value that was approaching the empirical lower limit of 0.035. The WS1 terrain conductivity survey appears to have identified a flow path characterized by higher conductivity levels that leads to WS7. The surface-water impacts may not be as evident as one would expect due to the relatively low permeability of glacial till, reducing the amount of brine contamination reaching the wetland.

Co-occurring Contaminants

There were no additional analyses done for the Wigeon Slough WPA.

Medicine Lake National Wildlife Refuge

The Medicine Lake NWR was established on 08/19/1935 by Executive Order No. 7148 signed by Franklin D. Roosevelt. The refuge is made up of two contiguous areas, a 28,396-acre main unit consisting of the 8,218-acre Medicine Lake and 17 smaller bodies of water and adjacent grasslands, and the 3,264-acre Homestead Unit that includes additional wetland and grassland habitat. Originally, the Medicine Lake NWR was "reserved and set apart...

as a refuge and breeding ground for migratory birds and other wildlife." Today, the refuge is recognized as a Globally Important Bird Area by the Audubon Society. Much of the work for this project was located in the eastern half of the refuge (fig. 132). Specifically, work was focused on the two oil wells 21600 and 21599, which are located within the refuge. Wells 21600 and 21599 are both oil-producing wells that were completed in April 1986 and March 1986, respectively. These wells were drilled with reserve pits used to store fluids and well cuttings during oil well drilling and testing. These pits and associated wastes appear to have been buried as a final reclamation method. This method of reclamation has been the most common method used in the Montana portion of the Williston Basin. Currently, other waste disposal methods are being used, such as pitless drilling, where most of the fluids are recycled and pits are solidified.

Geology

The Medicine Lake NWR is underlain by glacial outwash deposits (fig. 133). These deposits are estimated to be from 100 to 200 ft thick based on nearby test drilling. Fort Union sandstone and mudstone underlie the glacial materials. The sand and gravel glacial outwash deposits are associated with the upper permeable glacial outwash zone. The deeper ancestral Missouri River alluvial zone of the Clear Lake aquifer underlies the refuge further to the south.

Groundwater Hydrology

The area surrounding wells 21600 and 21599 located within Medicine Lake NWR overlies the Clear Lake aquifer. Based on nearby lithologic logs, two permeable zones of the Clear Lake aquifer underlie this site. The shallowest zone is 0 to 40 ft below land surface and the deepest is at depths of 100 to 150 ft. Flow in the regional aquifer is generally towards the west or southwest. It is likely that the shallow localized flow is dominated by topography with groundwater flowing from upland hummocks to the low-lying wetlands and lakes. Water level measurements on 9/11/2005 were used to construct a water table map (fig. 134). Groundwater flow is towards the south from the oilfield sites towards the lake. Hydrogeologic stratigraphic relationships in the vicinity of these oil wells are shown in figure 135. Brines associated with reserve pits at these locations are likely to move down into the main part of the Clear Lake aguifer and migrate south towards the lake.

Characterizing Oil Field Production Brine Migration

EM-31 terrain conductivity surveys were conducted surrounding the two oil wells, 21600 (fig. 136) and 21599 (fig. 137). Additionally, a vertical conductivity survey was conducted surrounding oil well 21599 (fig. 138). These surveys indicated higher than background readings in areas associated with these oil well locations. These appear to be related to the reclaimed reserve pits associated with the wells. Among the five monitoring wells sampled, specific

Figure 132. Map depicting locations of sampling sites, oil wells, and bodies of water for the Medicine Lake NWR: T. 32 N., R. 57 E., sec. 13 & 14.

Figure 133. Geology of the Medicine Lake NWR—West & East: T. 32 N., R. 57 E., sec. 13 & 14.

Figure 134. Geology of Medicine Lake NWR—West & East: T. 32 N., R. 57 E., sec. 13 & 14.

Figure 135. Cross-section A-A' at Medicine Lake NWR – West & East: T. 32N, R. 57E, sec. 13 & 14.

Figure 136. Location of EM-31 terrain-conductivity survey conducted at the Medicine Lake NWR surrounding oil well 21600: T. 37 N., R. 57 E., sec. 7 & 8.

Figure 137. Location of EM-31 terrain-conductivity survey conducted at the Medicine Lake NWR surrounding oil well 21599: T. 37 N., R. 57 E., sec. 7 & 8.

Table 60. Surface-water sampling date, specific conductivity, chloride concentration, contaminant index, and salinity classification based on inland salinity modifiers developed by Cowardin and others (1979) for the Medicine Lake NWR.

Site	Sampling Date	Specific Conductivity (µS/cm)	Chloride Concentration (mg/L)	Contaminant Index	Salinity Classification
NWR2	4/27/2004	1,702	30	0.018	Oligosaline

Figure 138. Location of vertical EM-31 terrain-conductivity survey conducted at the Medicine Lake NWR surrounding oil well 21599: T. 37 N., R. 57 E., sec. 7 & 8.

conductance ranged from around 725 to 24,300 µS/cm and chloride concentrations ranged from around to 11,538 mg/L. As indicated by the calculated CI values from the well samples, produced water impacts were evident at sites RW-1MW (GWIC ID 221728) and RE-2MW (GWIC ID 221691). The ionic concentrations (fig. 139) and compositions (fig. 140) of groundwater samples taken from wells RW-1MW (GWIC ID 221728) and RE-2MW (GWIC ID 221691) are indicative of brine-impacted systems, although impacts are more evident at RE-2MW (GWIC ID 221691) based on the dominant Cl- presence. In fact, the drill cuttings for RE-2MW indicated that this well was installed below the reserve pit. Further, no liner appeared in the drill cuttings, which should have appeared if the reserve pit was lined. RW-2MW (GWIC ID 221596), RW-3MW (GWIC ID 221726), and RE-1MW (GWIC ID 221719) appear to be outside of the extent of contamination during this sampling event. Although brine contamination appears to be relatively localized at this point, it is likely that brines will continue to move offsite. These sites will require future cleanup to prevent brines from migrating into nearby wetlands of the Medicine Lake Wildlife Refuge.

Wetland Water Quality

One site was visited in 2004 to assess surface-water quality. This site, NWR2, had a specific conductivity of 1,702 μ S/ cm, a chloride concentration of 30 mg/L, and a CI indicating no current brine contamination (table 60).

Co-occurring Contaminants

Samples were collected from each of the five groundwater monitoring wells within the Medicine Lake NWR in 2005 and analyzed for trace elements (table 61). Exceedances based on Montana's numerical water-quality standards for

Figure 139. Major groundwater ionic concentrations and associated contaminant index values for monitoring wells present within the Medicine Lake NWR during 2005.

Figure 140. Major groundwater ionic compositions and associated contaminant index values for monitoring wells present within the Medicine Lake NWR during 2005.

Table 61. Surface-water concentrations (μ g/L) of trace elements from ML-SW in 2005 and groundwater concentrations (μ g/L) of trace elements present in the sampled monitoring wells of the Medicine Lake NWR in 2005.

	Surface Water	Groundwater				
	ML-SW	RW-1MW	RW-2MW	RW-3MW	RE-1MW	RE-2MW
AI	50	<50	<50	<50	<50	<50
As	33.9	0.63	0.23	0.33	0.19	6.28
В	1,400	289	253	223	60	5,430
Ba	48	60	21	29	150	1,350
Be	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cd	0.2#	<0.05	0.02	0.02	0.03	2.08 [*]
Co	<5	<5	<5	<5	<5	<5
Cr	<5	<5	<5	<5	<5	<5
Cu	<5	<5	<5	<5	<5	<5
Hg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Мо	<10	<10	<10	<10	<10	<10
Ni	<5	<5	<5	<5	<5	<5
Pb	0.09	<0.05	<0.01	<0.01	<0.01	<0.1
Se	0.53	31.7	32.4	143 [*]	1.39	3.88
Sr	465	1,910	1,330	1,450	320	48,100 [*]
Ti	<5	<5	<5	<5	<5	20
V	<10	<10	<10	<10	<10	<10
Zn	<5	<5	<5	<5	<5	<5

[#]Indicates value exceeded EPA's recommended national water-quality criteria.

^{*}Indicates value exceeded Montana numerical water-quality standards for human health in groundwater.

human health in groundwater were observed within wells RW-3MW (GWIC ID 221726) and RE-2MW (GWIC ID 221691). Selenium exceeded water-quality guidelines at RW-3MW (GWIC ID 221726) but appears to be unrelated to brine contamination based on the low CI value. In contrast, cadmium and strontium concentrations exceeded water-quality guidelines at well RE-2MW (GWIC ID 221691) and are likely a result of brine contamination based on the CI value, as well as the general relationship observed between the CI and trace element concentrations across the Northeast Montana WMD (table 5). In spite of this, trace elements are largely confined to the shallow aquifers from which they were collected, greatly limiting the exposure to wildlife. Nevertheless, surface water-groundwater interactions may be a pathway for trace element exposures in wildlife.

In 2005, one sample was collected from the surface-water site ML-SW, a site located just south of refuge headquarters on Medicine Lake. Based on EPA's recommended waterquality criteria, there was one exceedance for cadmium (table 61). Although not at the same location as ML-SW, the water quality of Medicine Lake was assessed at NWR2 in 2004. Based on that assessment, it appears that Medicine Lake was not impacted by brine contamination. Therefore, the elevated cadmium concentration is likely due to some other process or source. Medicine Lake receives water from a relatively large drainage, so it will be difficult to discern the source, or sources, contributing to the observed cadmium concentration.

One soil sample, ME-2S, was collected in 2005 for total petroleum hydrocarbon analysis. This sample had a total petroleum hydrocarbon concentration of 246 mg/kg (DW)

(fig. 141). Aliphatic and aromatic fractions were not determined for this site. In 2005, two groundwater samples were collected from RE-2MW (GWIC ID 221691) and RW-1MW (GWIC ID 221728) and were then analyzed for total petroleum hydrocarbons. Total petroleum hydrocarbons were present in the samples from RE-2MW (GWIC ID 221691) and RW-1MW (GWIC ID 221728) at concentrations of 290 and <100 μ g/L, respectively (fig. 142). In 2006, a groundwater sample from RE-2MW (GWIC ID 221691) was analyzed for aliphatic and aromatic hydrocarbons (table 62). The heavy hydrocarbon fractions were elevated in this sample suggesting that that oil production activities have contaminated groundwater with petroleum hydrocarbons, but at levels that will unlikely produce a significant toxicological response in wildlife.

Ion Toxicity

Ion toxicity models have been developed based on ion specific toxicity tests conducted on organisms such as *C. dubia*. For example, Mount and others (1997) developed a statistical model to predict the relative toxicity of varying concentrations and compositions of major ions in freshwater. This model has been used successfully to quantify major ion toxicity associated with produced waters from across the United States (Tietge and others, 1997). Furthermore, statistical ion toxicity models have also proven useful in identifying impacts from co-occurring contaminants by investigating discrepancies that occur between the observed and predicted toxic outcomes. Since a suite of co-occurring contaminants are often associated with produced waters, it was our intent to assess the applicability of applying this model in coordination with sitespecific toxicity tests as a means to quantify impacts from

Figure 142. Concentrations $(\mu g/L)$ of total petroleum hydrocarbons from groundwater samples collected across the Northeast MTWMD in 2005 with the site located in the Medicine Lake NWR bracketed. *Indicates concentration is below the analytical detection limit of 100 $\mu g/L$.

Table 62. Concentrations (μ g/L) of hydrocarbon fractions from the groundwater sample collected in 2006 within the Medicine Lake NWR with associated toxicity criteria.

`	Toxicity	Criteria	Site Values
	MT RBSL ¹	MADEP ²	RE-2MW
	(µg/L)	(µg/L)	(µg/L)
Aliphatics			
Carbon Range C9–C18	1,000	50,000	0
Carbon Range C19–C36	1,000	50,000	19.2
Aromatics			
Carbon Range C9–C10	—	50,000	<0.3
Carbon Range C11–C22	1,000	5,000	0.5
Acenaphthene	670	6,000	<0.3
Anthracene	2,100	30	<0.3
Benzo(a)pyrene	0.05	500	<0.3
Benzo(b)fluoranthene	0.5	400	<0.3
Benzo(k)fluoranthene	5	100	<0.3
Chrysene	50	70	<0.3
Dibenzo(a,h)anthracene	0.05	40	<0.3
Fluoranthene	130	200	<0.3
Flourene	1,100	40	<0.3
Indeno(1,2,3-cd)pyrene	0.5	100	<0.3
Napthalene	100	20,000	<0.3
Pyrene	830	20	<0.3

¹Montana Tier 1 Risk-Based Corrective Action Guidance for Petroleum Release (MT DEQ, 2009).

²Massachusetts Department of Environmental Protection (MADEP, 2003).

co-occurring contaminants. Laboratory toxicity tests using *C. dubia* were implemented using site water from 20 different locations found within 12 separate WPAs, and results were then compared to the predicted outcomes produced by the Mount and others (1997) model based on site-specific water chemistry data.

When the variability in the toxicity tests was considered, the Mount and others (1997) model accurately predicted survival in 75% of the samples, over-predicted toxicity (predicted lower % survival than was observed) for 15% of the samples, and under-predicted toxicity (predicted higher % survival than was observed) in 10% of the samples tested (fig. 133). It is important to note that 11 of the 15 samples in which the model accurately predicted toxicity were samples that resulted in a 0% survival rate in test species. If those samples are not considered, the Mount and others (1997) model accurately predicted survival in 44% of the samples, over-predicted toxicity (predicted lower % survival than was observed) for 22% of the samples, and under-predicted toxicity (predicted higher % survival than was observed) in 33% of the samples tested. From these results, it is quite clear that the concentrations of major ions present at these sites create an environment unsuitable for a species such as C. dubia, but impacts from co-occurring contaminants are difficult to discern.

For sites RIV1, HAN1, and SL3, the model over-predicted toxicity (fig. 143). One possible explanation for this is that there may be some other constituent, or constituents, that are reducing the toxic effects of the major ions present due to their direct competition or ability to form complexes with various ions (Schamphelaere and Janssen, 2003). Another possibility is that these unidentified constituents may cause some physiological response in the test organisms that reduces the uptake rates of the major ions present

(Soucek and others, 2011). Last, the model could simply be predicting poorly given the specific ion concentrations.

The model under-predicted toxicity for the two sites GW5 and RABE4 (fig. 143). Numerous factors may have contributed to this discrepancy, including but not limited to the presence of co-occurring contaminants or a failure in the model to predict accurately given the specific ion concentrations. When reviewing co-occurring contaminant data for GW5, it appears that elevated trace element concentrations, specifically those concentrations of cadmium, lead, and zinc that exceeded water-quality criteria, could have contributed to the differences seen in observed and predicted survival. The degree of toxicity of trace elements is directly related to their bioavailability. There are many properties that affect the bioavailability of metals, but complexation with dissolved organic matter and competition between other dissolved ions often reduces the toxic potential (Di Toro and others, 2001). GW5 is one of the freshest wetlands observed across the Northeast MT WMD; therefore, competition between ions is reduced compared to other sites and it is likely that cadmium, lead, and zinc are contributing to the increased toxicity observed at this site. On the other hand, there were no clear co-occurring contaminants for RABE4 at levels that may elicit a toxicological response. There may, however, be interactions occurring between measured constituents that are producing toxicity, but these interactions are difficult to quantity without further investigation. Additionally, there may be other co-occurring contaminants that we failed to measure, such as pesticides or other oilfield exploration and production wastes that were not on our analyte list, that may be producing toxicity.

Figure 143. Average observed survival (%) of *C. dubia* with 95% confidence intervals (n=4) when exposed to site water from 20 locations across the Northeast MTWMD with predicted survival (%) based on Mount and others (1997) ion toxicity model using site-water chemistry.

CONCLUSIONS

It is clear that oil production activities can alter wetland ion chemistry through groundwater migration and surface-water transport of produced waters. This has been characterized through the use of EM-31 surveys, field and analytical assessments of surface-water and groundwater chemical compositions, and the application of a contaminant index to detect brine impacts among a suite of chemically diverse aquatic systems, ranging from fresh to hypersaline. Additionally, certain trace elements have been identified as cooccurring contaminants, as these are often found at elevated levels in areas that are experiencing brine impacts, although the correlation between trace elements and the CI is stronger in groundwater than in surface water. A summary of produced water impacts, including chloride impacts and water-quality exceedances for surface-water and groundwater samples collected across the Northeast Montana WMD, is provided in table 63. Petroleum hydrocarbons have also been detected at potentially toxic levels at the soil surface, while concentrations in the groundwater, although present, are at levels that are typically below toxic thresholds and will likely have minimal impact if they reach surface-water systems. Nevertheless, when the potential transport of soil-bound petroleum hydrocarbons by processes such as a high rainfall event is considered, hydrocarbons may reach surface-water bodies at levels potentially toxic to aquatic and terrestrial organisms. A potential strategy to distinguish the impacts of co-occurring contaminants from salinization was investigated; its merit is discussed in more detail below.

Glacial till, glacial outwash, and glacial lake sediments typically have complex stratigraphic and areal inter-relationships. Aquifers developed in glacial deposits can rarely be classified as isotropic, homogeneous, and infinite. Consequently, defining the aquifers formed in glacial deposits and defining the properties of these aquifers, such as transmissivity, storativity, and boundary conditions, are difficult

tasks, subject to a wide margin of errors. Because of these complex relationships, impacts from produced water spills and other discharges are very difficult to identify, map their extent, and predict contamination impacts. However, the relatively high permeability of glacial outwash would promote a wider spread of a developing plume along with increased dilution, while the lower permeability associated with the glacial till would typically result in a more localized, higher-concentrated brine plume. The geologic map depicted in plate 1 displays the surficial geology of the project area, distribution of oil well sites, WPA boundaries, and impacts of oilfield brine releases at selected sites. Special care should be taken in glacial deposits regarding oil well site location, produced water handling, and oil field waste disposal. Glaciated areas are generally poor areas for onsite disposal of oil field wastes. Other disposal methods are critical, and a monitoring program should be developed to assess impacts. For instance, the CI proved to be a useful indicator of brine pollution in this area and can be a relatively simple tool to assess contamination. EM-31 surveys are also very useful tools in identifying brine plumes. Geologic mapping provides a framework for understanding brine movement and dispersion. These methods can help identify both the location and magnitude of contamination underlying a site.

Although wetland chemistry of northeastern Montana is quite diverse and often characterized as naturally saline, the application of the CI has been useful in identifying those wetlands that have been impacted by produced waters. In fact, 40% of the wetlands assessed were classified as impacted based on their average CI values (fig. 144). These impacted wetlands were present in 18 WPAs of the Northeast Montana WMD. Some of the more pronounced impacts were seen at the Anderson and Rabenberg WPAs. Both of these sites have tank batteries and historic produced water infiltration pits associated with them.

While the CI is a useful tool in identifying chemical

Figure 144. Average CI value for wetland sites visited across the Northeast Montana Wetland Management District.

	Chloride Impacts ¹		Co-occuring Contaminants	
	Surface Water	Groundwater	Surface Water ²	Groundwater ³
Anderson WPA	Yes	Yes	Yes	Yes
Base Camp WPA	Yes	N/A	N/A	N/A
Chandler WPA	No	N/A	N/A	N/A
Long Lake WPA	Yes	N/A	Yes	N/A
Berger Pond WPA	No	N/A	N/A	N/A
Melby WPA	Yes	Yes	Yes	Yes
Mallard Pond WPA	No	Yes	Yes	Yes
Northeast WPA	Yes	N/A	N/A	N/A
North Root WPA	Yes	N/A	N/A	N/A
Big Slough WPA	Yes	Yes	N/A	No
Rabenberg WPA	Yes	Yes	Yes	Yes
Hansen WPA	Yes	Yes	No	No
Ward WPA	No	Yes	N/A	No
Jerde WPA	Yes	Yes	Yes	Yes
Erickson WPA	Yes	N/A	N/A	N/A
Ferguson WPA	No	N/A	N/A	N/A
Gjesdal East WPA	Yes	N/A	N/A	N/A
Redhead Retreat WPA	No	N/A	N/A	N/A
Westgard WPA	Yes	N/A	Yes	N/A
Dog Leg WPA	Yes	N/A	N/A	N/A
Goose Lake WPA	No	N/A	Yes	N/A
Gjesdal West WPA	Yes	N/A	Yes	N/A
Olson WPA	No	N/A	Yes	N/A
Rivers WPA	Yes	N/A	Yes	N/A
Rich Johnson WPA	No	N/A	N/A	N/A
Parry WPA	No	N/A	N/A	N/A
Shoveler Puddle WPA	N/A	N/A	N/A	N/A
State Line WPA	Yes	N/A	No	N/A
Wigeon Slough WPA	Yes	N/A	N/A	N/A
Medicine Lake NWR	No	Yes	Yes	Yes

Table 63. Summary of chloride impacts and water-quality exceedances for surface-water and groundwater samples collected across the Northeast Montana WMD.

¹Based on CI values in exceedance of 0.035.

²Based on EPA's recommended national water-quality criteria.

³Based on Montana's numerical water-quality standards for human health in groundwater.

Note: N/A, data not available.

impacts from brine contamination, the biological impacts are still unclear. Salinization, whether naturally or anthropogenically derived, can impact both abiotic and biotic entities. Increased salinity in uplands can cause increased erosion through the dispersion of clays, disruption of soil texture, and loss of soil cohesion (Otton and Zielinski, 2000). Additionally, increasing salinity levels typically result in a loss of plant diversity (Kantrud and others, 1989), as salts may indirectly stress plant tissues by reducing water availability or directly stress plant tissues through ion-specific toxicity (Munns and Tester, 2008). Similarly, elevated salinity levels have also been shown to impact seed germination of certain plant species (Galinato and Van Der Valk, 1986). In aquatic environments, invertebrate and vertebrate organisms may also be impacted by salinization. For instance, reduced survival of sensitive invertebrate species such as *C. dubia* has been attributed to major inorganic ions associated with produced water discharges (Boelter and others, 1992). Furthermore, macroinverterbrate richness may decrease in response to increasing salinity levels (Waterkeyn and others, 2008), although invertebrate biomass is typically maintained with increasing salinity due to the elevated abundance of one or two salt-tolerant species (Wollheim and Lovvern, 1995; Rubega and Robinson, 1997). The shifting invertebrate community structure may alter the avian composition due to differing feeding strategies, but the physiological stressors induced by elevated salt concentrations appear to have greater impacts to avian health than the homogenization of the prey community (Gordus and others, 2002; Rubega and Robinson, 1997).

Salt has been reported to affect birds in numerous ways. For instance, surface tension is reduced with increasing dissolved solutes, which in turn can negatively impact a feathers' thermoregulatory and buoyancy function, ultimately causing hypothermia or an increased incidence of drowning (Rubega and Robinson, 1997; Ramirez, 2009). Similarly, salt encrustation can occur, especially during periods of cooler weather that promote salt precipitation, which effectively immobilizes birds (Nelson and Reiten, 2009). Through preening, drinking, and eating, salt can be ingested at potentially toxic levels. Specifically, it has been suggested that around 4 grams of sodium chloride can cause mortality in certain waterfowl species (Meteyer and others, 1997). Although waterfowl have mechanisms to deal with internal salt concentrations, primarily through supraorbital salt glands and to a lesser extent renal excretion and intestinal absorptive mechanisms (Wobeser, 1981), high levels of ingested salts can overwhelm their coping mechanisms, leading to toxicosis. Additionally, ducklings and goslings typically do not develop salt glands until 4 to 6 days after hatching (Mitcham and Wobeser, 1988b; Stollev and others, 1999).

Impacts have been reported in birds across varying degrees of salinization. Based on specific conductivity, Mitcham and Wobeser (1988a) observed a 10% reduction in growth when 1-day-old mallard ducklings were provided drinking water from a saline wetland with specific conductance as low as 4,000 µS/cm. Furthermore, increased incidence of mortality was observed when ducklings were provided water with a specific conductivity of 20,000 µS/cm and mortality was observed within 30 hours for ducklings provided water with a specific conductivity of $67,000 \,\mu\text{S/cm}$ (Mitcham and Wobeser, 1988a). Die-offs in adult waterfowl using hypersaline wetlands have also been attributed to salt toxicosis (Meteyer and others, 1997; Windingstad and others, 1987; Nelson and Reiten, 2009). The increased sensitivity for young birds, observed impacts of hypersaline environments, and the preference for freshwater environments makes it increasingly clear that freshwater resources need to be protected in this area (Swanson and others, 1984).

Brine-impacted waters are generally characterized by a shift in the composition of anions, resulting in a Cl- dominated system as opposed to the naturally elevated SO4- and

HCO3- ions. Ion-specific toxicities have been evaluated in the laboratory using common test organisms such as C. dubia. In general, the relative ion toxicity was HCO3->Cl->SO42- for both chronic and acute exposures (Lasier and Hardin, 2010; Mount and others, 1997). However, hardness strongly influenced ion toxicity, with reduced Cl- and SO42- toxicity as hardness increased (Lasier and Hardin, 2010). Conversely, hardness had little effect on HCO3toxicity. Based on these observations, Cl- dominated brines will unlikely elicit toxicological responses in organisms inhabiting areas with moderate to high water hardness and alkalinity. On the other hand, if produced water brine were to encroach upon a system dominated by the SO42- ion, toxicological responses would be more likely, particularly in systems with diminished water hardness. Numerous contaminants co-occur in produced waters, but the compositions and concentrations often vary. Elements that commonly occur in produced water, such as barium, boron, cadmium, copper, lithium, strontium, and zinc (Stephenson, 1992; Jacobs and others, 1992), were often elevated in groundwater samples that were impacted by brine contamination. On the other hand, the relationship between surface-water trace element concentrations and brine contamination was much less apparent. In many cases, elements such as aluminum, selenium, and nickel appeared to be elevated in sites where brine contamination was evident, but the source of contamination is difficult to identify. The differences in trace element speciation and behavior between a groundwater environment and a surface-water environment may confound our ability to detect trends between surface-water and groundwater trace element concentrations. However, elevated co-occurring contaminants in wetlands may be present due to surface spills and other undesirable practices and events that may have directly released produced water to that system. Regardless, wetlands generally favor the immobilization of trace elements through the formation of insoluble complexes (Gambrell, 1994). Essentially, various elements may be reaching wetland systems, but analyses of dissolved surface-water samples will not reflect the complete composition of elements present when insoluble complexes are considered. Thus, analyses on sediment samples may reveal higher levels of trace elements associated with brine contamination. While the immobilization of trace elements from the water column may reduce the toxic potential for organisms inhabiting that environment (Starodub and others, 1987), sediment-dwelling organisms may still be impacted (Wentsel and others, 1978). Furthermore, sediment-dwelling organisms may remobilize accumulated metals during certain periods of their life histories such as emergence, ultimately impacting other aquatic organisms, as well as terrestrial organisms in the case of insectivores (Currie and others, 1997).

Although not covered in this investigation, the loss of habitat and increased level of human activity associated with well pad development and operation should also be considered, as mule deer have been observed altering their normal winter ranges to avoid these areas (Sawyer and others, 2009). Similarly, sensitive species such as the Piping Plover should continue to be monitored to determine if these activities are impacting their behavior and survival. Furthermore, the presence of nuisance weed species will likely increase, as plants such as *Kochia sp.* will grow on salt-damaged soil. Not only will pesticide use increase during preliminary exploratory periods to clear oil pad locations, but weed infestations due to oil production activities will require additional pesticide applications as well.

Hundreds of miles of flow lines and produced water pipelines traverse Sheridan County (Reiten and Tischmak, 1993), and a smaller number of oil pipelines transport oil through 6- and 12-inch lines. Oil and associated produced water pumped at each oil well pump jack are most commonly sent to a tank battery on site or to a nearby location through a flow line, where the initial separation of oil and water occurs. This produced water is then transferred to an injection well via produced water pipelines. These produced water pipelines are generally laid on the ground surface, and most are made of fiberglass or PVC pipe. At present, produced water pipelines are not mapped, and unlike many other types of pipelines and disposal wells, are not monitored for integrity (Reiten and Tischmak, 1993). The history of uncontained brine discharges is based on informal reports from local residents and documented investigations by several state agencies (MBMG, file data). Concern over contamination of water supplies was a major reason for organizing the Northeast Montana Land and Mineral Owners Association, Inc. Most of the reports of contamination were originally from members of the association. Several members reported improper disposal of brines into existing wetlands, brine and oil pipeline and flow line leaks, brine spills, and overflowing evaporation pits. Investigations by state agencies documented several cases of surface-water and groundwater contamination during the early 1970s.

Monetarily, produced water damages to land are likely high, although quantifying those costs would be a difficult task. Many of the impacts do not appear until many years after the sites have been abandoned. Surface damages range in area from ½ acre to more than 5 acres. Direct costs or impacts include soil damage that ranges from completely sterilized soils to marginally productive soils where plant growth is stunted. In many cases, only nuisance weeds will grow on salt-damaged soils. Soil damage will increase costs of growing crops on and around the damaged area and weed infestations will cause an increase in the use of chemicals to control the problem.

MANAGEMENT RECOMMENDATIONS

The application of the CI has been a useful tool in identifying wetlands that have been impacted by produced waters. Using a chloride titrator kit and handheld water-quality probe, chloride concentrations and specific conductivity

measurements can be collected with relative ease in the field. Based on the ease of calculation and the ability to detect produced water impacts, the CI could be incorporated into a monitoring plan to track the degree of impacts through time, or it could be applied in land preacquisition surveys as a quick and easy method to determine the level of impacts present within a piece of property and therefore avoid the acquisition of a highly contaminated site. For instance, if development were to occur near a site that has been characterized as unimpacted, a monitoring plan could be designed to track CI values as development ensues to ensure that impacts are not occurring, or to immediately track the point at which water quality begins to degrade. For preacquisition surveys, CI values could quickly be measured during initial surveys to detect produced water impacts that would normally be difficult to recognize.

Additional techniques have been applied to assess produced water impacts to wetlands, such as the use of strontium isotopes. Although this method requires more in-depth chemical analyses, strontium isotope fractionation has proven to be a highly effective tool not only to detect produced water impacts to surface and groundwater resources of the prairie pothole region, but also to quantify the degree of impact (Peterman and others, 2010).

As some of the more pronounced impacts were seen at locations in close proximity to tank batteries and historic brine disposal pits, these practices, both current and historical, could be useful indicators of potential contamination during land preacquisition surveys. Past aerial photos could be used to identify where historic brine disposal pits were implemented and to potentially determine for how long. This, in coordination with the CI, could aid in the decisionmaking process of whether or not a site should be preserved through easement or purchase.

The use of ion toxicity models in coordination with laboratory toxicity tests using site water was assessed in this investigation as a potential management tool to quantify impacts of co-occurring contaminants. This effort produced mixed results by proving to be helpful in identifying potential impacts of co-occurring contaminants at site GW5, while creating more uncertainties for sites such as RIV1, HAN1, and SL3. Unfortunately, much of the utility of this method may have been lost in the number of sites that resulted in 0% survival. If a series of dilutions were made for these sites, a gradient of responses could then be captured based on varying concentrations, and potentially, effects of co-occurring contaminants might then become apparent. Although this technique did not provide overwhelmingly clear results, it could serve as a useful tool to track changes in major ion chemistry, as well as a means to assess potential impacts of co-occurring contaminants from oil production activities. If determining the effects of cooccurring elements in highly saline waters is the objective, implementing a series of dilutions to a site water sample would allow one to calculate an observed LC50 (lethal
concentration for 50% of test population) and then compare that to a calculated LC50 based on predicted survival estimates produced by the ion toxicity model. Significant differences between those LC50 values would suggest that co-occurring contaminants may be eliciting a toxicological response.

As indicated in the Montana Code Annotated 2009, oil and gas developers are responsible for paying the surface owner a sum of money or other compensation equal to the amount of damages sustained by the surface owner, including lost land value due to oil and gas operations (Mont. Code Ann. § 82-10-504, et seq,). In response to a produced water spill, the Montana Board of Oil and Gas is one point of contact that can assist in initiating remediation activities (their contact number is (406) 656-0040; Steve Sasaki, Montana Board of Oil and Gas, oral commun., 2011). Reclamation and remediation strategies are often negotiated between the surface owner and the oil and gas developer. One strategy that is often implemented in response to produced water spills is to apply soil amendments in order to increase the leaching of produced water constituents to depths below the root zone (Steve Sasaki, Montana Board of Oil and Gas, oral communication, 2011). While this practice may be protective for certain plants, the results of this study suggest that this practice would not be advisable. The contamination of aquifers derived in glacial deposits can lead to the increased transport of brines, impacting a much larger area, and create a persistent source of produced water with a fate that is difficult to predict and characterize. Alternatives to this method should be considered, including the physical removal of soils impacted by produced water, followed by the restoration of the impacted ecosystem.

An encouraging point is the fact that many of the largest oil field operators in the region are transitioning to pitless drilling practices that are commonly used in other areas but have had limited use in this area. Pitless drilling uses large tanks to store and circulate drilling fluids. Upon well completion the fluids are recycled and the drill cuttings are dried and hauled to a landfill. This type of disposal reduces the volume of wastes and removes the waste from glacial deposits that often have unpredictable waste storage properties.

In summary, multiple tools and trends have been identified that can aid in the management of oil and gas development on Service land. For example, the CI for eastern Montana is a useful indicator of brine contamination that can be measured with relative ease with little equipment. Strontium isotope fractionation has also proven to be a highly effective tool in detecting and quantifying the degree of impact of produced water to surface water and groundwater resources of the prairie pothole region (Peterman and others, 2010), but requires more time for samples to be analyzed and interpreted. The use of past aerial photos may be advantageous in the land acquisition process, as certain historical practices such as brine disposal pits appear to be

responsible for some of the higher levels of impacts seen in this investigation. Furthermore, certain geological features such as the relatively high permeability of glacial outwash should be considered, as these areas are more susceptible to brine migration. Due to the development of reliable ion toxicity models (Mount and others, 1997), the observed toxic responses from laboratory toxicity tests using site water can be compared to predicted outcomes to assess the impacts from co-occurring contaminants. Although this technique has proven to be useful in other investigations similar to this one (Tietge and others, 1997), the results from this study were not as clear. Although technologies have improved, such as the development of closed-looped systems, and past practices such as the use of unlined reserve pits are no longer allowed, spills, leaks, compromised reserve pit linings, and reserve pit overflow may continue to contribute produced water to the environment.

ACKNOWLEDGMENTS

Funding for this research was provided by the U.S. Fish and Wildlife Service's Department of Environmental Quality's On-Refuge Investigations Program. Medicine Lake NWR and the Sheridan County Conservation District, including Mickey McCall, provided field support throughout this project. Todd Preston with USGS created the apparent terrain conductivity maps. Marvin Miller from the MBMG, Micah Reuber from Western Area Power Administration, and Christina Kravitz and John Wegerzyn of the Service reviewed and provided helpful comments for this document.

LITERATURE CITED

- Bair, E.S., and Digel, R.K., 1990, Subsurface transport of inorganic and organic solutes from experimental road spreading of oil-field brine: Groundwater Monitoring Review, v. 10, no. 3, p. 94–105.
- Baker, F.G., and Brendecke, C.M., 1983, Seepage from oilfield brine disposal ponds in Utah: Ground Water, v. 21, no. 3, p. 317–324.
- Bergantino, R.N., 1986, Quaternary geology of the eastern half of the Wolf Point 1 x 2 degree quadrangle: Montana Bureau of Mines and Geology Open-File Report 172, scale 1:250,000.
- Bluemle, J.P., 1991, The face of North Dakota, revised edition: N.D. Geological Survey Ed. Series 21, 177 p.
- Boelter, A.M., Lamming, F.N., Farag, A.M., and Bergman, H.L., 1992, Environmental effects of saline oil-field discharges on surface-waters: Environmental Toxicology and Chemistry, v. 11, p. 1187–1195.
- Cermak, J.H., Stephenson, G.L., Birkholz, D., Wang, Z., and Dixon, D.G., 2010, Toxicity of petroleum hydrocarbon distillates to soil organisms: Environmental Toxicology and Chemistry, v. 29, p. 2685–2694.

Chau, Y.K., and Kulikovsky-Cordeiro, O.T.R., 1995, Occurrence of nickel in the Canadian environment: Environmental Reviews, v. 3, p. 95–120.

Chen-Northern, Inc., 1994, Sample and analysis report: Montana Board of Oil and Gas Conservation Solid Waste Management Project, 29 p.

Cowardin, L.M., Carter, V., Golet, F.C., and LaRoe, E.D., 1979, Classification of wetlands and

deepwater habitats of the United States: Washington, D.C., U.S. Department of the Interior, Fish and Wildlife Service, Office of Biological Sciences, Publication FWS/OBS-79/31.

Currie R.S., Fairchild, W.L., and Muir, D.C.G., 1997, Remobilization and export of cadmium from lake sediments by emerging insects: Environmental Toxicology and Chemistry, v. 16, p. 2333–2338.

Di Toro, D.M., Allen, H.E., Bergman, H.L., Meyer, J.S., Paquin, P.R., and Santore, R.C., 2001, Biotic ligand model of the acute toxicity of metals. 1. Technical basis: Environmental Toxicology and Chemistry, v. 20, p. 2383–2396.

Donovan, J.J., 1988, Groundwater geology and high-yield aquifers of northeastern Montana: Montana Bureau of Mines and Geology Open-File Report 209, 116 p.

Dutton, A.R., Richter, B.C., and Kreitler, C.W., 1989, Brine discharge and salinization, Concho River Watershed, West Texas: Ground Water, v. 27, no. 3, p. 375–392.

Eisler, R., 1993, Zinc hazards to fish, wildlife, and invertebrates: a synoptic review: U.S. Fish and Wildlife Service Biological Report, v. 10, 126 p.

Environmental Protection Agency (EPA), 1981, Chemical composition of produced water at some offshore oil platforms: Cincinnati, Ohio, Municipal Environmental Research Laboratory, Office of Research and Development, EPA 600-2-82-034, 58 p.

Environmental Protection Agency (EPA), 1991, Methods for aquatic toxicity identification evaluations, Phase I toxicity characterization procedures (2nd ed.): Washington D.C., Office of Research and Development, EPA/600/6–91/003.

Environmental Protection Agency (EPA), 1993, Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (4th ed.), Weber, C.I., ed.: Environmental Monitoring Systems Laboratory-Cincinnati, Office of Research and Development, USEPA, EPA/600/4-90/027F.

Environmental Protection Agency (EPA), 2000, Profile of the oil and gas extraction industry: Washington D.C., EPA Office of Compliance Sector Notebook Project, Office of Compliance, EPA/310-R-99-006, 165 p.

Environmental Protection Agency (EPA), 2007, Monitored natural attenuation of inorganic contaminants in groundwater, Volume 2. Assessment for non-radionuclides including arsenic, cadmium, chromium, copper, lead, nickel, nitrate, perchlorate, and selenium, Ford, R.G., Wilkin, R.T. and Puls, R.W., eds.: National Risk Management Research Laboratory, Office of Research and Development, USEPA, EPA/600/R-07/140.

Galinato, M.I., and Van Der Valk, A.G., 1986, Seed germination traits of annuals and emergents recruited during drawdowns in the Delta Marsh, Manitoba, Canada: Aquatic Botany, v. 26, p. 89–102.

Gambrell, R.P., 1994, Trace and toxic metals in wetlands— A review: Journal of Environmental Quality, v. 23, p. 883–891.

Gensemer, R.W., and Playle, R.C., 1999, The bioavailability and toxicity of aluminum in aquatic environments: Critical Reviews in Environmental Science and Technology, v. 29, no. 4, p. 315–450.

Gordus, A.G., Shivaprasad, H.L., and Swift, P.K., 2002, Salt toxicosis in ruddy ducks that winter on an agricultural evaporation basin in California: Journal of Wildlife Disease, v. 38, p. 124–131.

Gustafson, J.B., Tell, J.G., and Orem, D., 1997, Selection of representative TPH fractions based on fate and transport considerations, Volume 3: Total Petroleum Hydrocarbon Criteria Working Group, 102 p.

Heinz, G.H., Hoffman, D.J., and Gold, L.G., 1989, Impaired reproduction of mallards fed an

organic form of selenium: Journal of Wildlife Management, v. 53, p. 418–428.

Helsel, D.R., and Hirsch, R.M., 1992, Statistical methods in water resources: New York, Elsevier Science Publishing Company, Studies in Environmental Science, v. 49, 522 p.

Jacobs, R.P.W.M., Grant, R.O.H., Kwant, J., Marquenie, J.M., and Mentzer, E., 1992, The composition of produced water from Shell operated oil and gas production in the North Sea, in Ray, J. P., and Engelhardt, F. R., eds., Produced Water, Technological/Environmental Issues and Solutions: New York, Plenum Press, Environmental Research Series, v. 46. p. 13–21.

Jones, S.B., and Waite, B.A., 1988, Management of oil and gas production brines in the Allegheny Basin: Northeastern Environmental Science, v. 7, no. 2, p. 99–104.

Kantrud, H.A., Millar, J.B. and van der Valk, A.G., 1989,Vegetation of wetlands of the Prairie Pothole Region, inA. van der Valk, ed., Northern Prairie Wetlands: Ames,Iowa, Iowa State University Press, p. 132–187.

Kharaka, Y.K., Thordsen, J.J., and Ambats, G., 1995, Environmental degradation associated with exploration for and production of energy sources in USA, in Kharaka, Y.K., and others, eds., Water–Rock Interaction—Proceedings of the 8th International Symposium on Water Rock Interaction, Vladivostok, Russia, August 15–19, 1995: Rotterdam, Netherlands, Balkema Publishers, p. 25–30.

Lasier, P.J., and Hardin, I.R., 2010, Observed and predicted reproduction of *Ceriodaphnia dubia* exposed to chloride, sulfate, and bicarbonate: Environmental Toxicology and Chemistry, v. 29, p. 347–358.

MacDonald, D.D., Ingersoll, C.G., and Berger, T.A., 2000, Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems: Archives of Environmental Contamination and Toxicology, v. 39, no. 1, p. 20–31.

MADEP, 2003, Updated petroleum hydrocarbon fraction toxicity values for the VPH/EPH/APH

Methodology: Boston, Mass., Office of Research and Standards, Massachusetts Department of Environmental Protection, November 2003, 65 p.

Matz, A.C., and Rocque, D.A., 2007, Contaminants in Lesser Scaup eggs and blood from Yukon Flats National Wildlife Refuge, Alaska: The Condor, v. 109, no. 4, p. 852–861.

Megharaj, M., Singleton, I., McClure, N.C., and Naidu, R., 2000, Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a longterm contaminated soil: Archives of Environmental Contamination and Toxicology, v. 38, p. 439–445.

Meteyer, C.U., Dubielzig, R.R., Dein, F.J., Baeten, L.A., Moore, M.K., Jehl, J.R. Jr., and Wesenberg, K., 1997, Sodium toxicity and pathology associated with exposure of waterfowl to hypersaline playa lakes of southeast New Mexico: Journal of Veterinary Diagnostic Investigations, v. 9, p. 269–280.

Mitcham, S.A., and Wobeser, G., 1988a, Toxic effects of natural saline waters of mallard ducklings. Journal of Wildlife Diseases, v. 24, no. 1, p. 45–50.

Mitcham, S.A., and Wobeser, G., 1988b, Effects of sodium and magnesium sulfate in drinking water on mallard ducklings: Journal of Wildlife Diseases, v. 24, p. 30–44.

Montana Department of Environmental Quality (DEQ), 2009, Montana tier 1 risk-based corrective action guidance for petroleum releases: Montana Department of Environmental Quality, September 2009, 20 p.

Montana Office of the Governor, Dept. of Health and Environmental Sciences, Dept. of Fish Wildlife and Parks, Dept. of State Lands, and Dept. of Natural Resources and Conservation, 1989, Draft Programmatic Environmental Impact Statement Oil and Gas Drilling and Production in Montana, Prepared for the Board of Oil and Gas Conservation, 244 p.

Montana Oil and Gas Conservation Division, 2000, Annual review for the year 1999 relation to oil and gas, Volume 43: Department of Natural Resources and Conservation of the State of Montana, 70 p.

Mount, D.R., Gulley, D.D., Hockett, J.R., Garrison, T.D., and Evans, J.M., 1997, Statistical models to predict the toxicity of major ions to *Ceriodaphnia dubia*, Daphnia *magna* and *Pimephales promelas* (fathead minnows): Environmental Toxicology and Chemistry, v. 16, no. 10, p. 2009–2019.

Munns, R., and Tester, M., 2008, Mechanisms of salinity tolerance: Annual Reviews of Plant Biology, v. 59, p. 651–681.

Murphy, E.C., Kehew, A.E., Broenewold, G.H., and Beal, W.A., 1988, Leachate generated by an oil-and-gas brine pond site in North Dakota: Ground Water, v. 26, no. 1, p. 31–38.

Neff, J.M., 1982, Fate and biological effects on oil well drilling fluids in the marine environment: A literature review: Gulf Breeze, Fla., U.S. Environmental Protection Agency Report 600/8-82-064, Environmental Research Laboratory, USEPA, 168 p.

Nelson, K.J., and Reiten, J.C., 2009, Saline seep impacts on Hailstone and Halfbreed National Wildlife Refuges in South-Central Montana: U.S. Fish and Wildlife, Region 6, Environmental Contaminants Program Report, DEC ID: 200160001, FFS: 61130-6N47, available online at http://www.fws.gov/montanafieldoffice/Environmental_Contaminants.html [accessed August 13, 2012]

Niemuth, N.D., Wangler, B., and Reynolds, R.E., 2010, Spatial and temporal variation in wet area of wetlands in the prairie pothole region of North Da-

kota and South Dakota: Wetlands, v. 30, p. 1053–1064. Otton, J.K., and Mercier, T.J., 2000, National watershed

Otton, J.K., and Mercier, I.J., 2000, National watershed and aquifer susceptibility—Evaluation of the impact of oil and gas production operations, in Sublette, K.L., ed., Proceedings of the Seventh International Petroleum Environmental Conference, Environmental Issues and Solutions in Petroleum Exploration, Production and Refining, p. 961–978.

Otton, J.K., and Zielinski, R.A., 2000, Simple techniques for assessing impacts of oil and gas operations on Federal Lands—A field evaluation at Big South Fork National River and Recreation Area, Scott County, Tennessee: U.S. Geological Survey Open-File Report 00-499, 52 p.

Outridge P.M., and Scheuhammer, A.M., 1993, Bioaccumulation and toxicology of nickel: Implications for wild mammals and birds: Environmental Reviews, v. 1, p. 172–197.

Phipps, G.L., Mattson, V.R., and Ankley, G.T., 1995, Relative sensitivity of three freshwater macroinvertebrates to ten contaminants: Archives of Environmental Contamination and Toxicology, v. 28, p. 281–286.

Phipps, T., Tank, S.L., Wirtz, J., Brewer, L., Coyner, A., Ortego, L.S., and Fairbrother, A., 2002, Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms: Environmental Reviews, v. 10, p. 209–261.

Peterman, Z.P., Thamke, J.N., and Futa, K., 2010, Use of strontium isotopes to detect produced-water

contamination in surface-water and groundwater in the Williston Basin, northeastern Montana [abs.]: GeoCanada2010 Conference, Calgary, Alberta, May 10–14, 2010.

Ramirez, P., 2009, Migratory bird mortality in oilfield wastewater disposal facilities: Wyoming

Ecological Services Field Office, 2 p.

Reiten, J.C., 1991, Impacts of oilfield wastes on soil and groundwater in Richland County, Montana, Part I— Overview: Montana Bureau of Mines and Geology Open-File Report 237A, 25 p.

Reiten, J.C., 1992, Water quality of selected lakes in Eastern Sheridan County, Montana: Montana Bureau of Mines and Geology Open-File Report 244, 44 p.

Reiten, J.C., and Tischmak, T., 1993, Appraisal of oil field brine contamination in shallow groundwater and surface-water, Eastern Sheridan County, Montana: Montana Bureau of Mines and Geology Open-File Report 260, 117 p.

Richardson, R.E., and Hanson, L.T., 1977, Soil survey of Sheridan County, Montana: Soil Conservation Service County Soil Survey Series, U.S. Department of Agriculture, 61 p.

Rosseland, B.O., Eldhuset, T.D., and Staurnes, M., 1990, Environmental effects of aluminum: Environmental Geochemistry and Health, v. 12, p. 17–27.

Rubega, M.A., and Robinson, J.A., 1997, Water salinization and shore-birds: emerging issues: International Wader Studies, v. 9, p. 45–54.

Sawyer, H., Kauffman, M.J., and Nielson, R.M., 2009, Influence of well pad activity on winter habitat selection patterns of mule deer: Journal of Wildlife Management, v. 73, no.7, p. 1052–1061.

Schamphelaere, K.A.C., and Janssen, C.R., 2003, Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna: Environmental Toxicology and Chemistry, v. 23, no. 5, p. 1115–1122.

Soucek, D.J., Linton, T.K., Tarr, C.D., Dickinson, A., Wickramanayake, N., Delos, C.G., and Cruz, L.A., 2011, Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates: Environmental Toxicology and Chemistry, v. 30, no. 4, p. 930–938.

Starodub, M.E., Wong, P.T.S., Mayfield, C.I., and Chau, Y.K., 1987, Influence of complexation and pH on individual and combined heavy metal toxicity to a freshwater green alga: Canadian Journal of Fisheries and Aquatic Sciences, v. 44, p. 1173–1180.

Stephenson, M.T., 1992, A survey of produced water studies, in Ray, J.P., and Engelhardt, F.R., eds., Produced Water, Technological/Environmental Issues and Solutions, Environmental Research Series, Volume 46: New York, Plenum Press, p. 1–11.

Stolley, D.S., Bissonette, J.A., Kadlec, J.A., and Coster, D., 1999, Effects of saline drinking water on early gosling development: Journal of Wildlife Management, v. 63, no. 3, p. 990–996.

Swanson, G.A., Adonmaitis, V.A., Lee, F.B., Serie, J.R., and Shoesmith, J.A., 1984, Limnological conditions influencing duckling use of saline lakes in south-central North Dakota: Journal of Wildlife Management, v. 48, no. 2, p. 340–349.

Thamke, J.N., and Craigg, S.D., 1997, Saline-water contamination in quaternary deposits and the Poplar River, East Poplar oil field, Northeastern, Montana: U.S. Geological Survey Water Resources Investigation Report 97-4000, 37 p.

Tietge, J.E., Hockett, J.R., and Evans, J.M., 1997, Major ion toxicity of six produced waters to three freshwater species: application of ion toxicity models and TIE procedures: Environmental Toxicology and Chemistry, v. 16, no. 10, p. 2002–2008.

U.S. Fish and Wildlife Service (USFWS), 2000, Medicine Lake National Wildlife Refuge Complex, Annual Narrative Report: U.S. Department of the Interior, USFWS, National Wildlife Refuge System.

U.S. Geological Survey (USGS), 1997, USGS research on saline waters co-produced with energy resources: U.S. Geological Survey Fact Sheet FS-003-97.

Waterkeyn, A., Grillas, P., Vanschoenwinkel, B., and Brendock, L., 2008, Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients: Freshwater Biology, v. 53, no. 9, p. 1808–1822.

Wentsel, R., McIntosh, A., and McCafferty, W.P., 1978, Emergence of the midge Chironomus tentans when exposed to heavy metal contaminated sediment: Hydrobiologia, v. 577, p. 195–196.

Wessa, P., 2008, Kendall tau rank correlation (v1.0.10) in Free Statistics Software (v1.1.23-r6), Office for Research Development and Education, available online at http://www.wessa.net/rwasp_kendall.wasp/ [accessed August 13, 2012]

Windingstad, R.M., Kartch, F.X., and Stroud, R.K., 1987, Salt toxicosis in waterfowl in North Dakota: Journal of Wildlife Diseases, v. 23, no. 3, p. 443–446.

Wobeser, G.A., 1981, Salt poisoning, in Diseases of Wild Waterfowl: New York, Plenum Press, p. 191–197.

Wollheim, W.M., and Lovvorn, J.R., 1995, Salinity effects on macroinvertebrate assemblages and waterbird food webs in shallow lakes of the Wyoming High Plains: Hydrobiologia, v. 310, p. 207–223.

APPENDIX A

Oilfield Brine Plumes in Shallow Groundwater, Goose Lake Field, Sheridan County, Montana: Documenting Water-Quality Changes over 16 Years

HYDROGEOLOGIC BACKGROUND

Previous work in the late 1980s identified a large salt plume associated with several oilfield sites in the Goose Lake field (Reiten and Tischmak, 1993). Several maps and figures were constructed characterizing the hydrogeology and extent of this area. To understand the water-quality changes identified by comparing samples from 1989 to 2006, the hydrogeologic background must be reviewed. Nine oilfield sites appear to be related to brine contamination in parts of sections 22, 26, 27, and 28 in T. 36 N., R. 58 E. Figure A1 is a hydrogeologic map identifying oilfield sites, monitoring wells, EM-31 conductivity anomalies, and cross-section locations in part of the Goose Lake Field. The topography within the detailed study area is expressed by gently rolling hills, with the land surface sloping towards the east (fig. A2). A broad hill covers the central and northern parts of sec. 27. Surface drainages surround this hill, with all coulees emptying into the unnamed lake on the east edge of the study area. Several small ephemeral sloughs are located within the drainages.

Figure A1 depicts the distribution of three hydrogeologic units: glacial till, dry glacial outwash, and saturated glacial outwash. A contact between surficial deposits of glacial till and surficial deposits of outwash is located in the northern one-third of the study area. South of the contact, glacial outwash mantles the underlying glacial till with a relatively

Goose Lake Field Hydrogeology

Figure A1. Hydrogeologic map of part of the Goose Lake Field.

Figure A2. Aerial orthophotograph of part of the Goose Lake oilfield.

uniform thickness of sand and gravel averaging about 15 ft thick. The glacial outwash is composed of moderately wellsorted to very poorly sorted silty sand and gravel. The basal confining layer is composed of relatively impermeable pebbly clay loam (glacial till). These outwash deposits are unsaturated beneath the hills. Under low-lying areas associated with the drainages, the outwash deposits are saturated, forming an unconfined aquifer.

Cross sections constructed through this area are shown in figures A3 and A4, depicting the major hydrogeologic relationships. Cross sections A-A' and B-B' are constructed perpendicular to the drainage located in the northeast part of sec. 27 (fig. A3). Cross section C-C' is constructed along the axis of this drainage (fig. A4). As previously mentioned, a relatively uniform thickness of outwash sand and gravel mantles the underlying till. As a result, the saturated thickness of the unconfined outwash aquifer is controlled by topography of both the land surface and the till surface. Examples of variations in saturated thickness of the aquifer

are shown on cross section $A-A^{\prime}$ (fig. A3). At monitor well 124P, near the center of the cross section, a knob of till produces a very thin saturated zone; while at monitor well 124G, in the northern part of the cross section, a depression in the till surface produces a much thicker saturated zone.

Apparent conductivity anomalies could be caused by a variety of conditions, including: highly mineralized ground water; fine-grained soils; saline seeps; and a high water table. The close association of the conductivity anomalies with the oil-field sites supported the interpretation that near-surface materials had been contaminated by brine discharges. Brine plumes were identified adjacent to and down slope of all of the oil-field sites shown in figures A1 and A2. The results of water sampling confirmed that the conductivity anomalies were caused by sodium chloride salts. The only local sources of these salts are from oilfield brines.

Figure A3. Cross-sections A–A´ and B–B´ showing the hydrogeology of near-surface sediments in the Goose Lake oilfield. See Figure 29 for lines of the cross sections.

Figure A4. Cross-section C–C' showing hydrogeology of near-surface sediments in the Goose Lake oilfield. See figure 52 for the line of the cross section.

Some of the complexities associated with groundwater transport of contaminants in glacial terrains are evident in the Goose Lake field. An area of high apparent conductivity at oilfield site 117 covers several acres surrounding the abandoned oil well (fig. A1). Water tests from shallow wells underlying this area of high apparent conductivity and a high-conductivity area immediately south of the site had very low chloride concentrations. The source of these anomalies appear to be from a combination of surface brine spills, reclaimed infiltration pits, pipeline leaks, a small containment dam, high water table, and saline seeps. The combined effect of relatively low hydraulic conductivity of the glacial till and the water table near or above the ground surface have prevented downward infiltration of oilfield brines. As a result, surface brine leaks and spills moved overland downslope and did not infiltrate until reaching the more permeable glacial outwash having a lower water table and downward flow gradients.

An abundance of very soluble sodium sulfate salts are associated with glacial deposits in this region. These have resulted in saline seeps and lakes with naturally high salinity. As a result, contamination from produced-water brines cannot be positively identified by specific conductance alone. A chloride index (CI) was devised to determine the magnitude of brine impacts to any surface-water or groundwater sample (Reiten, 1991). The index is calculated by the ratio of the chloride concentration to specific conductance. The chloride concentration is determined using test strips that provide a direct reading and the specific conductance is determined by a field meter. Empirical data based on hundreds of measurements indicate that the lower limit of brine contamination is a CI of about 0.035 (Reiten and Tischmak, 1993). Heavily impacted waters have CI values of 0.50 or greater. The CI is a valuable tool to identify the source and magnitude of salinity impacts to water resources. It clearly distinguishes between oilfield and non-oilfield impacts and has been used by researchers, regulators, landowners, and conservation districts to identify contamination sources.

Another common feature of brine plumes are vertical-density gradients. Density gradients are the result of the more concentrated solutions sinking to the base of an aquifer. These are most apparent in relatively permeable glacial outwash deposits. The hydraulic conductivity was estimated at 100 ft/day based on the interpretation of an aquifer test conducted in 1989 (Reiten and Tischmak, 1993). Several examples of density gradients have been identified in the Goose Lake field. Figure A5 shows the density gradient that developed in the shallow outwash aquifer at well 124J. Vertical-density gradients form as the denser, highly concentrated solutions sink to the base of the aquifer. The density gradients at 124J were originally measured in 1989 by collecting field-water samples at several vertical positions within the well and testing for chloride concentration using test strips. The SC was measured directly by a field meter while stabilizing the probe at known vertical positions. The CI (ratio of CL/SC) was calculated at 0.40 and

Field Water Quality Parameters Showing Density Gradients at M:890928 (124J)

Figure A5. Plot showing increase of specific conductance and chloride concentration with depth caused by density gradients in the outwash aquifer. Note decrease in concentrations from 1989 to 2006.

remained relatively stable at the differing concentrations. SC was measured directly for the 2006 sampling, as the probe was dropped and stabilized at 1 ft increments. As an estimate, the 2006 chloride concentration was calculated by multiplying the SC value by the CI (0.40). The concentration of brine has declined significantly at this well from 1989 to 2006, but the vertical-density gradients remain very similar. Vertical-density gradients complicate any description of contaminant movement, because defining the vertical position within a plume is of equal importance to defining the horizontal position. As a result of these complications, a map view of a chloride plume must also refer to a third dimension perpendicular to the plane of the map.

The sampling points in the Goose Lake field available for mapping brine plumes include wells screened from the water table to the base of the aquifer as well as surfacewater bodies. Fortunately, as demonstrated in figure A5, the CI is relatively uniform across vertical-density gradients, normalizing the effect of differing well depths. This allows using the CI to map the extent of brine plumes regardless of well depth.

Highly concentrated saltwater has traveled from the source at site 117 towards the northeast part of sec. 27 near well 117J, located about 3500 ft downslope from the source. The saltwater moved overland across low permeable glacial till with upward flow gradients until reaching the more permeable glacial outwash with downward flow gradients, where it infiltrated and formed a groundwater brine plume. Several hundred feet south of well 117J this plume coalesced with plumes flowing from oilfield sites 126 and 124. As saltwater from these three sources mix, a large area of high apparent conductivity develops along the east side of sec. 27. Very high CI values indicate groundwater degradation is highest underlying small wetlands east of site 124 (Reiten and Tischmak, 1993). The shorelines of these wetlands are sterilized, devoid of vegetation, or dominated by salt-tolerant plants (Salicornia rubra, saltwort) or salttolerant weeds (koshia).

Brine plumes flowing from several sites to the west and southwest have moved through groundwater below an intermittent drainage and combined with the larger plume (fig. A1). The south half of sec. 27 was purchased by the Service as a waterfowl production area, where several wetlands have been restored and enhanced. Fortunately, the brine contamination is not as severe in this drainage as it is in the northeast quarter of sec. 27. Work in this area is being evaluated by an ongoing Service project.

WATER-QUALITY CHANGES 1989-2006

At the start of this project it was realized that many of the wells constructed in the late 1980s were still in place. The TAC discussed this and determined that sampling some of these wells would provide a chance to evaluate the persistence of brine contamination. This is an important consideration for evaluating future impacts. Wells were cleaned out and water samples were collected during the spring of 2006 from several wells initially sampled in 1989. The results of these analyses can be viewed on the MBMG website http://mbmggwic@mtech.edu, under project name SCDBRINE.

Changes in total dissolved solids (TDS, mg/L), chloride concentrations (CL, mg/L), and chloride index (CI) are summarized in figures A6, A7, and A8. Eleven of twelve samples were from the Goose Lake field. TDS (fig. A6) decreased in samples from nine sites and increased in only two sites from the Goose Lake field. The TDS changes ranged from a decline of 83% at 124C to an increase of 32% at 117J. The average TDS concentration was about 44% less in 2007 than in 1989. The largest absolute change in TDS was measured at 264A, where the TDS declined from about 111,000 mg/L to 51,000 mg/L. Chloride concentrations (fig. 58) also decreased in all but the same two samples. The change in chloride ranged from a decline of 84% at 124C to an increase of 34% at117J. The average chloride concentration was about 44% less in 2007 than in 1989. The largest absolute change in chloride concentrations was measured at 264A, where the TDS declined from about 67,000,000 mg/L to 31,000 mg/L. The CI changes were not as large as the other parameters and ranged from a decline of 49% at 126A to an increase of 4% at 117J (fig. A8). The CI declined the most at wells 264A (41%) and 126B (49%). Overall the CI declined an average of about 20% within this group of wells. These decreases imply dilution of the brine plumes from recharge of rainfall and snowmelt. The fact that the dilution effects are not uniform may indicate the variability of recharge across the landscape and changes in the concentration of the sodium chloride sources.

Figure A9 provides a map view showing changes in TDS from resampled wells. The bar graphs in this and subsequent maps are uniformly scaled from figures A6, A7, and A8. The greatest dilution effects represented by TDS are associated with samples from two wells (124H and 264A). Overall, the concentration of the TDS plume has declined 44% in the past 17 years. While the overall trend is towards declining TDS, the plume is dynamic, with TDS increasing at 117J and 124P. Figure A10 provides a map view showing changes in the CI in water from resampled wells. The largest changes are in monitoring wells close to suspected brine sources. These changes suggest a reduction in the concentration at the sources. The fact that these changes show an overall dilution is somewhat encouraging and suggests that natural processes will eventually dilute the brine plumes. Unfortunately, the concentrations are extremely high, especially in areas where several plumes have coalesced.

Comparison of Total Dissolved Solids from 1989 to 2006

Figure A6. Change in Total Dissolved Solids in selected wells from 1989 to 2006. All sites with the exception of well 295A are from the Goose Lake oilfield.

Comparison of Chloride Concentration (mg/L) from 1989 to 2006

Figure A7. Change in chloride concentration in selected wells from 1989 to 2006. All sites with the exception of well 295A are from the Goose Lake oilfield.

Comparison of Chloride Index from 1989 to 2006

Figure A8. Change in chloride contamination index (CI) in selected wells from 1989 to 2006. All sites with the exception of well 295A are from the Goose Lake oilfield.

Goose Lake Field Hydrogeology

Figure A9. Map showing change in TDS (1989–2006) from samples collected from wells completed in glacial outwash and glacial till in part of the Goose Lake oilfield.

Goose Lake Field Hydrogeology

Figure A10. Map showing change in chloride contamination index (CI) (1989–2006) from samples collected from wells completed in glacial outwash and glacial till in part of the Goose Lake oilfield.

APPENDIX B

Analytical Results of Inorganic Analyses for Surface and Groundwater Samples

Location	GWIC ID	Site Name	Latituda	Longitude	TRS	Site Type	Denth	Agency	Sample Date	Water Temp.	Field
Medicine I	ake NWR	One Marine	Lando	Longitude	11(0	One Type	Doptii	Ageney	Cample Date	(0)	
		NWR2	48 5206	-104 2623		Lake		USEWS	4/27/2004	16.03	8 53
		MI -SW	48.4820	-104.4510		Lake		USFWS	9/17/2005	10.00	0.00
	221728	RW-1MW	48.5254	-104.2645	32N57E14DA	Well	45	USFWS	9/17/2005	8.7	
	221728	RW-1MW	48.5254	-104.2645	32N57E14DA	Well	45	USFWS	9/17/2005		
	221596	RW-2MW	48.5250	-104.2643	32N57E14DA	Well	34	USFWS	9/17/2005	8.3	
	221596	RW-2MW	48.5250	-104.2643	32N57E14DA	Well	34	USFWS	9/17/2005		
	221726	RW-3MW	48.5256	-104.2653	32N57E14DA	Well	38	USFWS	9/17/2005	8.8	
	221726	RW-3MW	48.5256	-104.2653	32N57E14DA	Well	38	USFWS	9/17/2005		
	221719	RE-1MW	48.5261	-104.2587	32N57E13	Well	38	USFWS	9/17/2005	8.7	
	221719	RE-1MW	48.5261	-104.2587	32N57E13	Well	38	USFWS	9/17/2005		
	221691	RE-2MW	48.5262	-104.2575	32N57E13	Well	38	USFWS	9/17/2005	9.9	
	221691	RE-2MW	48.5262	-104.2575	32N57E13	Well	38	USFWS	9/17/2005		
Anderson	WPA										
		AND1	48.9849	-104.1079		Wetland		USFWS	4/29/2004		
		AND2	48.9876	-104.1064		Wetland		USFWS	7/27/2004	24.99	7.65
		AND2	48.9876	-104.1064		Wetland		USFWS	4/28/2004	7.02	7.28
		AND2	48.9876	-104.1064		Wetland		USFWS	9/9/2004	21.72	8.1
		AND2	48.9876	-104.1064		Wetland		USFWS	7/8/2005	26.98	7.46
		AND2	48.9876	-104.1064		Wetland		USFWS	7/11/2005		
		AND2	48.9876	-104.1064		Wetland		USFWS	7/11/2005		
		AND3	48.9911	-104.1075		Wetland		USFWS	4/28/2004		
		AND4	48.9863	-104.1048		Wetland		USFWS	4/29/2004	10.36	6.92
		AND4	48.9863	-104.1048		Wetland		USFWS	5/16/2004	22.16	8.13
		AND4	48.9863	-104.1048		Wetland		USFWS	7/27/2004	24.74	8.01
		AND4	48.9863	-104.1048		Wetland		USFWS	7/8/2005	31.57	8.44
		AND4	48.9863	-104.1048		Wetland		USFWS	5/18/2004		
		AND5	48.9969	-104.0962		Wetland		USFWS	4/28/2004		
		AND6	48.9894	-104.0965		Wetland		USFWS	4/28/2004		
		AND7	48.9911	-104.0968		Wetland		USFWS	4/28/2004		
		AND8	48.9828	-104.0977		Wetland		USFWS	7/27/2004	25.44	9.24
		AND8	48.9828	-104.0977		Wetland		USFWS	4/28/2004	5.8	8.38
		AND9	48.9840	-104.0933		Wetland		USFWS	5/15/2004	16.41	9.35
		AND9	48.9840	-104.0933		Wetland		USFWS	7/27/2004	25.89	8.22
		AND10	48.9939	-104.1035		Wetland		USFWS	4/29/2004	14.94	8.03

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

	5. 7 thatytical i				Field	Field						
			Field SC	Field DO	TDS	Chloride			Lab SC	Са		Na
Location	GWIC ID	Site Name	(µS/cm)	(mg/L)	(g/L)	Conc. (mg/L)	Lab	Lab pH	(µS/cm)	(mg/L)	Mg (mg/L)	(mg/L)
Medicine L	ake NWR											
		NWR2	1,702	8.04	1.09	30						
		ML-SW					TERL			20.2	92.1	651
	221728	RW-1MW					MBMG	7.41	4,430	309	188	453
	221728	RW-1MW					TERL					
	221596	RW-2MW					MBMG	7.45	1,810	136	84.3	231
	221596	RW-2MW					TERL					
	221726	RW-3MW					MBMG	7.46	2,150	185	109	223
	221726	RW-3MW					TERL					
	221719	RE-1MW					MBMG	7.51	725	84.3	29.9	8.57
	221719	RE-1MW					TERL					
	221691	RE-2MW					MBMG	7.36	24,300	1,848	305	4,822
	221691	RE-2MW					TERL					
Anderson	WPA											
		AND1										
		AND2	9,681	7.27	6.20	366						
		AND2	4,351	7.54	2.79	145						
		AND2	14,160	11.5		590						
		AND2	8,575	3.62	5.49	324.5						
		AND2					TERL			358	697	1,030
		AND2					UWRBEBL	7.81	7,990	380.0	714.3	1,117
		AND3										
		AND4	82,463	7.07	52.78	27,292.5						
		AND4	43,626	10.68	27.94	14,540						
		AND4	68,366	6.62	43.74	31,660						
		AND4	46,350	7.54	29.68	15,220						
		AND4					TERL			1,340	766	6,430
		AND5										
		AND6										
		AND7										
		AND8	26,286	13.91	16.82	2,589						
		AND8	12,647	11.78	8.09	1,198						
		AND9	19,657	10.23	12.58	2,748						
		AND9	89,693	4.78	57.40	12,948						
		AND10	260.1	14.77	0.17	8.8						

Location	GWIC ID	Site Name	K (mg/L)	Fe (mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO ₃ (mg/L)	CO ₃ (mg/L)	SO ₄ (mg/L)	CI (mg/L)	NO₃ (mg/L)	F (mg/L)
Medicine	Lake NWR											
		NWR2										
		ML-SW	34.1	0.12	0.01	2						
	221728	RW-1MW	11.2				484.3	0	392	1,162		
	221728	RW-1MW		<0.01	<0.002	11						
	221596	RW-2MW	6.18				596.6	0	514	57.2		
	221596	RW-2MW		<0.01	0.22	10.7						
	221726	RW-3MW	8.1				669.4	0	740	40.2		
	221726	RW-3MW		<0.01	0.46	10.2						
	221719	RE-1MW	2.93				367.2	0	24.6	1.96		
	221719	RE-1MW		<0.01	0.95	9.2						
	221691	RE-2MW	116				552.7	0	99.9	11,538		
	221691	RE-2MW		<0.01	3.86	8.6						
Anderson	WPA											
		AND1										
		AND2										
		AND2										
		AND2										
		AND2										
		AND2	107	0.144	0.02	1.5						
		AND2	110						2,370	152	10.10	
		AND3										
		AND4										
		AND4										
		AND4										
		AND4										
		AND4	270	<0.01	0.09		156		3,250	17,900		
		AND5										
		AND6										
		AND7										
		AND8										
		AND8										
		AND9										
		AND9										
		AND10										

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

OPO4 Location GWIC ID Site Name (mg/L) Ag (μg/L) Al (μg/L) As (μg/L) B (μg/L) Ba (μg/l)	L) Be (µg/L)	Br (µg/L)	Cd (µg/L)	Co (µg/L)
Medicine Lake NWR				
NWR2				
ML-SW 50 33.9 1,400 4	48 <0.5		0.2	<5
221728 RW-1MW				
221728 RW-1MW <50 0.63 289 6	60 < 0.5		<0.05	<5
221596 RW-2MW				
221596 RW-2MW <50 0.23 253 2	21 <0.5		0.02	<5
221726 RW-3MW				
221726 RW-3MW <50 0.33 223 2	29 <0.5		0.02	<5
221719 RE-1MW				_
221719 RE-1MW <50 0.19 60 15	>0 <0.5		0.03	<5
221691 RE-2MW				
221691 RE-2MW <50 6.28 5,430 135	50 < 0.5		2.08	<5
Anderson WPA				
AND1				
AND2				-
AND2 <50 6.76 <500 5	<0.5		0.1	<5
AND2				
AND3				
AND4		1 340 000	0.17	~5
AND4 10 520 11.0 19,000 10	0.5	1,340,000	0.17	-0
AND8				
AND8				
AND9				
AND9				
AND10				

Location		Site Nome	Cr(uq/l)	Cu	Hg	Li(ua/L)	Mo		Dh(uall)		Sr (ug/L)	Ti
Location		Sile Name	Cr (µg/L)	(µg/L)	(µg/L)	LI (µg/L)	(µg/L)	ινι (μg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	(µg/L)
Medicine L	ake NWR											
			-5	~5	<01		~10	~5	0.00	0.52	165	~5
	221728	D\A/ 11/10/	<5	~ 0	~ 0.1		<10	<5	0.09	0.55	405	<5
	221720		~5	~5	-0 1		~10	~5	<0.05	217	1 010	~5
	221720	P\0/_2N/\0/	-5	~5	\U.1		<10	-5	<0.05	51.7	1,910	-5
	221590	P\0/_2N/\0/	<5	<5	<01		<10	<5	<0.01	32.4	1 330	<5
	221390	RVV-210100	-5	~5	\U.1		<10	-5	<0.01	52.4	1,550	-5
	221720	D\0/_3N/\0/	<5	<5	<01		<10	<5	<0.01	1/3	1 450	~5
	221720		<5	~5	\U.1		<10	-5	<0.01	145	1,450	-5
	221719		<5	<5	<01		<10	<5	<0.01	1 30	320	~5
	221713		-0	-0	~ 0.1		10	<0	-0.01	1.55	520	-0
	221031				-0.4		-10	-5	-0.4	0.00	40,400	00
Avadavaava	221091	RE-2IVIVV	<0	<0	<0.1		<10	<0	<0.1	3.88	48,100	20
Anderson	WPA											
		ANDZ										
		AND2										
		AND2										
		AND2	_	_				_				_
		AND2	<5	<5	<0.1		<10	<5	<0.05	0.58	1,990	6
		AND2										
		AND3										
		AND4										
		AND4										
		AND4										
		AND4										
		AND4	<5	<5	<0.1		40	7	0.14	1.21	19,100	
		AND5										
		AND6										
		AND7										
		AND8										
		AND8										
		AND9										
		AND9										
		AND10										

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Location	GWIC ID	Site Name	U (ua/L)	V (ua/L)	Zn (ua/L)	Zr (ua/L)	Chloride Index	Comments
Medicine I	ake NWR		- (P3/-/	· (P-3/ -/		(P: 3 ; _/		
		NWR2					0.018	
		ML-SW		<10	<5		0.010	
	221728	RW-1MW					0.262	
	221728	RW-1MW		<10	<5			
	221596	RW-2MW					0.032	
	221596	RW-2MW		<10	<5			
	221726	RW-3MW					0.019	
	221726	RW-3MW		<10	<5			
	221719	RE-1MW					0.003	
	221719	RE-1MW		<10	<5			
	221691	RE-2MW					0.475	
	221691	RE-2MW		<10	<5			
Anderson	WPA							
		AND1						dry
		AND2					0.038	
		AND2					0.033	
		AND2					0.042	
		AND2					0.038	
		AND2		<10	6			
		AND2					0.019	
		AND3						dry
		AND4					0.331	
		AND4					0.333	
		AND4					0.463	
		AND4					0.328	
		AND4		<10	6			
		AND5						dry
		AND6						dry
		AND7						dry
		AND8					0.098	
		AND8					0.095	
		AND9					0.140	
		AND9					0.144	
		AND10					0.034	

		0.11				0'' T	D 11			Water Temp.	Field
Location	GWIC ID	Site Name	Latitude	Longitude	IRS	Site Type	Depth	Agency	Sample Date	(°C)	рн
		AND11	48.9857	-104.1047		Wetland		USFWS	5/16/2004	26.68	7.33
		AND11	48.9857	-104.1047		Wetland		USFWS	5/18/2004		
	221721	A-1MW	48.9886	-104.1033	37N58E5	Well	18	USFWS	9/13/2005	12.4	
	221721	A-1MW	48.9886	-104.1033	37N58E5	Well	18	USFWS	9/13/2005		
	221574	A-2MW	48.9876	-104.1044	37N58E5CA	Well	28	USFWS	9/13/2005	10	
	221574	A-2MW	48.9876	-104.1044	37N58E5CA	Well	28	USFWS	9/13/2005		
	221727	A-3MW	48.9872	-104.1046	37N58E5	Well	28	USFWS	9/13/2005	9.8	
	221727	A-3MW	48.9872	-104.1046	37N58E5	Well	28	USFWS	9/13/2005		
	221737	A-4MW	48.9873	-104.1041	37N58E5CA	Well	18	USFWS	9/13/2005	12	
	221737	A-4MW	48.9873	-104.1041	37N58E5CA	Well	18	USFWS	9/13/2005		
	221731	A-5DMW	48.9867	-104.1039	37N58E5	Well	23	USFWS	9/13/2005	10.26	
	221731	A-5DMW	48.9867	-104.1039	37N58E5	Well	23	USFWS	9/13/2005		
	221707	A-8MW	48.9845	-104.1018	37N58E4	Well	18	USFWS	9/14/2005	10.4	
	221707	A-8MW	48.9845	-104.1018	37N58E4	Well	18	USFWS	9/14/2005		
	221733	A-10MW	48.9843	-104.1007	37N58E5	Well	18	USFWS	9/14/2005	10.3	
	221733	A-10MW	48.9843	-104.1007	37N58E5	Well	18	USFWS	9/14/2005		
	221687	A-11MW	48.9841	-104.1007	37N58E5	Well	13	USFWS	9/14/2005	13.3	
	221687	A-11MW	48.9841	-104.1007	37N58E5	Well	13	USFWS	9/14/2005		
	221724	A-14MW	48.9849	-104.0992	37N58E5	Well	18	USFWS	9/14/2005	14.9	
	221724	A-14MW	48.9849	-104.0992	37N58E5	Well	18	USFWS	9/14/2005		
	221716	A-15MW	48.9848	-104.0986	37N58E5BA	Well	23	USFWS	9/17/2005	8	
	221716	A-15MW	48.9848	-104.0986	37N58E5BA	Well	23	USFWS	9/17/2005		
	221715	A-16MW	48.9955	-104.1048	37N58E5BA	Well	43	USFWS	9/13/2005	10.6	
	221715	A-16MW	48.9955	-104.1048	37N58E5BA	Well	43	USFWS	9/13/2005		
	221703	A-17MW	48.9955	-104.1045	37N58E5BA	Well	38	USFWS	9/13/2005	7.7	
	221703	A-17MW	48.9955	-104.1045	37N58E5BA	Well	38	USFWS	9/13/2005		
Base Carr	np WPA										
		BC1	48.9825	-104.0780		Wetland		USFWS	4/29/2004	11.52	8.87
		BC1	48.9825	-104.0780		Wetland		USFWS	7/30/2004	21.35	10.18
		BC2	48.9812	-104.0804		Wetland		USFWS	4/29/2004		
		BC3	48.9805	-104.0785		Wetland		USFWS	4/29/2004	15.24	6.96
		BC4	48.9787	-104.0794		Wetland		USFWS	4/29/2004	13.67	8.61
		BC4	48.9787	-104.0794		Wetland		USFWS	7/30/2004	22.1	10.11
		BC7	48.9672	-104.0682		Wetland		USFWS	9/11/2004	19.19	9.03

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

	D. / thatytical i	could of morga			Field	Field						
			Field SC	Field DO	TDS	Chloride			Lab SC	Ca		Na
Location	GWIC ID	Site Name	(µS/cm)	(mg/L)	(g/L)	Conc. (mg/L)	Lab	Lab pH	(µS/cm)	(mg/L)	Mg (mg/L)	(mg/L)
		AND11	44819	5.73	28.05	6550						
		AND11					TERL			1,030	1,230	2540
	221721	A-1MW					MBMG	7.51	902	76.1	46.6	49.7
	221721	A-1MW					TERL					
	221574	A-2MW					MBMG	7.34	36,800	930	452	11,154
	221574	A-2MW					TERL					
	221727	A-3MW					MBMG	7.05	56,000	162	1,462	25,054
	221727	A-3MW					TERL					
	221737	A-4MW					MBMG	7.34	13,670	642	566	2,543
	221737	A-4MW					TERL					
	221731	A-5DMW					MBMG	7.55	10,410	664	302	1,723
	221731	A-5DMW					TERL					
	221707	A-8MW					MBMG	7.26	13,480	880	1,145	1,504
	221707	A-8MW					TERL					
	221733	A-10MW					MBMG	7.63	22,000	417	3,784	5,207
	221733	A-10MW					TERL					
	221687	A-11MW					MBMG	7.57	24,800	433	6,529	4,982
	221687	A-11MW					TERL					
	221724	A-14MW					MBMG	6.94	52,500	7,559	1,163	16,134
	221724	A-14MW					TERL					
	221716	A-15MW					MBMG	7.7	23,600	473	3,552	6,423
	221716	A-15MW					TERL					
	221715	A-16MW					MBMG	7.04	21,900	1,563	1,348	2,997
	221715	A-16MW					TERL					
	221703	A-17MW					MBMG	7.21	9,340	732	534	1,212
	221703	A-17MW					TERL					
Base Cam	ip WPA											
		BC1	14,454	10.77	9.25	823						
		BC1	17,297	7.68	11.07	1147						
		BC2	•									
		BC3	240.1	10.14	0.15	6.6						
		BC4	16,872	10.8	10.80	141						
		BC4	25,796	7.05	16.51	233						
		BC7	42,264	9.65	27.04	953.5						

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

				Fe	Mn	SiO ₂	HCO ₃	CO ₃	SO ₄			F
Location	GWIC ID	Site Name	K (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	CI (mg/L)	NO₃ (mg/L)	(mg/L)
		AND11										
		AND11	96.2	0.01	0.21		122		207	6,170		
	221721	A-1MW	5.46				226.5	0	296	4.59		
	221721	A-1MW		<0.01	5.57	9.3		_				
	221574	A-2MW	189				662.5	0	1,507	18,770		
	221574	A-2MW		<0.01	0.255	7.4						
	221727	A-3MW	381				340.4	0	4,808	42,955		
	221727	A-3MW		<0.01	10.2	8						
	221737	A-4MW	38.6				714.9	0	1,971	4,954		
	221737	A-4MW		<0.01	0.162	14.3						
	221731	A-5DMW	40.4				398.9	0	1,276	3,513		
	221731	A-5DMW		0.03	0.306	10.4						
	221707	A-8MW	26.7				325.7	0	3,202	4,789		
	221707	A-8MW		<0.01	0.004	9.9						
	221733	A-10MW	72.1				871.1	0	26,252	341		
	221733	A-10MW		0.01	14.9	6.9						
	221687	A-11MW	114				884.5	0	35,418	360		
	221687	A-11MW		<0.01	1.01	9.9						
	221724	A-14MW	340				167.1	0	1,264	43,213		
	221724	A-14MW		<0.01	8.49	6.2						
	221716	A-15MW	55.3				713.7	0	27,426	163		
	221716	A-15MW		0.02	9.44	6.6						
	221715	A-16MW	62.2				357.5	0	1,772	10,612		
	221715	A-16MW		0.01	0.04	9.4						
	221703	A-17MW	31				407.5	0	2,332	2,542		
	221703	A-17MW		< 0.01	2.86	10.3						

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Base Camp WPA

BC1 BC2 BC3 BC4 BC4

BC7

			OPO ₄				- / // \	- / // \	- / // \			
Location	GWIC ID	Site Name	(mg/L)	Ag (µg/L)	AI (µg/L)	As (µg/L)	B (µg/L)	Ba (µg/L)	Be (µg/L)	Br (µg/L)	Cd (µg/L)	Co (µg/L)
		AND11						100				_
		AND11		<10	252	17.4	1,610	126	<0.5	1,030,000	0.26	<5
	221721	A-1MW					o / =					_
	221721	A-1MW			<50	0.39	215	23	<0.5		0.05	<5
	221574	A-2MW				7.40	~~ ~~~		0.5		0.00	_
	221574	A-2MW			<50	7.43	69,500	55	<0.5		2.26	5
	221727	A-3MW									10.0	
	221727	A-3MW			<50	6.66	74,500	243	<0.5		16.9	6
	221737	A-4MW					4 700	50			<u> </u>	-
	221737	A-4MW			<50	<0.5	4,760	52	<0.5		<0.1	<5
	221731	A-5DMW			.50	0.40	F 400	10.1	-0.5		0.00	0
	221731	A-5DMW			<50	3.18	5,130	134	<0.5		0.33	8
	221707	A-8MVV			.50	0.00	000		.0.5		0.40	
	221707	A-8IVIV			<50	2.39	326	44	<0.5		0.18	<5
	221733	A-TUIVIVV			-50	4.07	005	00	-0 F		0.07	4.4
	221733	A-TUIVIVV			<50	4.07	385	20	<0.5		0.27	11
	221687	A-TTIVIVV			-50	-0.55	070	50	-0 F		-0.54	
	221687	A-TTIVIVV			<50	<2.55	3/8	59	<0.5		<0.51	<5
	221724	A-14IVIVV			~50	25.0	11 000	CC0	<0 F		E E 7	~F
	221724	A-14IVIVV			<50	25.8	11,000	660	<0.5		5.57	<0
	221710	A-ISIVIVV			-50	0.45	0.47	<u> </u>	<0 F		0.00	10
	221710	A-ISIVIVV			<50	2.45	347	60	<0.5		0.36	10
	221715	A-161VIVV			-50	E E 4	040	E 4	<0 F		10.0	10
	221715				<50	5.54	249	51	<0.5		10.6	12
	221703				~50	1.0	204	00	<0 F		1.04	40
	221703	A-1/IVIVV			<50	1.8	294	26	<0.5		1.21	13

Base Camp WPA

BC1 BC1

BC2

BC3

BC4

BC4

BC7

		<u>×</u>	,									
				Cu	Hg		Мо			0 (")	0 (//)	Ti
Location	GWIC ID	Site Name	Cr (µg/L)	(µg/L)	(µg/L)	Li (µg/L)	(µg/L)	NI (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	(µg/L)
		AND11										
		AND11	<5	6	<0.1		30	5	0.11	4.5	7,720	
	221721	A-1MW										
	221721	A-1MW	<5	<5	<0.1		<10	<5	<0.01	6.24	450	<5
	221574	A-2MW										
	221574	A-2MW	<5	5	<0.1		40	53	0.58	1.86	15,300	10
	221727	A-3MW										
	221727	A-3MW	<5	7	<0.1		10	59	<0.51	9.13	48,000	19
	221737	A-4MW										
	221737	A-4MW	<5	<5	<0.1		<10	5	<0.1	6.07	6,510	9
	221731	A-5DMW										
	221731	A-5DMW	<5	<5	<0.1		10	14	<0.05	0.47	3,650	10
	221707	A-8MW										
	221707	A-8MW	<5	<5	<0.1		<10	<5	0.13	24.9	5,320	12
	221733	A-10MW										
	221733	A-10MW	<5	5	<0.1		20	24	<0.2	3.4	6,200	6
	221687	A-11MW										
	221687	A-11MW	<5	9	<0.1		30	45	<0.51	4.96	7,170	<5
	221724	A-14MW										
	221724	A-14MW	<5	7	<0.1		10	68	0.59	1.9	152,000	77
	221716	A-15MW										
	221716	A-15MW	<5	11	<0.1		20	30	0.69	145	7,540	10
	221715	A-16MW										
	221715	A-16MW	<5	7	<0.1		<10	82	<0.1	13.9	15,300	21
	221703	A-17MW										
	221703	A-17MW	<5	<5	<0.1		<10	38	< 0.05	33.7	5,610	9

			1 1 1
Annendix R Analytic	al regulite of inorganic and	wees for surface and	aroundwater samples
	a results of morganic and	lyses for surface and	groundwater samples.

Base Camp WPA

BC1

BC1

BC2 BC3

BC4

BC4

BC7

Location	GWIC ID	Site Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Chloride Index	Comments
		AND11					0.146	
		AND11		<10	9			
	221721	A-1MW					0.005	
	221721	A-1MW		<10	9			
	221574	A-2MW					0.510	
	221574	A-2MW		<10	35			
	221727	A-3MW					0.767	
	221727	A-3MW		<10	10			
	221737	A-4MW					0.362	
	221737	A-4MW		<10	<5			
	221731	A-5DMW					0.337	
	221731	A-5DMW		<10	10			
	221707	A-8MW					0.355	
	221707	A-8MW		<10	40			
	221733	A-10MW					0.016	
	221733	A-10MW		<10	65			
	221687	A-11MW					0.015	
	221687	A-11MW		<10	<5			
	221724	A-14MW					0.823	
	221724	A-14MW		<10	15			
	221716	A-15MW					0.007	
	221716	A-15MW		<10	67			
	221715	A-16MW					0.485	
	221715	A-16MW		<10	17			
	221703	A-17MW					0.272	
	221703	A-17MW		<10	7			
Base Cam	wPA							
2000 00	1 0 1 11 1 1	BC1					0.057	
		BC1					0.066	
		BC2					0.000	drv
		BC3					0.027	
		BC4					0.008	
		BC4					0.009	
		BC7					0.023	

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Location		Sita Nama	Latituda	Longitudo	TDO	Sito Tuno	Donth	Δαορογ	Sampla Data	Water Temp.	Field
Chandlar		Sile Name	Lauluue	Longitude	ING	Sile Type	Deptil	Agency	Sample Date	(0)	рп
Chandler	WFA	СНА1	18 0830	-104 3730		Wetland		LISEWS	6/14/2005	25 10	85
		CHAT	40.9030	-104.3730		vielianu		03603	0/14/2005	25.19	0.0
Long Lake	WPA										
		LL1	48.5567	-104.1565		Wetland		USFWS	4/27/2004	14	8.69
		LL1	48.5567	-104.1565		Wetland		USFWS	9/10/2004	14.73	9.62
	214789	LL2	48.5555	-104.1612	32N58E3	Wetland		USFWS	7/21/2004	24.5	8.89
	214789	LL2	48.5555	-104.1612	32N58E3	Wetland		USFWS	9/10/2004	16	
	214789	LL2	48.5555	-104.1612	32N58E3	Wetland		USFWS	7/11/2005		
	214789	LL2	48.5555	-104.1612	32N58E3	Wetland		USFWS	7/11/2005		
	214789	LL2	48.5555	-104.1612	32N58E3	Wetland		USFWS	9/10/2004	16.45	9.25
	214789	LL2	48.5555	-104.1612	32N58E3	Wetland		USFWS	7/8/2005	30.33	9.36
		LL3	48.5580	-104.1601		Wetland		USFWS	7/21/2004	24.86	9.23
Berger Por	nd WPA										
		BP	48.5486	-104.1684		Wetland		USFWS	7/11/2005		
		BP	48.5486	-104.1684		Wetland		USFWS	7/11/2005		
		BP	48.5486	-104.1684		Wetland		USFWS	9/10/2004	17.31	9.25
		BP	48.5486	-104.1684		Wetland		USFWS	7/9/2004	26.97	9.13
Malby M/P	Λ										
	~		18 6125	-10/ 0817		Wetland		LISEWS	5/11/2004	12.6	8 / 1
	221719		40.0423	104.0820	22NI58E2	Wotland			5/14/2004	12.0	0.41 0.41
	221710		40.0400	104.0029	32NI58E2	Wetland			7/21/2004	25.05	2 00
	221710		40.0400	104.0029	33N50E2	Wetland		USEWS	0/16/2005	20.00	0.99
	221710		40.0400	-104.0029	33NI58E2	Wetland			9/16/2005	20	
	221710		40.0400	-104.0029	33N30L2	Wetland			7/21/2003	23 / 3	85
	221600		40.0400	-104.0826	33NI58E2	Wetland Woll	28		0/17/2005	20.40	0.0
	221600	NI-1N/N/	48.6403	-104.0826	33N58E2	Well	20		9/17/2005		
	221030		40.0403	104.0822	22NI58E2	Well	20		9/16/2005	0.6	
	221712		40.0402	104.0022	32NI58E2	Well	20		9/16/2005	5.0	
	221712		40.0402	104.0022	33N59E2		20	USEWS	9/10/2005	10.9	
	221714		40.0391	104.0032	33N59E2		20	USEWS	9/10/2005	19.0	
	221714		40.0091	-104.0032	33NI50E2		20 10		9/10/2003 0/16/2005	1 /	
	221505	N1-41VIVV	40.0034	-104.0030	33115022		10		9/10/2003 0/16/2005	14	
	221090		40.0094	104.0000			10		J/10/2003	10	
	221123		40.0395	-104.0629	SSINDOE2	vveli	20	0354/2	9/10/2005	12	

	5. 7 thatytioar i	counte en morga			Field	Field						
			Field SC	Field DO	TDS	Chloride			Lab SC	Ca		Na
Location	GWIC ID	Site Name	(µS/cm)	(mg/L)	(g/L)	Conc. (mg/L)	Lab	Lab pH	(µS/cm)	(mg/L)	Mg (mg/L)	(mg/L)
Chandler V	VPA											
		CHA1	13,520	8.38	8.66	360						
Lona Lake	WPA											
0		LL1	2,481	9.3	1.59	61						
		LL1	3,631	9.58	2.32	68						
	214789	LL2	5,966	1.46	3.82	216						
	214789	LL2					MBMG	9.27	6,900	8.8	72.6	2,094
	214789	LL2					TERL			6.05	75.9	1,900
	214789	LL2					UWRBEBL	9.57	7,280	5.31	77.5	2,054
	214789	LL2	7,633	9.7	4.89	251						
	214789	LL2	7,834	10.79	5.01	228						
		LL3	8,950	6.26	5.73	184						
Borgor Por	nd M/DA											
Derger i or	IG WI A	RP					TERI			5 21	87.2	2 800
		BP						0 30	10 600	4.61	80.0	2,000
		BP	10 737	5 15	6 87	336	OWNDEDE	5.55	10,000	4.01	00.0	5,000
		BP	11,300	8.13	7.23	357						
	٨		,									
Melby WPA	4		40.000	0.07	0.47	405						
	004740	MELI	13,233	8.97	8.47	405						
	221718		13,207	9.68	8.45 10.01	404						
	221718		15,637	8.33	10.01	414		0.47	22.000	07.7	000	0.007
	221718							9.17	22,800	21.1	898	8,307
	221710		60 540	7.66	40.02	6052	IERL					
	221600		62,540	7.00	40.03	6053	MDMC	7.0	2 700	71.0	27	575
	221690							7.9	2,790	71.5	57	575
	221090							7 00	1 6/1	02 5	24.2	267
	221712							1.55	1,041	93.5	54.5	207
	221712 221717	IVI-∠IVIVV M_3M/M						7 76	8 050	200	202	1 561
	221714 22171/							1.10	0,000	JZZ	202	1,001
	221714							7 80	20 000	55/	1 506	1 207
	221595							1.09	20,900	554	1,590	4,231
	221000							7 50	1 370	68.6	30.1	210
	221125						MDNG	1.59	1,572	00.0	50.1	219

Location	GWIC ID	Site Name	K (mg/L)	Fe (mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO₃ (mg/L)	CO ₃ (mg/L)	SO₄ (mg/L)	CI (mg/L)	NO ₃ (mg/L)	F (mg/L)
Chandler V	VPA						, y /		· · ·	, , ,		
		CHA1										
l ong l oko												
LONG LAKE	WFA	111										
	214789	112										
	214789	LL2	58.3	0.14	<0.01	1.61	2.316.8	504	1.738	279	<2.5	<2.5
	214789	LL2	59.1	< 0.01	0.48	1	,		,			
	214789	LL2	66						3,205	168	ND	
	214789	LL2										
	214789	LL2										
		LL3										
Berger Pol	nd WPA											
C C		BP	120	0.01	0.07	4.4						
		BP	134						1,128.0565	198	ND	
		BP										
		BP										
Melby WP	4											
		MEL1										
	221718	MEL2										
	221718	MEL2										
	221718	MEL2	176				1,150.46	300	16,887	1,338		
	221718	MEL2		0.77	0.85	2.6						
		MEL3										
	221690	M-1MW	8.15				593.7	0	946	55.4		
	221690	M-1MW		0.11	2.39	6.7						
	221712	M-2MW	6.29				408	0	504	16.5		
	221712	M-2MW	04.5	2.38	0.03	10.4		-	4466	0.400		
	221714	M-3MW	21.9	0.00	0.04		533.5	0	1103	2,483		
	221/14	IVI-JIVIVV	25.2	0.02	0.31	1.1	462.0	0	7044	7 007		
	221090		25.3	0.02	0 002	10.7	403.0	0	7011	1,007		
	221090 221725		634	0.03	0.003	10.7	136 9	0	277	10 1		
	221123		0.34				430.8	0	3//	10.1		

Location	GWIC ID	Site Name	OPO ₄	Aa (ua/L)	AL (ua/L)	As (ua/L)	B (ua/L)	Ba (ug/L)	Be (ug/L)	Br (ua/L)	Cd (ug/L)	Co (ug/L)
Chandler \		one Hame	(iiig/L)	/ \g (µg/ L/	/ ((µg/ ⊑)	/ to (µg/ L)	D (µg/L)	Da (µg/L)	B0 (µg/L)		ou (µg/ב)	(µg/⊏)
		CHA1										
		017/1										
Lona Lake	WPA											
5		LL1										
		LL1										
	214789	LL2										
	214789	LL2	<2.5	<10	<100	33.3	1,471	<20	<20	7,710	<10	<20
	214789	LL2			<50	17.3	1,510	7	<0.5		<0.05	<5
	214789	LL2										
	214789	LL2										
	214789	LL2										
		LL3										
_												
Berger Po	nd WPA											_
		BP			<50	17.3	2,660	13	<0.5		0.06	<5
		BP										
		BP										
		BP										
Melby WP	A											
-		MEL1										
	221718	MEL2										
	221718	MEL2										
	221718	MEL2										
	221718	MEL2			215	46.5	5,800	26	<0.5		<0.2	<5
		MEL3										
	221690	M-1MW										
	221690	M-1MW			<50	5.06	273	42	<0.5		0.11	<5
	221712	M-2MW										
	221712	M-2MW			<50	4.47	228	27	<0.5		0.04	<5
	221714	M-3MW			=-	= 10	000				0.40	-
	221/14	M-3MVV			<50	5.16	288	76	<0.5		0.18	<5
	221595	IVI-4IVIVV			-50	0.70	074	70	-0 5		0.40	
	221595	IVI-4IVIVV			<50	2.79	671	79	<0.5		0.18	<5
	221725	IVI-5IVIVV										

Location	GWIC ID	Site Name	Cr (µg/L)	Cu (µg/L)	Hg (µg/L)	Li (µg/L)	Mo (µg/L)	Ni (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	Ti (µg/L)
Chandler V	VPA											
		CHA1										
Long Lake	WPA											
		LL1										
		LL1										
	214789	LL2										
	214789	LL2	33.5	<20		221	<100	<20	<20	62.6	153	<10
	214789	LL2	<5	<5	<0.1		<10	6	<0.05	0.13	85	<5
	214789	LL2										
	214789	LL2										
	214789	LL2										
		LL3										
Dorgor Dor												
Berger Por	IU WPA	DD	~F	~5	-0.1		<10	10	0.00	0.10	110	~F
			<0	<0	<0.1		<10	10	0.09	0.12	110	<0
		BP										
		ВР										
Melby WP	4											
-		MEL1										
	221718	MEL2										
	221718	MEL2										
	221718	MEL2										
	221718	MEL2	<5	<5	<0.1		20	5	0.82	0.81	220	10
		MEL3										
	221690	M-1MW										
	221690	M-1MW	<5	<5	<0.1		20	<5	0.1	1.76	435	<5
	221712	M-2MW										
	221712	M-2MW	<5	<5	<0.1		<10	<5	0.02	<0.1	590	<5
	221714	M-3MW										
	221714	M-3MW	<5	<5	<0.1		10	8	<0.05	0.88	2570	<5
	221595	M-4MW										
	221595	M-4MW	<5	6	<0.1		10	<5	<0.1	32.7	7630	7
	221725	M-5MW										

Location	GWIC ID	Site Name	U (ua/L)	V (ua/L)	Zn (ua/L)	Zr (ua/L)	Chloride Index	Comments			
Chandler		Olto Hallio	0 (µg/Ľ)	v (µg/⊏)	2n (µg/L)		eniende index	Commonto			
		СНА1					0.027				
		UNAT					0.021				
Long Lake	WPA										
		LL1					0.025				
		LL1					0.019				
	214789	LL2					0.036				
	214789	LL2	<5	<50	<20	<20	0.040				
	214789	LL2		<10	<5						
	214789	LL2					0.023				
	214789	LL2					0.033				
	214789	LL2					0.029				
		LL3					0.021				
Berger Pol	nd WPA										
		BP		<10	<5						
		BP					0.019				
		BP					0.031				
		BP					0.032				
Melby WP	A										
		MEL1					0.031				
	221718	MEL2					0.035				
	221718	MEL2					0.026				
	221718	MEL2					0.059				
	221718	MEL2		<10							
		MEL3					0.097				
	221690	M-1MW					0.020				
	221690	M-1MW		<10	<5						
	221712	M-2MW					0.010				
	221712	M-2MW		<10	12						
	221714	M-3MW					0.308				
	221714	M-3MW		<10	<5						
	221595	M-4MW					0.339				
	221595	M-4MW		<10	14						
	221725	M-5MW					0.013				
										Water Temp.	Field
------------	---------	-----------	----------	-----------	--------------	-----------	-------	--------	-------------	----------------	-------
Location	GWIC ID	Site Name	Latitude	Longitude	TRS	Site Type	Depth	Agency	Sample Date	(°C)	pH
	221725	M-5MW	48.6395	-104.0829		Well	28	USFWS	9/16/2005		
Mallard Po	nd WPA										
		MP1A	48.5742	-104.1399		Wetland		USFWS	9/16/2005		
		MP1A	48.5742	-104.1399		Wetland		USFWS	4/27/2004	15.3	8.33
		MP1A	48.5742	-104.1399		Wetland		USFWS	9/12/2004	14.98	7.81
	221735	MP-1MW	48.5756	-104.1357	33N58E33	Well	38	USFWS	9/16/2005	11.2	
	221735	MP-1MW	48.5756	-104.1357	33N58E33	Well	38	USFWS	9/16/2005		
	221704	MP-2MW	48.5751	-104.1354	33N58E33	Well	38	USFWS	9/16/2005		
	221704	MP-2MW	48.5751	-104.1354	33N58E33	Well	38	USFWS	9/16/2005		
	161782	MP-RW	48.5733	-104.1384	33N58E33BDBC	Well	10	USFWS	9/16/2005	14.49	
	161782	MP-RW	48.5733	-104.1384	33N58E33BDBC	Well	10	USFWS	9/16/2005		
Northeast	WPA										
		NE2	48,9808	-104.0588		Wetland		USFWS	9/1/2004	36	8.64
		NE3	48.9729	-104.0563		Wetland		USFWS	9/1/2004		
		NE5	48.9774	-104.0535		Wetland			9/1/2004		
North Root	t WPA										
		NR1	48.8348	-104.1206		Wetland		USFWS	4/29/2004	14.97	8.25
		NR1	48.8348	-104.1206		Wetland		USFWS	7/25/2004	25.88	9.35
Big Slough	WPA										
		BS1	48.7366	-104.0881		Wetland		USFWS	5/15/2004	13.38	7.25
		BS2	48.7351	-104.0870		Wetland		USFWS	5/15/2004	12.04	7.69
		BS3A	48.7249	-104.0966		Wetland		USFWS	5/15/2004	13.75	7.92
		BS4A	48.7176	-104.1102		Wetland		USFWS	5/15/2004	16.1	8.14
		BS8	48.7360	-104.0859		Wetland		USFWS	5/15/2004	11.81	7.49
	221706	BS-1DMW	48.7170	-104.1081	34N58E10	Well	17	USFWS	9/16/2005	11.4	
	221706	BS-1DMW	48.7170	-104.1081	34N58E10	Well	17	USFWS	9/16/2005		
	221736	BS-1SMW	48.7170	-104.1081	34N58E10	Well	8	USFWS	9/16/2005	13.7	
	221736	BS-1SMW	48.7170	-104.1081	34N58E10	Well	8	USFWS	9/16/2005		
	221689	BS-2MW	48.7177	-104.1083	34N58E10	Well	8	USFWS	9/16/2005	11	
	221689	BS-2MW	48.7177	-104.1083	34N58E10	Well	8	USFWS	9/16/2005		
	161785	BS-RW	48.7369	-104.0847	34N58E1ABAA	Well	7.8	USFWS	9/15/2005	10.1	

Location	GWIC ID	Site Name	Field SC (µS/cm)	Field DO (mg/L)	Field TDS (g/L)	Field Chloride Conc. (mg/L)	Lab	Lab pH	Lab SC (µS/cm)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)
	221725	M-5MW					TERL					
Mallard Po	ond WPA						TEDI			11.0	00.0	242
			1 040	9 57	0.67	24	TERL			14.3	88.9	242
			1,049	0.07	0.67	24 16 2						
	221735		1,194	5.09	0.77	10.2	MRMG	7/1	10 050	727	150	3 270
	221735	MP-1MW					TERI	1.41	10,000	121	100	0,210
	221704	MP-2MW					MBMG	7.08	16.300	1.827	1.297	623
	221704	MP-2MW					TERL		,	.,	-,	
	161782	MP-RW					MBMG	7.69	682	72.1	30.2	33.9
	161782	MP-RW					TERL					
Northeast	WPA											
		NF2	94 000	3 91		5 179						
		NE3	01,000	0.01		0,110						
		NE5										
North Roo	t Μ/ΡΔ											
110/11/1100		NR1	21,296	9.49	13.63	2,130						
		NR1	28,167	8.22	18.03	4,005						
Die Clauel												
Big Slougi	I WPA	BS1	2 216	1 21	1 / 2	30						
		BS2	1 768	7.85	1.42	16						
		BS3A	8,834	8.33	5.68	222						
		BS4A	34.017	6.16	21.78	1.198						
		BS8	4,616	6.54	2.95	109						
	221706	BS-1DMW	·				MBMG	7.89	2,940	110	112	474
	221706	BS-1DMW					TERL					
	221736	BS-1SMW					MBMG	7.89	2,300	54.1	88.4	389
	221736	BS-1SMW					TERL					
	221689	BS-2MW					MBMG	7.49	8,320	435	393	1,465
	221689	BS-2MW					TERL					
	161785	BS-RW					MBMG	7.22	1615	129	58.7	206

Location GWIC ID Site Name K (mg/L) (mg/L) M (mg/L) SiO ₂ (mg/L) HCO ₃ (mg/L) (mg/L) (mg/L) Cl (mg/L) NO ₃ (mg/L) (mg/L) (mg/L) Cl (mg/L) NO ₃ (mg/L) (mg/L) (mg/L) (mg/L) Cl (mg/L) NO ₃ (mg/L) (mg/					Fe				CO ₃	SO ₄			F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Location	GWIC ID	Site Name	K (mg/L)	(mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO₃ (mg/L)	(mg/L)	(mg/L)	CI (mg/L)	NO₃ (mg/L)	(mg/L)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		221725	M-5MW		0.23	1.33	10.8						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mallard Po	ond WPA											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			MP1A	19.4	0.01	0.012	0.7						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			MP1A										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			MP1A										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		221735	MP-1MW	107				411.1	0	296	6,525		
221704 MP-2MW 17.9 239.1 0 60.1 8,581 221704 MP-2MW - 0.01 0.01 407.8 0 44.1 4.57 161782 MP-RW 0.47 0.06 9.4 407.8 0 44.1 4.57 Northeast WPA NE2 NE3 - <t< td=""><td></td><td>221735</td><td>MP-1MW</td><td></td><td><0.01</td><td>1.03</td><td>10.7</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		221735	MP-1MW		<0.01	1.03	10.7						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		221704	MP-2MW	17.9				239.1	0	60.1	8,581		
161782 MP-RW 4.76 407.8 0 44.1 4.57 161782 MP-RW 0.47 0.06 9.4 9.4 Northeast WPA NE2 NS NE5 NS NS North Root WPA NE5 NS1 S S S Big Slough WPA NR1 NS1 S S S Bis SA BS3A S S S S S 221706 BS-1DMW 6.81 562.01 0 697 400 221706 BS-1DMW <0.01		221704	MP-2MW		<0.01	0.01	10.4						
161782 MP-RW 0.47 0.06 9.4 Northeast WPA NE2 NE3 NE3 NE3 NE5 North Root WPA NR1 North Root WPA NR1 NR1 Big Slough WPA BS1 SS2 BS3A BS4A SS4 BS4A SS8		161782	MP-RW	4.76				407.8	0	44.1	4.57		
Northeast WPA NE2 NE3 NE5 North Root WPA NR1 NR1 Big Slough WPA NR1 NR1 Big Slough WPA S2 S2 S3A S4A S4A S2 221706 S-1DMW S4A - S2 - S21706 S-1DMW S1DMW 6.01 0.02 0.38 11.1 221736 S-1SMW S-1SMW 0.02 0.38 11.4 221689 S-2MW 221689 S-2MW 0.01 0.02 0.11 692 0 24.93 221689 S-2MW 141275 FE PUW		161782	MP-RW		0.47	0.06	9.4						
Net Nei North Root WPA NR1 NR1 NR1 Big Slough WPA BS1 BS2 BS3A BS3A SAA BS4 S62 BS3A S62 BS4 S62 BS3A S64A BS4 S62 BS4 S62 BS3A S64A BS4 S62 BS4 S64	Northeast	WPA											
North Root WPA NR1 NR1 Big Slough WPA BS1 BS2 BS3A BS4A BS8 221706 BS-1DMW 8.81 			NE2										
Net5 North Root WPA NR1 NR1 Big Slough WPA BS1 BS2 BS3A BS4A BS4A BS4A BS8 221706 BS-1DMW 85-1DMW 6.81 0 724 221736 BS-1SMW 6.91 487.2 221736 BS-1SMW 6.91 487.2 221736 BS-1SMW 6.91 487.2 221736 BS-1SMW 6.91 487.2 221689 BS-2MW 221689 BS-2MW 9 7.24 11.1 221689 BS-2MW 9 7.01 221689 BS-2MW 9 7.01 10.12 11.1 10.12 11.1 10.12 11.1 10.12 11.1 10.12 11.1 10.12 11.1 10.12 11.1 10.12 11.1 10.12 11.1 11.1 <t< td=""><td></td><td></td><td>NE3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			NE3										
North Root WPA NR1 Big Slough WPA 8S1 BS2 8S3A BS4A 562.01 0 697 400 221706 8S-1DMW 6.01 0.12 11.1 487.2 0 724 117 221736 8S-1SMW 6.91 0.02 0.38 11.4 358.7 0 2.493 2.094 221689 8S-2MW 20.1 <0.01			NE5										
North Root WPA NR1 Big Slough WPA BS1 BS2 BS3A BS4A BS8 221706 BS-1DMW 8.81 562.01 0 697 400 221706 BS-1DMW 6.91 487.2 0 724 117 221736 BS-1SMW 6.91 487.2 0 724 117 221736 BS-1SMW 6.91 20.8 11.4 221689 BS-2MW 20.8 5.001 <0.002 11 578 7 0 2,493 2,094 221689 BS-2MW 7.12 600 11 500 20 0 4114 14.7													
Big Slough WPA BS1 BS2 BS3A BS4A BS4 BS8 562.01 0 697 400 221706 BS-1DMW 8.81 562.01 0 697 400 221706 BS-1DMW <0.01	North Roc	DT WPA											
NRT Big Slough WPA BS1 BS2 BS2 BS3A BS4A BS4 BS8 562.01 0 697 400 221706 BS-1DMW 8.81 562.01 0 697 400 221706 BS-1DMW <0.01													
Big Slough WPA BS1 BS2 BS3A BS4A BS4A BS8 562.01 0 697 400 221706 BS-1DMW 8.81 562.01 0 697 400 221706 BS-1DMW 6.01 0.12 11.1			INIXI										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Big Slougi	h WPA											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BS1										
BS3A BS4A BS8 221706 BS-1DMW 8.81 562.01 0 697 400 221706 BS-1DMW <0.01 0.12 11.1 221736 BS-1SMW 6.91 487.2 0 724 117 221736 BS-1SMW 6.91 0.02 0.38 11.4 221689 BS-2MW 20.8 358.7 0 2,493 2,094 221689 BS-2MW 20.8 11 147			BS2										
BS4A BS8 221706 BS-1DMW 8.81 562.01 0 697 400 221706 BS-1DMW <0.01			BS3A										
BS8 221706 BS-1DMW 8.81 562.01 0 697 400 221706 BS-1DMW <0.01			BS4A										
221706 BS-1DMW 8.81 562.01 0 697 400 221706 BS-1DMW <0.01		004700	BS8	0.04				500.04	0	007	400		
221706 BS-1DMW <0.01		221706	BS-1DMW	8.81	-0.01	0.40		562.01	0	697	400		
221730 BS-1SWW 0.91 407.2 0 724 117 221736 BS-1SMW 0.02 0.38 11.4 221689 BS-2MW 20.8 358.7 0 2,493 2,094 221689 BS-2MW <0.01		221700		6.01	<0.01	0.12	11.1	107 0	0	704	117		
221689 BS-2MW 20.8 358.7 0 2,493 2,094 221689 BS-2MW <0.01		221130	BO-101111	0.91	0.00	0.30	11 /	40 <i>1</i> .2	U	124	117		
221689 BS-2MW <0.01 <0.002 11 161785 BS BW 7.12		221730	BS-2MW	20.8	0.02	0.30	11.4	358 7	Ω	2 403	2 001		
		221689	BS-2MW	20.0	<0.01	<0.002	11	000.7	0	2,733	2,004		
		161785	BS-RW	7.12	-0.01	-0.002		698.3	0	414	14 7		

Location	GWIC ID	Site Name	OPO ₄	Ag (ug/L)	AL (ug/L)	As (ua/L)	B (ug/L)	Ba (ud/L)	Be (ug/L)	Br (ug/L)	Cd (ug/L)	Co (ug/L)
Location	221725	M-5MW	(mg/L)	//g (µg/L)	<u> </u>	13.8	230	36			00 (µg/L) 0 04	<u> </u>
	221120					10.0	200	00	-0.0		0.01	.0
Mallard Po	ond WPA											
		MP1A			<50	4.39	562	12	<0.5		0.03	<5
		MP1A										
		MP1A										
	221735	MP-1MW			50	0.04	0 500	0.40			0.40	-
	221735	MP-1MW			<50	3.21	8,560	640	<0.5		2.16	<5
	221704	MP-2MW			-50	10.0	00	2 4 4 0	<0 F		1 70	< F
	221704				<50	13.3	90	3,440	<0.5		1.79	<5
	161782				<50	13.8	106	5/5	<0.5		0.08	<5
	101702				<50	15.0	100	040	<0.5		0.00	-0
Northeast	WPA											
		NE2										
		NE3										
		NE5										
North Roc	ot WPA											
		NR1										
		NR1										
Big Slougi	h WPA											
		BS1										
		BS2										
		BS3A BS4A										
		DO4A RC2										
	221706	BS-1DMW										
	221706	BS-1DMW			<50	1.06	284	91	<0.5		0.06	<5
	221736	BS-1SMW					201	51	0.0		0.00	.0
	221736	BS-1SMW			<50	1.03	272	12	<0.5		0.12	<5
	221689	BS-2MW										
	221689	BS-2MW			<50	1.57	1,450	77	<0.5		0.14	<5
	161785	BS-RW										

Location	GWIC ID	Site Name	Cr (µg/L)	Cu (µg/L)	Hg (µg/L)	Li (µg/L)	Mo (µg/L)	Ni (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	Ti (µg/L)
	221725	M-5MW	<5	<5	<0.1		<10	<5	<0.01	<0.100	435	<5
Mallard D	and M/DA											
Mallaru Po	DIIU WPA		<5	<5	<0.1		<10	<5	0.05	0.16	95	<5
		MP1A		-0	50.1		\$10	-0	0.00	0.10	55	-0
		MP1A										
	221735	MP-1MW										
	221735	MP-1MW	<5	<5	<0.1		<10	17	<0.05	2.26	15,000	9
	221704	MP-2MW									-	
	221704	MP-2MW	<5	<5	<0.1		<10	<5	<0.05	2.8	6,930	24
	161782	MP-RW										
	161782	MP-RW	<5	<5	<0.1		10	<5	0.12	0.14	240	<5
Northeast	WPA											
		NF2										
		NE3										
		NE5										
North Roc	t WPA											
		NR1										
		NR1										
Big Slougi	n WPA											
0 0		BS1										
		BS2										
		BS3A										
		BS4A										
		BS8										
	221706	BS-1DMW										
	221706	BS-1DMW	<5	<5	<0.1		<10	<5	<0.01	2.72	670	<5
	221736	BS-1SMW										
	221736	BS-1SMW	<5	<5	<0.1		10	<5	0.02	3.6	445	<5
	221689	BS-2MW			. .							_
	221689	BS-2MW	<5	<5	<0.1		<10	<5	<0.05	0.49	3,240	6

							Chloride	
Location	GWIC ID	Site Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Index	Comments
	221725	M-5MW		<10	<5			
Mallard Po	nd WPA			.10				
		MP1A		<10	11		0.000	
		MP1A					0.023	
		MP1A					0.014	
	221735	MP-1MW			_		0.649	
	221735	MP-1MW		<10	<5			
	221704	MP-2MW					0.526	
	221704	MP-2MW		<10	7			
	161782	MP-RW					0.007	
	161782	MP-RW		<10	<5			
Northeast	WPA							
		NE2					0.000	
		NE3						drv
		NE5						dry
North Root	t WPA							-
11011111001		NR1					0 100	
		NR1					0.100	
							0.112	
Big Slough	WPA							
		BS1					0.014	
		BS2					0.009	
		BS3A					0.025	
		BS4A					0.035	
		BS8					0.024	
		BS-						
	221706	1DMW					0.136	
	004700	BS-		-10	-5			
	221706			<10	<5		0.054	
	221736	BS-TSIMIW					0.051	
	221736	BS-1SMW		<10	<5		0.050	
	221689	BS-2MW			-		0.252	
	221689	BS-2MW		<10	8			
	161785	BS-RW					0.009	

										Water	
1 4		Oite News	L = tite al -	1	TDO	Otto Tomo	Denth	A	Sample	Temp.	Field
Location	GWICID	Site Name	Latitude	Longitude	185	Site Type	Depth	Agency	Date	(10)	рн
	161785	BS-RW	48.7369	-104.0847	34N58E1ABAA	Well	7.8	USFWS	9/15/2005		
Dobonhur											
Rabenburg	21/701		10 0152	104 1160		Watland			6/12/2005		
	214791		40.0400	-104.1169	30N30E27	Wetland			6/13/2005		
	214791		48.8453	-104.1169	30N38E27	Wetland		USEWS	6/13/2005	40	
	214791	RABET	48.8453	-104.1169	36N58E27	vvetland		USEWS	9/14/2004	13	7.40
	214791	RABE1	48.8453	-104.1169	36N58E27	vvetland		USEWS	5/13/2004	6.32	7.42
	214791	RABE1	48.8453	-104.1169	36N58E27	Wetland		USFWS	7/25/2004	26.09	8.8
	214791	RABE1	48.8453	-104.1169	36N58E27	Wetland		USFWS	9/14/2004	13.06	7.47
	214792	RABE2	48.8449	-104.1192	36N58E27	Wetland		USFWS	5/13/2004	5.97	7.05
	214792	RABE2	48.8449	-104.1192	36N58E27	Wetland		USFWS	7/20/2004	24.03	7.26
	214792	RABE2	48.8449	-104.1192	36N58E27	Wetland		USFWS	9/14/2004	13.19	7.63
	214792	RABE2	48.8449	-104.1192	36N58E27	Wetland		USFWS	9/14/2004	13	
	214792	RABE2	48.8449	-104.1192	36N58E27	Wetland		USFWS	6/13/2005		
	214792	RABE2	48.8449	-104.1192	36N58E27	Wetland		USFWS	6/13/2005		
	214747	RABE3	48.8426	-104.1059	36N58E27	Wetland		USFWS	7/23/2004	21.22	7.41
	214747	RABE3	48.8426	-104.1059	36N58E27	Wetland		USFWS	4/27/2004	12.51	7.98
	214747	RABE3	48.8426	-104.1059	36N58E27	Wetland		USFWS	6/13/2005		
	214747	RABE3	48.8426	-104.1059	36N58E27	Wetland		USFWS	6/13/2005		
	214790	RABE4	48.8428	-104.1191	36N58E27	Wetland		USFWS	5/13/2004	6.08	7.37
	214790	RABE4	48.8428	-104.1191	36N58E27	Wetland		USFWS	7/27/2004	25.08	7.56
	214790	RABE4	48.8428	-104.1191	36N58E27	Wetland		USFWS	9/14/2004	13.94	7.57
	214790	RABE4	48.8428	-104.1191	36N58E27	Wetland		USFWS	9/14/2004	13	
	214790	RABE4	48.8428	-104.1191	36N58E27	Wetland		USFWS	6/13/2005		
	214790	RABE4	48.8428	-104.1191	36N58E27	Wetland		USFWS	6/13/2005		
		RABE5	48.8424	-104.1167	36N58E27	Wetland		USFWS	7/27/2004	18.07	7.17
		RABE5	48.8424	-104.1167	36N58E27	Wetland		USFWS	8/31/2004	24.43	7.91
	214788	RABE5+	48.8421	-104.1166	36N58E27	Wetland		USFWS	8/31/2004	19.7	7.9
	214788	RABE5+	48.8421	-104.1166	36N58E27	Wetland		USFWS	9/14/2004	16.23	7.89
	214788	RABE5+	48.8421	-104.1166	36N58E27	Wetland		USFWS	6/13/2005	16	
		RABE6	48 8424	-104 1151		Wetland		USEWS	7/27/2004	27.2	9 04
	221734	R-1MW	48 8438	-104 1191	36N58E27CBBD	Well	13	USEWS	9/15/2005		0.01
	221734	R-1MW	48 8438	-104 1191	36N58E27CBBD	W/ell	13	USEWS	9/15/2005		
	221723	R-2M\W/	48 8436	-104 1102	36N58E27CBBD	W/ell	13	LISEWS	9/15/2005		
	221723	$P_2N/N/$	18 8126	-104.1192	36NI58E270BBD		12		0/15/2005		
	221123		40.0400	-104.1192	JUNJOEZICOBD	vveli	15	035113	9/10/2000		

Location	GWIC ID	Site Name	Field SC (µS/cm)	Field DO (mg/L)	Field TDS (g/L)	Field Chloride Conc. (mg/L)	Lab	Lab pH	Lab SC (µS/cm)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)
	161785	BS-RW					TERL					
Dehemburg												
Rabenburg	J WPA									500	501	1640
	214791							0	12 260	500	551	1 940 05
	214791							0 7 27	15,300	525.74	554.00	1,040.00
	214791		22 480	Q 11	1/ 30	8 362	MBMG	1.51	15,570	099	152	2492
	214791		12 002	13 01	7 68	0,302 / 181						
	214791		19 131	4 98	12 24	7 380						
	214792	RABE2	4 130	9.29	2 64	953						
	214792	RABE2	3 942	4 7	2.01	961						
	214792	RABE2	5 150	6 23	3 30	1 485						
	214792	RABE2	0,100	0.20	0.00	1,100	MBMG	7.84	5.210	148	163	723
	214792	RABE2					TERL		-,	102	104	457
	214792	RABE2					UWRBEBL	7.97	3,530	105.45	105.08	492.43
	214747	RABE3	4,011	8.92	2.57	908			,			
	214747	RABE3	2,731	8	1.75	650						
	214747	RABE3					TERL			150	398	501
	214747	RABE3					UWRBEBL	8.31	5,650	155.17	399.86	530.45
	214790	RABE4	4,788	7.4	3.07	1,198						
	214790	RABE4	3,120	6.31	2.00	705						
	214790	RABE4	8,658	4.84	5.54	3,145						
	214790	RABE4					MBMG	8.05	7,510	321	358	1,025
	214790	RABE4					TERL			223	267	768
	214790	RABE4					UWRBEBL	8.06	6,550	230.87	279.34	825.96
		RABE5	7,509	5.99	4.81	2,420						
		RABE5	8,126	15.69	5.20	2,690						
	214788	RABE5+	8,437	10.68	5.40	2,908						
	214788	RABE5+	8,613	8.23	5.51	3,405						
	214788	RABE5+					MBMG	7.23	7,270	267	337	1,063
		RABE6	8,812	16.33	5.60	2,614						
	221734	R-1MW					MBMG	7.68	7,770	311	243	1,139
	221734	R-1MW					TERL			o	10-	
	221723	R-2MW					MBMG	7.41	5,050	255	188	634
	221723	R-2MW					TERL					

Appendix B. Analytical r	esults of inorganic analyses	for surface and groundwater s	amples.

Location	GWIC ID	Site Name	K (mg/L)	Fe (mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO₃ (mg/L)	CO ₃ (mg/L)	SO₄ (mg/L)	CI (mg/L)	NO ₃ (mg/L)	F (mg/L)
	161785	BS-RW		7.52	0.05	13.3	, , ,					
Rabenbur	g WPA											
	214791	RABE1	43.2	0.09	0.26	1.9						
	214791	RABE1	50.16						408	3,349	ND	
	214791	RABE1	67.8	0.87	0.78	15	479.05	0	763	6,770	0.83	<0.5
	214791	RABE1										
	214791	RABE1										
	214791	RABE1										
	214792	RABE2										
	214792	RABE2										
	214792	RABE2										
	214792	RABE2	34.1	0.24	0.38	10.7	530.7	0	310	1,287	<0.5	<0.5
	214792	RABE2	32.4	0.05	0.16	1.5						
	214792	RABE2	33.75						179	633.91	ND	
	214747	RABE3										
	214747	RABE3										
	214747	RABE3	74	0.06	0.04	5						
	214747	RABE3	74.71						791	1.172	ND	
	214790	RABE4								,		
	214790	RABE4										
	214790	RABE4										
	214790	RABE4	25.7	0.47	0.22	26.1	696.6	0	257	2.639	<0.5	<0.5
	214790	RABE4	23	0.2	0.1	4.6				,		
	214790	RABE4	25.71						146	1.794	ND	
		RABE5								, -		
		RABE5										
	214788	RABE5+										
	214788	RABE5+										
	214788	RABE5+	29.8	0.49	0.11	12.5	303.8	0	339	2.687	<0.5	<0.5
		RABE6						-		,		
	221734	R-1MW	28.1				584	0	443	1,366	425	
	221734	R-1MW		<0.01	0.28	12.5		-	-	,	-	
	221723	R-2MW	15.4				540.1	0	216	1,578		
	221723	R-2MW		<0.01	0.51	11.8						

Location	GWIC ID	Site Name	OPO ₄ (mg/L)	Ag (µg/L)	AI (µg/L)	As (µg/L)	B (µg/L)	Ba (µg/L)	Be (µg/L)	Br (µg/L)	Cd (µg/L)	Co (µg/L)
	161785	BS-RW			<50	11.3	439	35	<0.5		0.02	<5
Rabenburg	g WPA											
	214791	RABE1			<50	8.4	1,180	300	<0.5		<0.05	<5
	214791	RABE1										
	214791	RABE1	<0.5	<20	<200	43.4	1,704	536	<40	10,400	<20	<40
	214791	RABE1										
	214791	RABE1										
	214791	RABE1										
	214792	RABE2										
	214792	RABE2										
	214792	RABE2										
	214792	RABE2	<0.5	<10	<100	10.5	1,186	233	<20	1,640	<10	<20
	214792	RABE2			<50	3.93	1,140	102	<0.5		<0.01	<5
	214792	RABE2										
	214747	RABE3										
	214747	RABE3										
	214747	RABE3			<50	9.89	453	150	<0.5		0.02	<5
	214747	RABE3										
	214790	RABE4										
	214790	RABE4										
	214790	RABE4										
	214790	RABE4	<0.5	<10	<100	14.7	368	239	<20	3,780	<10	<20
	214790	RABE4			<50	5.57	446	325	<0.5		<0.02	<5
	214790	RABE4										
		RABE5										
		RABE5										
	214788	RABE5+										
	214788	RABE5+										
	214788	RABE5+	<0.5	<10	<100	16.3	826	236	<20	2,880	<10	<20
		RABE6										
	221734	R-1MW										
	221734	R-1MW			<50	1.45	1,510	204	<0.5		0.44	<5
	221723	R-2MW										
	221723	R-2MW			<50	1.76	764	146	<0.5		0.06	<5

Location	GWIC ID	Site Name	Cr (µg/L)	Cu (µg/L)	Hg (µg/L)	Li (µg/L)	Mo (µg/L)	Ni (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	Ti (µg/L)
	161785	BS-RW	<5	<5	<0.1		<10	<5	< 0.01	<0.1	1,140	<5
Rabenburg	g WPA											
	214791	RABE1	<5	<5	<0.1		<10	<5	<0.05	0.22	2,350	7
	214791	RABE1										
	214791	RABE1	<40	<40		863	<200	<40	<40	112	4,203	<20
	214791	RABE1										
	214791	RABE1										
	214791	RABE1										
	214792	RABE2										
	214792	RABE2										
	214792	RABE2										
	214792	RABE2	<20	<20		298	<100	<20	<20	24.6	1,261	<10
	214792	RABE2	<5	<5	<0.1		<10	<5	0.04	0.22	720	<5
	214792	RABE2										
	214747	RABE3										
	214747	RABE3										
	214747	RABE3	<5	<5	<0.1		<10	<5	0.06	0.35	995	<5
	214747	RABE3										
	214790	RABE4										
	214790	RABE4										
	214790	RABE4										
	214790	RABE4	<20	<20		317	<100	<20	<20	48.1	1,586	<10
	214790	RABE4	<5	<5	<0.1		<10	<5	0.06	0.21	1,020	<5
	214790	RABE4										
		RABE5										
		RABE5										
	214788	RABE5+										
	214788	RABE5+										
	214788	RABE5+	<20	<20		349	<100	<20	<20	45.3	1,635	<10
		RABE6										
	221734	R-1MW										
	221734	R-1MW	<5	6	<0.1		<10	12	<0.05	0.26	1,930	<5
	221723	R-2MW										
	221723	R-2MW	<5	<5	<0.1		<10	<5	<0.01	1.35	1,020	<5

Location	GWIC ID	Site Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Chloride Index	Comments
	161785	BS-RW		<10	<5			
Rabenburg	g WPA							
	214791	RABE1		<10	<5			
	214791	RABE1					0.251	
	214791	RABE1	<10	<100	<40	<30	0.440	
	214791	RABE1					0.372	
	214791	RABE1					0.348	
	214791	RABE1					0.386	
	214792	RABE2					0.231	
	214792	RABE2					0.244	
	214792	RABE2					0.288	
	214792	RABE2	<5	<50	<20	<20	0.247	
	214792	RABE2		<10	<5			
	214792	RABE2					0.180	
	214747	RABE3					0.226	
	214747	RABE3					0 238	
	214747	RABE3		<10	<5		0.200	
	214747	RABE3		10	-0		0 207	
	214790	RARE4					0.250	
	214790	RABE4					0.200	
	214790	RARE4					0.363	
	214790	RABE4	<5	<50	<20	<20	0.000	
	214790	RABE4	-0	<10	<5	-20	0.001	
	214790	RABE4		410	-0		0 274	
	214700	RABE5					0.274	
		RABE5					0.022	
	214788	RABE5+					0.331	
	21/788	RABE5+					0.040	
	214788	RABE5+	<5	<50	<20	<20	0.393	
	214700	RABES	-0	~50	~20	~20	0.370	
	221734						0.297	
	221734	$P_1 M M$		<10	40		0.170	
	221734			×10	40		0 210	
	221723			~10	~5		0.312	

										Water	
Location	GWIC ID	Site Name	Latitude	Longitude	TRS	Site Type	Depth	Agency	Sample Date	Temp. (°C)	Field pH
	890940	RS-1MW	48.8504	-104.1226	36N58E28AADA	Well	23	USFWS	10/13/1989	8.8	
	890940	RS-1MW	48.8504	-104.1226	36N58E28AADA	Well	23	USFWS	9/15/2005	13.7	
	890940	RS-1MW	48.8504	-104.1226	36N58E28AADA	Well	23	USFWS	9/15/2005	13.7	
	890445	RS-2MW	48.8499	-104.1225	36N58E28AADD	Well	8	USFWS	9/15/2005	18.1	
	890445	RS-2MW	48.8499	-104.1225	36N58E28AADD	Well	8	USFWS	9/15/2005		
	890445	RS-2MW	48.8499	-104.1225	36N58E27BCBC	Well	8	USFWS	4/20/1989	6	
	890446	RS-3MW	48.8484	-104.1210	36N58E28AADD	Well	13	USFWS	9/15/2005	16.4	
	890446	RS-3MW	48.8484	-104.1210	36N58E28AADD	Well	13	USFWS	9/15/2005		
	890446	RS-3MW	48.8484	-104.1210	36N58E28BCBD	Well	13	USFWS	4/20/1989	5	
	890939	RS-4MW	48.8477	-104.1193	36N58E28AADD	Well	23	USFWS	9/15/2005		
	890939	RS-4MW	48.8477	-104.1193	36N58E28AADD	Well	23	USFWS	10/13/1989	13.7	
	890936	RS-6MW	48.8424	-104.1106	36N58E27DAAD	Well	22	USFWS	9/15/2005		
	890936	RS-6MW	48.8424	-104.1106	36N58E27DAAD	Well	22	USFWS	10/13/1989	10.7	
	890937	RS-7MW	48.8445	-104.0999	36N58E27DBCC	Well	27	USFWS	9/15/2005		
	890937	RS-7MW	48.8445	-104.0999	36N58E27DBCC	Well	27	USFWS	10/13/1989	11.7	
	220932	124B	48.8505	-104.1043	36N58E27ABAC	Well	8	MBMG	4/10/2006	3.35	
	220937	124K	48.8495	-104.1028	36N58E27ABDA	Well	14	SCCD	4/10/2006	3.54	
Hansen W	/PA										
	214749	HAN1	48.9691	-104.1625	37N57E11	Wetland		USFWS	7/24/2004	22	
	214749	HAN1	48.9691	-104.1625	37N57E11	Wetland		USFWS	6/13/2005		
	214749	HAN1	48.9691	-104.1625	37N57E11	Wetland		USFWS	6/13/2005		
	214749	HAN1	48.9691	-104.1625	37N57E11	Wetland		USFWS	4/28/2004	9.2	7.65
	214749	HAN1	48.9691	-104.1625	37N57E11	Wetland		USFWS	7/24/2004	22.25	7.51
		HAN2	48.9705	-104.1630		Wetland		USFWS	4/28/2004	6.37	6.96
	890447	HAN-1MW	48.9704	-104.1661	37N57E11DCAC	Well	13	USFWS	9/14/2005	12.4	
	890447	HAN-1MW	48.9704	-104.1661	37N57E11DCAC	Well	13	USFWS	9/14/2005	12.4	
	890447	HAN-1MW	48.9704	-104.1661	37N57E11DCAC	Well	13	MBMG	4/22/1989	7.7	
Ward WP	4										
		WD1	48.9711	-104.1509		Wetland		USFWS	4/28/2004	7.03	7.5
		WD2	48.9769	-104.1526		Wetland		USFWS			
	220958	WD-1MW	48.9820	-104.1526	37N57E12BBAA	Well	13	USFWS	9/14/2005		
	221688	WD-2MW	48.9813	-104.1524	37N47E12BBA	Well	16	USFWS	9/14/2005	11.4	
	221688	WD-2MW	48.9813	-104.1524	37N47E12BBA	Well	16	USFWS	9/14/2005		

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

					<u> </u>	Field	-					
			Field			Chloride					N.4	NI-
Location		Site Name	SC (US/cm)	(ma/L)	TDS (a/L)	(mg/L)	Lah	l ah nH	Lab SC (uS/cm)	Ca(ma/l)	ivig (ma/L)	ina (mg/L)
Location	800040		(µ0/cm)	(IIIg/L)	100 (g/L)	(IIIg/L)		7 10	(µ0/cm)	2 770	(IIIg/L) 950	20,000
	800040							7.10	2 1 9 1 5	2,770	122	39,000
	890940	RS-1MW					TERI	7.07	2,101.5	170	122	33.30
	890445	RS-2MW					MBMG	7.05	39,500	1.227	630	11,739
	890445	RS-2MW					TERL		,	-,		,
	890445	RS-2MW					MBMG	6.95	78,625.5	2,420	1,420	15,900
	890446	RS-3MW					MBMG	7.31	16,220	560	343	3,817
	890446	RS-3MW					TERL		·			·
	890446	RS-3MW					MBMG	6.7	48,105	1,500	853	9,590
	890939	RS-4MW					TERL			352	239	1,660
	890939	RS-4MW					MBMG	7.03	28,810	1,010	596	5,060
	890936	RS-6MW					TERL			372	302	545
	890936	RS-6MW					MBMG	7.67	2,181.5	178	122	99.98
	890937	RS-7MW					TERL			267	206	199
	890937	RS-7MW					MBMG	7.7	760.5	80.8	39.44	20.39
	220932	124B					MBMG	7.01	6,030	114	65.1	972
	220937	124K					MBMG	7.46	12,830	371	152	2,670
Hansen W	PA											
	214749	HAN1					MBMG	8.19	3.160	104	265	209
	214749	HAN1					TERL		-,	95.5	236	165
	214749	HAN1					UWRBEBL	7.74	2,950	105.14	260.48	188.04
	214749	HAN1	2,313	9.82	1.48	205						
	214749	HAN1	3,240	2.44	2.08	242						
		HAN2	2,368	8.85	1.52	231						
	890447	HAN-1MW					MBMG	7.44	7,920	249	218	1,391
	890447	HAN-1MW					TERL					
	890447	HAN-1MW					MBMG	7.89	1,898.9	68.2	47.8	131
Ward WPA												
		WD1	181.2	11.94	0.12	5.3						
		WD2										
	220958	WD-1MW					TERL			72.7	23.9	<100
	221688	WD-2MW					MBMG	7.56	1,644	163	70.4	73.1
	221688	WD-2MW					TERL					

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

				Fe	Mn	SiO ₂		CO ₃	SO ₄		NO ₃	F
Location	GWIC ID	Site Name	K (mg/L)	(mg/L)	(mg/L)	(mg/L)	HCO ₃ (mg/L)	(mg/L)	(mg/L)	CI (mg/L)	(mg/L)	(mg/L)
	800040		960	0.06	11 22	10.1	220	0	660	66 000	24.6	0.2
	800040	RO-TIVIVV	10.15	0.90	11.52	10.1	320	0	529 529	105	>4.0	0.5
	800040		19.15	< 004	0.64	22.0	427	0	550	195	<.007	0.1
	800445		222	<.004	0.04	22.9	199	0	527	22 638		
	800445	RS-ZIVIV	225	0.04	0.86	8.0	400	0	557	22,030		
	800445	RS-2MW	272	0.04	6.08	0.9	320	0	250	32 800	24	<5
	800445	RS-210100	61.8	0.005	0.00	5.2	623.4	0	230	7 302	24	<0
	890440	RS-3MW	01.0	<0.01	2 03	8.4	020.4	0	000	7,502		
	800440	RS-3MW	110	0.01	2.55	11 0	547	0	1210	18 600	7	<1
	800030	RS-JMW	20.6	5.22	0.73	13.2	547	0	1210	10,000	1	
	800030	RS-4MW	29.0 56.0	< 004	3 11	15.2	273	0	1060	10 300	5.02	0.1
	890936	RS-6MW	26.6	18.5	<0.002	11.7	210	0	1000	10,000	0.02	0.1
	890936	RS-6MW	10 15	< 004	0.002	22.9	127	0	538	195	< 007	0.1
	800037	RS-7MW	27.7	-00.<	<0.07	9.0	721	0	000	155	5.007	0.1
	800037	RS-7MW	5.86	1 35	0.002	23	321	0	130	12 31	0.06	0 35
	220932	12/B	26.4	<0.005	0.03	10	306.22	0	<125	1 628	3 17	<2.5
	220332	1240	20. 4 61	<0.000	1 18	13	230.22	0	<250	1,020	6.08	~2.5
	220301	1241	01	-0.00	1.10	10	200.1	0	~200	4,000	0.00	-0
Hansen W	/PA											
	214749	HAN1	147				669.8	0	991	250		
	214749	HAN1	122	0.09	0.15	3.5						
	214749	HAN1	129.58						910	199.66	54.99	
	214749	HAN1										
	214749	HAN1										
		HAN2										
	890447	HAN-1MW	21.2					0	212	2,781		
	890447	HAN-1MW		0.18	0.03	10.8	440.8					
	890447	HAN-1MW	4.5	<.002	<.001	20.3	341	0	142	138	11.9	0.4
Ward WP	4											
		WD1										
		WD2										
	220958	WD-1MW	8.89	0.02	3.19	7.1						
	221688	WD-2MW	12.1				231.8	0	56.3	451		
	221688	WD-2MW		0.73	0.32	4.8						

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Location	GWIC ID	Site Name	OPO ₄	Aa (ua/L)	Al (ua/L)	As (ug/L)	B (ua/L)	Ba (ug/L)	Be (ug/L)	Br (ua/L)	Cd (ug/L)	Co
Loodion	erne ib		(119/2)	/ 19 (#9/=/	/ ((µg/ = /	, to (µg, ב)	D (µ9/L/	Ba (µg, E)	<u> </u>	D: (µ9/=/	(µg, =/	(#9/=/
	890940	RS-1MW		18	100		89,700	803		2,200	25	
	890940	RS-1MW		<4								
	890940	RS-1MW			70		156			200	<5	
	890445	RS-2MW										
	890445	RS-2MW			<50	5.04	36,200	620	<0.5		14.7	<5
	890445	RS-2MW	<1	15	40		20,600			<100	71	
	890446	RS-3MW										
	890446	RS-3MW			<50	1.85	10,300	97	<0.5		0.64	<5
	890446	RS-3MW	<.1	3	<30		12,200			<100	11	
	890939	RS-4MW			1,840	4.44	3,700	163	<0.5		0.7	<5
	890939	RS-4MW		10	120		6,200			7,100	12	
	890936	RS-6MW			178	9.93	252	370	<0.5		<0.05	<5
	890936	RS-6MW		<4	70		156			200	<5	
	890937	RS-7MW			<50	7.5	170	96	<0.5		0.1	<5
	890937	RS-7MW		<4	43		114			<100	<5	
	220932	124B	<2.5	<1	<10	7.04	2,326	119	<2	3,270	<1	<2
	220937	124K	<5	<10	<100	16.5	6,387	202	<20	9,220	<10	<20
Hansen W	VPA											
	214749				<50	4.00	140	74	<0 F		0.00	~5
	214749				<50	4.03	149	74	<0.5		0.02	<0
	214749											
	214749											
	214749	HANT										
	000447											
	890447	HAN-TIVIVV			-50	4 50	0.400	000	-0.5		-0.05	
	890447	HAN-TIVIVV	. 4	.0	<50	1.58	2,420	228	<0.5	.100	< 0.05	<5
	890447	HAN-1MW	<.1	<2	<30		480			<100	<2	
	٨											
waru we	A											
	220050				~=^	0 57	20	107	-0 F		0.00	~5
	220900				~ 00	0.57	30	197	<0.5		0.02	<0
	221000				~50	4.00	40	FCO	-0 5		0.04	~~
	221688	VVD-2IVIVV			<50	1.33	40	560	<0.5		0.04	<5

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Location	GWIC ID	Site Name	Cr (µq/L)	Cu (µg/L)	Ha (µa/L)	Li (µg/L)	Mo (µq/L)	Ni (µg/L)	Pb (µa/L)	Se (µq/L)	Sr (µq/L)	Ti (µq/L)
					5 (1 5 /	(1:0:7	· (F O ⁺ /					
	890940	RS-1MW	9	39		22,200	<40	40	680		80,100	<4
	890940	RS-1MW										
	890940	RS-1MW	<5	6		81	<40	<20			590	4
	890445	RS-2MW										
	890445	RS-2MW	<5	7	<0.1		<10	55	<0.2	8.58	21,800	16
	890445	RS-2MW	24	77		6,280	30	120			25,400	<1
	890446	RS-3MW										
	890446	RS-3MW	8	7	<0.1		10	28	1.1	0.43	7,000	7
	890446	RS-3MW	10	47		3,280	<20	80			16,600	<1.
	890939	RS-4MW	13	10	<0.1		<10	14	3.82	0.32	3,120	48
	890939	RS-4MW	5	15		2,030	<40	40	180		7,750	17
	890936	RS-6MW	<5	<5	<0.1		<10	<5	0.43	0.29	1,570	12
	890936	RS-6MW	<5	6		81	<40	<20			590	4
	890937	RS-7MW	<5	<5	<0.1		<10	<5	<0.01	<0.1	990	<5
	890937	RS-7MW	<5	<4		28	<40	<20			230	4
	220932	124B	3.93	12.5		363	<10	<2	2.67	27.2	2,095	<1
	220937	124K	<20	26.7		1,116	<100	<20	<20	67.3	7,380	<10
Hansen W	/PA											
	214749	HAN1										
	214749	HAN1	<5	<5	<0.1		<10	<5	0.06	0.25	600	<5.00
	214749	HAN1										
	214749	HAN1										
	214749	HAN1										
		HAN2										
	890447	HAN-1MW										
	890447	HAN-1MW	<5	<5	<0.1		<10	<5	<0.05	12.2	2,150	<5
	890447	HAN-1MW	<2	<2		100	<20	<10			290	<1.
Ward WP	4											
		WD1										
		WD2										
	220958	WD-1MW	<5	<5	<0.1		<10	<5	0.02	1.79	180	<5
	221688	WD-2MW										
	221688	WD-2MW	<5	<5	<0.1		<10	<5	<0.01	0.1	245	<5

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

11 25 0.083
0.089
<7 <6
0.573
6
17 29 0.417
0.450
16
14 <4 0.387
126
16 9 0.358
7
<7 <6 0.089
<5
7 <6 0.016
<2 <2 0.270
<20 <20 0.381
0 079
<5
0.000
0.003
0.073
0.000
5
<3 <1 0.073
0.029
dry
10
0.274
9

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

	y	U			0				o	Water	
Location	GWIC ID	Site Name	Latitude	Longitude	TRS	Site Type	Denth	Agency	Sample	lemp.	Field nH
Location	48284		18 0828	_104 1527	37N/7E12BBAD	Well	21		0/1//2005	12.7	рп
	40204		40.3020	-104.1527	37N/7E12BBAD	Well	21		9/14/2005	12.1	
	800/36	890/36	40.9020	-104.1527	37N57E12BBAA	Well	21 13	MBMG	J/14/2003	7.6	
	030430	090430	40.3027	-104.1311	JINJI LIZODAA	VVCII	15	MDMG	4/22/1909	7.0	
Jerde WP	A										
	120874	JER1	48.9546	-104.1891	37N57E15DCBC	Wetland		MBMG	8/27/1990	22.5	
	120874	JER1	48.9546	-104.1891	37N57E15DCBC	Wetland		USFWS	6/13/2005		
	120874	JER1	48.9546	-104.1891	37N57E15DCBC	Wetland		USFWS	7/23/2004	23.57	7.77
	120874	JER1	48.9546	-104.1891	37N57E15DCBC	Wetland		USFWS	4/28/2004	8.87	8.19
	120874	JER1	48.9546	-104.1891	37N57E15DCBC	Wetland		USFWS	6/13/2005		
		JER2	48.9595	-104.1925		Wetland		USFWS	4/28/2004	9.64	8.05
		JER2	48.9595	-104.1925		Wetland		USFWS	9/14/2004	16.44	8.36
	221692	JP-1MW	48.9545	-104.1874	37N57E15	Well	33	USFWS	9/15/2005	8.23	
	221692	JP-1MW	48.9545	-104.1874	37N57E15	Well	33	USFWS	9/15/2005		
	221722	JP-2MW	48.9547	-104.1878	37N57E15	Well	28	USFWS	9/15/2005		
	221722	JP-2MW	48.9547	-104.1878	37N57E15	Well	28	USFWS	9/15/2005		
	221720	JP-3MW	48.9546	-104.1883	37N57E15	Well	13	USFWS	9/15/2005	10.3	
	221720	JP-3MW	48.9546	-104.1883	37N57E15	Well	13	USFWS	9/15/2005		
Erikson W	/PA										
	214744	ERK1	48.5984	-104.0639	33N58E24	Wetland		USFWS	7/21/2004	26	
	214744	ERK1	48.5984	-104.0639	33N58E24	Wetland		USFWS	5/14/2004	7.45	8.65
	214744	ERK1	48.5984	-104.0639	33N58E24	Wetland		USFWS	7/21/2004	26.4	8.88
		ERK2	48.5956	-104.0609		Wetland		USFWS	5/14/2004	14.5	9.52
		ERK3	48.5927	-104.0623		Wetland		USFWS	5/14/2004	16.07	9.4
		ERK4	48.5890	-104.0588		Wetland		USFWS	5/14/2004	14.71	9.2
		ERK5	48.5945	-104.0487		Wetland		USFWS	5/14/2004	7.81	9.53
		ERK6	48.5981	-104.0497		Wetland		USFWS	5/14/2004	15.17	8.2
		ERK6	48.5981	-104.0497		Wetland		USFWS	5/14/2004	15.1	8.21
		ERK7	48.5854	-104.0482		Wetland		USFWS	5/14/2004	16.03	7.84
Ferauson	WPA										
. e.guoon		FERG3	48.9288	-104.1353		Wetland		USFWS	5/13/2004	8.17	8.71

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

	,											
			Field SC	Field DO	Field	Chloride			Lab SC	Ca	Mg	Na
Location	GWIC ID	Site Name	(µS/cm)	(mg/L)	TDS (g/L)	Conc. (mg/L)	Lab	Lab pH	(µS/cm)	(mg/L)	(mg/L)	(mg/L)
	48284	WD-3MW					MBMG	7.23	11,930	582	485	1,903
	48284	WD-3MW					TERL		·			
	890436	890436					MBMG	7.81	500.8	58.6	18.8	14.3
Jerde WP	4											
	120874	JER1					MBMG	8.89	1,745.9	94.6	59.7	219
	120874	JER1					TERL			114	123	155
	120874	JER1	2.035	3.62	1.30	118						
	120874	JER1	1.223	8.14	0.78	78						
	120874	JER1	-,				UWRBEBL	8.61	2.140	115.28	124.3	198.21
		JER2	1.212	4.39	0.78	83			_,			
		JER2	2 341	6 47	1.50	135.5						
	221692	JP-1MW	_,• · · ·	0			MBMG	7 34	32 700	997	1 920	7 770
	221692	JP-1MW					TERI	1.01	02,100	001	1,020	.,
	221002						MBMG	7 33	43 200	1 482	2 574	12 997
	221722						TERI	7.00	40,200	1,402	2,014	12,001
	221722						MBMG	73	38 500	1 210	1 0/1	7 555
	221720						MBMG	7.0	00,000	1,210	7,071	1,000
	221720	JP-3MW					TERL					
Erikson W	ΈΔ											
	214744	FRK1					MBMG	9.63	9 220	5 07	209	2 304
	214744	ERK1	9 680	8 99	6 20	259	MBMO	0.00	0,220	0.07	200	2,001
	214744		10,000	10.08	6.66	200						
	217777	ERK2	36 789	9.02	23 57	1 7/8 5						
		ERK2	52 686	5.02	23.57	1,740.0						
			25.072	10.35	16.05	2 202						
			25,072	10.33	20.03	2,303						
			45,109	4.07	20.91	1,070						
		ERK0	3,013	8.79	1.93	53						
			3,066	9.02	1.96	53						
			520.2	6.96	0.33	20						
Ferauson	WPA											
		FERG3	21,881	9.91	14.00	527						

				Fe		0.0 (//)			SO ₄		NO ₃	
Location		Site Name	K (mg/L)	(mg/L)	IVIN (mg/L)	SIO ₂ (mg/L)	HCO ₃ (mg/L)	CO ₃ (mg/L)	(mg/L)		(mg/L)	F (mg/L)
	48284	WD-3MW	21.3	0.04	0.400		286.7	0	810	4,751		
	48284	VVD-3MVV	0.0	2.04	3,190	4.4	007.0	0	00 5	05.4	0.07	0.0
	890436	890436	8.3	<.002	0.004	8.5	237.2	0	20.5	35.1	0.87	0.2
Jerde WPA												
	120874	JER1	35	0.09	0.05	24.2	349	28.8	591	49.6	<.07	0.21
	120874	JER1	54.5	0.01	0.89	1.4						
	120874	JER1										
	120874	JER1										
	120874	JER1	53.74						491	99.35	22.66	
		JER2										
		JER2										
	221692	JP-1MW	96.7				489.2	0	4,931	15,549		
	221692	JP-1MW		<0.01	0.01	8.7						
	221722	JP-2MW	120				387.9	0	4,967	27,655		
	221722	JP-2MW		< 0.01	<0.002	7						
	221720	JP-3MW	32.3				251.3	0	5,710	22,888		
	221720	JP-3MW		<0.01	0.14	9.2						
Erikson WF	PA											
	214744	ERK1	86				1,423.7	349.2	4,100	298		
	214744	ERK1										
	214744	ERK1										
		ERK2										
		ERK3										
		ERK4										
		ERK5										
		ERK6										
		ERK6										
		ERK7										
Ferauson V	VPA											
3	·	FERG3										

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Location	GWIC ID	Site Name	OPO ₄	Aa (ua/L)	Al (ua/L)	As (ug/L)	B (ug/L)	Ba (ud/L)	Be (ua/L)	Br (ua/L)	Cd (ug/L)	Co (ug/L)
Location	48284	WD-3MW	(ing/L)	/\g (µg/L)	/ (µg/ ∟)	713 (µg/L)	D (µg/L)	Da (µg/L)	DC (µg/L)	Di (µg/L)	(µg/∟)	(µg/ ∟)
	48284	WD-3MW			<50	2.38	184	105	<0.5		0.2	<5
	890436	890436	<.1	<2	<30	0	<20		0	<100	<2	0
Jerde WP	A											
	120874	JER1		26	222	14	50	54		100	<5	
	120874	JER1			<50	16.1	117	110	<0.5		0.06	<5
	120874	JER1										
	120874	JER1										
	120874	JER1										
		JER2										
		JER2										
	221692	JP-1MW										
	221692	JP-1MW			<50	4.23	22,600	179	<0.5		2.47	<5
	221722	JP-2MW										
	221722	JP-2MW			<50	5.08	31,400	270	<0.5		2.4	<5
	221720	JP-3MW										
	221720	JP-3MW			<50	5.39	2,700	167	<0.5		0.38	<5
Frikaan M												
Erikson vv	211711											
	214744											
	214744											
	217777	ERK2										
		ERK3										
		ERK4										
		ERK5										
		ERK6										
		ERK6										
		ERK7										
Ferguson	WPA											
		FERG3										

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

		0	y	Cu	Hg	I						
Location	GWIC ID	Site Name	Cr (µg/L)	(µg/L)	(µg/L)	Li (µg/L)	Mo (µg/L)	Ni (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	Ti (µg/L)
	48284	WD-3MW										
	48284	WD-3MW	<5	<5	<0.1		<10	<5	<0.05	1.14	3,000	8
	890436	890436	<2	<2	0 9		<20	<10			110	<2.
Jerde WP	A											
	120874	JER1	<5	<4		50	<40	<20	<50	0.6	401	<5
	120874	JER1	<5	<5	<0.1		<10	<5	0.09	0.38	565	<5
	120874	JER1										
	120874	JER1										
	120874	JER1										
		JER2										
		JER2										
	221692	JP-1MW										
	221692	JP-1MW	<5	7	<0.1		10	14	<0.2	4.57	19,800	12
	221722	JP-2MW										
	221722	JP-2MW	<5	6	<0.1		10	22	<0.31	74.5	29,900	17
	221720	JP-3MW										
	221720	JP-3MW	<5	8	<0.1		10	<5	<0.2	248	23,200	18
Erikson W	'PA											
	214744	ERK1										
	214744	ERK1										
	214744	ERK1										

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples

Ferguson WPA

FERG3

ERK2 ERK3 ERK4 ERK5 ERK6 ERK6 ERK7

Location	GWIC ID	Site Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Chloride Index	Comments
	48284	WD-3MW					0.398	
	48284	WD-3MW		<10	264			
	890436	890436	0	<1	3	<4	0.070	
.lerde W/P/	4							
	. 120874	JER1		<5	<6	<6	0.028	
	120874	JER1		<10	<5	-		
	120874	JER1					0.058	
	120874	JER1					0.064	
	120874	JER1					0.046	
		JER2					0.068	
		JER2					0.058	
	221692	JP-1MW					0.476	
	221692	JP-1MW		<10	10			
	221722	JP-2MW					0.640	
	221722	JP-2MW		<10	<5			
	221720	JP-3MW					0.594	
	221720	JP-3MW		<10	80			
Erikson W	PA							
	214744	ERK1					0.032	
	214744	ERK1					0.027	
	214744	ERK1					0.028	
		ERK2					0.048	
		ERK3					0.029	
		ERK4					0.092	
		ERK5					0.037	
		ERK6					0.018	
		ERK6					0.017	
		ERK7					0.038	
Ferguson	WPA							
Ũ		FERG3					0.024	

									Sample	Water Temp.	Field
Location	GWIC ID	Site Name	Latitude	Longitude	TRS	Site Type	Depth	Agency	Date	(°C)	рН
Redhead WPA	Retreat										
		RR1	48.7885	-104.1170		Wetla nd		USFWS	5/17/2004	25.42	8.7
Westgard	WPA										
		WG1	48.9542	-104.1106		Wetland		USFWS	5/16/2004	18.27	8.61
		WG1	48.9542	-104.1106		Wetland		USFWS	7/23/2004	21.56	10.03
		WG2	48.9584	-104.1096		Wetland		USFWS	5/16/2004	23.4	8.42
	214793	WG3	48.9618	-104.1100	37N58E15	Wetland		USFWS	5/16/2004	13.23	7.96
	214793	WG3	48.9618	-104.1100	37N58E16	Wetland		USFWS	9/9/2004	21.95	9.77
	214793	WG3	48.9618	-104.1100	37N58E17	Wetland		USFWS	9/9/2004	21	
Dog Leg V	NPA										
	214746	DL1	48.9414	-104.1028	37N58E20	Wetland		USFWS	7/23/2004	20	
	214746	DL1	48.9414	-104.1028	37N58E20	Wetland		USFWS	7/23/2004	20.07	8.37
	214746	DL1	48.9414	-104.1028	37N58E20	Wetland		USFWS	5/16/2004	17.79	8.36
		DL2	48.9466	-104.0940		Wetland		USFWS	4/29/2004	14.02	8.89
Goose La	ke WPA										
		GL1	48.8021	-104.0769		Wetland		USFWS	5/13/2004	14	8.52
		GL1	48.8021	-104.0769		Wetland		USFWS	7/8/2005	30.37	10.08
		GL1	48.8021	-104.0769		Wetland		USFWS	7/11/2005		
		GL1	48.8021	-104.0769		Wetland		USFWS	7/11/2005		
		GL2	48.7859	-104.0756		Wetland		USFWS	5/14/2004	8.22	8.52
		GL3	48.7818	-104.0721		Wetland		USFWS	5/14/2004	10.46	8.76
		GL3	48.7818	-104.0721		Wetland		USFWS	7/9/2004	28.95	8.53
		GL3	48.7818	-104.0721		Wetland		USFWS	7/11/2005		
		GL3	48.7818	-104.0721		Wetland		USFWS	7/11/2005		
		GL6	48.8036	-104.0642		Wetland		USFWS	5/13/2004	19.84	8.22
		GL7	48.7934	-104.0573		Wetland		USFWS	5/13/2004	14.13	8.72
		GL7	48.7934	-104.0573		Wetland		USFWS	7/8/2005	30.79	9.35
		GL7	48.7934	-104.0573		Wetland		USFWS	7/11/2005		
		GL7	48.7934	-104.0573		Wetland		USFWS	7/11/2005		
		GL8	48.7905	-104.0492		Wetland		USFWS	5/13/2004	12.82	8.22
		GL8	48.7905	-104.0492		Wetland		USFWS	7/8/2005	29.94	8.03
		GL9	48.7945	-104.0494		Wetland		USFWS	5/13/2004	0.77	3.53
		GL11	48.8047	-104.0568		Wetland		USFWS	5/13/2004	10.24	8.66

Location	GWIC ID	Site Name	Field SC (uS/cm)	Field DO (mg/L)	Field TDS (g/L)	Field Chloride Conc. (mg/L)	Lab	l ab pH	Lab SC (uS/cm)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)
Redhead F	Retreat WPA	0.10 1.10.110	((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(9, =)	(9, =)	0 0 0 0 0 (g, _)		_ 0.0 p11	(µ0,011)	(9, =)	(9, =)	(9/=/
Roundaar		RR1	16 309	12 98	10 44	560 5						
			. 0,000									
Westgard I	WPA											
		WG1	25,955	8.67	16.61	433						
		WG1	31,520	16.13	20.14	444						
		WG2	15,530	11.58	9.94	405						
	214793	WG3	11,863	8.94	7.62	377						
	214793	WG3	19,041	8.15	12.19	1,423						
	214793	WG3					MBMG	9.65	15,190	56.1	1,445	3,771
Dog Leg M	/PA											
209 209 11	214746	DL1					MBMG	8,96	3.860	183	205	499
	214746		3 850	15 28	2 45	56		0.00	0,000			
	214746		3 067	12.89	1 96	49.5						
	211110		38 152	9.31	24 42	1 547						
		DLL	00,102	0.01	21.12	1,017						
Goose Lak	e WPA											
		GL1	3,859	8.72	2.47	53						
		GL1	3,702	10.8	2.37	39						
		GL1					TERL			6.21	202	29,300
		GL1					UWRBEBL	9.52	60,500	0.1802	197.8295	29,078
		GL2	9,655	9.08	6.18	222						
		GL3	5,209	8.14	3.33	46						
		GL3	4,198	3.96	2.69	52						
		GL3					TERL			17.8	37.4	1,050
		GL3					UWRBEBL	8.78	4,400	17.4586	37.5841	1,099
		GL6	277.5	8.03	0.18	5.3						
		GL7	6,610	9.38	4.22	120						
		GL7	8,370	8.76	5.36	137						
		GL7					TERL			7.03	152	1,800
		GL7					UWRBEBL	9.35	7,850	6.3969	148.6409	2,050
		GL8	2,145	14.24	1.37	39						
		GL8	2,532	3.58	1.62	52						
		GL9	1.887	9.13	1.21	23						
		GL11	1,829	10.58	1.17	61						

Location	GWIC ID	Site Name	K (mg/L)	Fe (mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO ₃ (mg/L)	CO ₃ (mg/L)	SO ₄ (mg/L)	CI (mg/L)	NO₃ (mg/L)	F (mg/L)
Redhead R	Retreat WPA											
		RR1										
Westgard V	VPA											
		WG1										
		WG1										
		WG2										
	214793	WG3										
	214793	WG3										
	214793	WG3	282	1	<0.02	<2.0	124.4	207.6	11,570	1,311	<5	<5
Dog Leg W	'PA											
	214746	DL1	71.1				672.2	68.4	1,711	47.7		
	214746	DL1										
	214746	DL1										
		DL2										
Goose Lak	e WPA											
		GL1										
		GL1										
		GL1	818	<0.01	0.02	4.4						
		GL1	855.9						44,285	4,631	ND	
		GL2										
		GL3										
		GL3										
		GL3	96.8	0.1	0.82	20.9						
		GL3	100.98						850.93	41.04	ND	
		GL6										
		GL7										
		GL7	400	10.04	0.00	4 5						
		GL/	106	<0.01	0.39	1.5			4 000 74	400 70	440	
		GL/	116.45						4,920.74	132.72	113	
		GLÖ										
		GL 11										
		JEIT										

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

			OPO ₄									
Location	GWIC ID	Site Name	(mg/L)	Ag (µg/L)	Al (µg/L)	As (µg/L)	Β (μg/L)	Ba (µg/L)	Be (µg/L)	Br (µg/L)	Cd (µg/L)	Co (µg/L)
Redhead R	etreat WPA											
		RR1										
Westgard V	VPA											
		WG1										
		WG1										
		WG2										
	214793	WG3										
	214793	WG3										
	214793	WG3	<5	<20	<200	26.4	3,472	<49	<40	5,860	<20	<40
Dog Leg W	PA											
	214746	DL1										
	214746	DL1										
	214746	DL1										
		DL2										
Goose Lake	e WPA											
		GL1										
		GL1										
		GL1			<50	143	23,100	14	<0.5		1.35	<5
		GL1										
		GL2										
		GL3										
		GL3										
		GL3			<50	92.9	2,540	109	<0.5		0.22	<5
		GL3										
		GL6										
		GL7										
		GL7										
		GL7			<50	19.3	1,490	7	<0.5		0.05	<5
		GL7										
		GL8										
		GL8										
		GL9										
		GL11										

Location	GWIC ID	Site Name	Cr (ua/L)	Cu (ug/L)	Hg (ug/L)	Li(ua/L)	Mo (ua/L)	Ni (ua/L)	Pb (ua/L)	Se (ua/L)	Sr (ua/L)	Ti (ua/L)
Redhead R	Petreat WPA	Olto Humo		(M3/L)	(µg/⊏)		10 (µg/L)	iti (µg/⊏)	1 b (µg/L)	00 (µg/L)		m (µg/⊏)
rtouriouu rt		RR1										
Westgard V	VPA											
		WG1										
		WG1										
		WG2										
	214793	WG3										
	214793	WG3										
	214793	WG3	<40	<40		1,438	<200	<40	<40	81	461	<20
Doa Lea W	'PA											
-5 -5	214746	DL1										
	214746	DL1										
	214746	DL1										
		DL2										
Goose Lak	ο <i>Μ/ΡΔ</i>											
OCOSC LUN		GL1										
		GL1										
		GL1	<5	<5	<0.1		<10	16	<0.51	0.31	40	<5
		GL1										
		GL2										
		GL3										
		GL3										
		GL3	<5	<5	<0.1		<10	11	0.58	0.43	410	<5
		GL3										
		GL6										
		GL7										
		GL7	_	_				_				_
		GL7	<5	<5	<0.1		<10	<5	<0.05	<0.1	<25	<5
		GL7										
		GLØ										
		GLØ										
		GLII										

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

		Site						
Location	GWIC ID	Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Chloride Index	Comments
Redhead Re	etreat WPA							
		RR1					0.034	
Westgard N	/PA							
		WG1					0.017	
		WG1					0.014	
		WG2					0.026	
	214793	WG3					0.032	
	214793	WG3					0.075	
	214793	WG3	<10	<100	<40	<40	0.086	
Dog Leg WI	PA							
	214746	DL1					0.012	
	214746	DL1					0.015	
	214746	DL1					0.016	
		DL2					0.041	
Goose Lake	WPA							
		GL1					0.014	
		GL1					0.011	
		GL1		<10	<5			
		GL1					0.077	
		GL2					0.023	
		GL3					0.009	
		GL3					0.012	
		GL3		<10	<5			
		GL3						
		GL6					0.019	
		GL7					0.018	
		GL7					0.016	
		GL7		<10	<5			
		GL7					0.017	
		GL8					0.018	
		GL8					0.021	
		GL9					0.012	
		GL11					0.033	

										Water	
							_		Sample	Temp.	
Location	GWIC ID	Site Name	Latitude	Longitude	TRS	Site Type	Depth	Agency	Date	(°C)	Field pH
		GL12	48.8094	-104.0543		Wetland		USFWS	5/13/2004	5.34	7.52
Gjesdal Ea	st WPA										
		GE1	48.9318	-104.0732		Wetland		USFWS	5/17/2004	22.03	9.44
		GE2	48.9258	-104.0709		Wetland		USFWS	5/17/2004	23.51	9.04
Giesdal We	Pot W/PA										
Ojesuar me		GW1	48 8870	-104 1721		Wetland		USEWS	5/17/2004	22.92	7 54
		GW1	48 8870	-104 1721		Wetland		USEWS	6/13/2005		
		GW1	48 8870	-104 1721		Wetland		USEWS	6/13/2005		
		GW2	48 8844	-104 1833		Wetland		USEWS	5/17/2004	16 22	6 68
		GW3	18 8861	-104 1807		Wetland		USEWS	5/17/2004	18.86	6.00
		GW/	40.0001	-104 1741		Wetland		USEWS	5/17/2004	20.02	6.85
		GW5	48.8870	-104.1741		Wetland			5/17/2004	20.02	7 34
		GW5	40.0079	-104.1721		Wetland			6/13/2004	20.00	7.54
		GW5	40.0079	-104.1721		Wetland			6/13/2005		
		GWJ	40.0079	-104.1721		vietianu		036403	0/13/2003		
Olson WPA	4										
		OLS	48.5818	-104.1221		Wetland		USFWS	7/21/2004	26.43	8.91
		OLS	48.5818	-104.1221		Wetland		USFWS	9/12/2004	16	9.09
		OLS	48.5818	-104.1221		Wetland		USFWS	7/9/2005	26.98	8.98
		OLS	48.5818	-104.1221		Wetland		USFWS	7/11/2005		
		OLS	48.5818	-104.1221		Wetland		USFWS	7/11/2005		
Parry WPA	l										
		PAR1	48.5914	-104.1049		Wetland		USFWS	5/14/2004	14.81	8.43
		PAR1	48.5914	-104.1049		Wetland		USFWS	5/14/2004	14.18	8.62
		PAR2	48.5901	-104.1020		Wetland		USFWS	5/14/2004	14.92	9.45
		PAR3	48.5906	-104.0904		Wetland		USFWS	5/14/2004	10.62	8.15
		PAR3	48.5906	-104.0904		Wetland		USFWS	9/2/2004	28.15	8.35
		PAR4	48.5879	-104.1061		Wetland		USFWS	5/14/2004	11.3	8.45
		PAR4	48.5879	-104.1061		Wetland		USFWS	9/2/2004	25.48	8.54
Rich Johns	on WPA										
		RJ1	48.9547	-104.7134		Wetland		USFWS	6/15/2005	28.71	7.52
		RJ2	48.9547	-104.7179		Wetland		USFWS	6/15/2005	22.53	7.1

	2. / thatytical i	could of morga	The analyses h									
			Field SC	Field DO	Field	Field			Lah SC	Ca	Ma	
Location	GWIC ID	Site Name	(µS/cm)	(mg/L)	(g/L)	Conc. (mg/L)	Lab	Lab pH	(µS/cm)	(mg/L)	(mg/L)	Na (mg/L)
		GL12	3,024	8.23	1.93	78						
Giesdal Ea	ast W/PA											
Ojesuu Le		GE1	8 150	12	5 22	405 5						
		GE2	2,740	9.02	1.75	49.5						
			_,									
Gjesdal W	est WPA											
		GW1	754	7.13	0.48	123						
		GW1					TERL			19.9	9.77	<100
		GW1					UWRBEBL	7.53	521	20.9319	10.5145	49.83
		GW2	179.3	1.75	0.11	no data						
		GW3	120.9	3.19	0.08	4.4						
		GW4	166	3.25	0.11	0						
		GW5	94.4	10.87	0.06	4.4						
		GW5					TERL			14.1	5	<100
		GW5					UWRBEBL	7.09	156	13.19	4.82	1.07
Olson WP	A											
		OLS	4,314	7.06	2.75	30						
		OLS	4,772	7.1	3.05	33						
		OLS	4,602	9.12	2.95	33						
		OLS					TERL			4.69	211	864
		OLS					UWRBEBL	9.26	4310	4.14	198.25	937
Parry WPA	4											
		PAR1	4,902	6.22	3.13	53						
		PAR1	4,680	10.09	3.00	53						
		PAR2	55,185	7.11	35.32	1547						
		PAR3	4,351	8.59	2.79	61						
		PAR3	5,928	5.41	3.80	84						
		PAR4	2,669	10.25	1.71	27						
		PAR4	3,396	6.84	2.17	30.5						
Rich John	son W/PA											
		RJ1	3,593	3.66	2.30	45						
		RJ2	3,298	4.25	2.11	39						

Location	GWIC ID	Site Name	K (mg/L)	Fe (mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO₃ (mg/L)	CO ₃ (mg/L)	SO₄ (mg/L)	CI (mg/L)	NO₃ (mg/L)	F (mg/L)
		GL12										
Giesdal Ea	ast WPA											
-,		GE1										
		GE2										
Gjesdal W	est WPA											
		GW1										
		GW1	42.9	0.241	0.1	16.7						
		GW1	43.23						16.59	78.11	1.13	
		GW2										
		GW3										
		GW5										
		GW5	35.8	0.07	0.8	9.2						
		GW5	35.3						4.71	3.85	3.64	
Olson WP	Δ											
		OLS										
		OLS										
		OLS										
		OLS	77.2	<0.01	0.01	3.2						
		OLS	78.8						1,162.62	22.56	ND	
Parry WPA	4											
		PAR1										
		PAR1										
		PAR2										
		PAR3 PAR3										
		PAR4										
		PAR4										
Rich John	son WPA											
		RJ1										
		RJ2										

Location (Site Name	OPO_4	Aa (ua/L)	Al (ua/L)	As (ua/L)	B (ug/L)	Ba (ug/L)	Be (ua/L)	Br (ua/L)	Cd (ug/L)	Co (ug/L)
		GI 12	(mg/L)	//g (µg/⊏)	/ ((µg/ ⊑)	/ to (µg/ L)	D (µ9/L)		D0 (µg/L)	Di (µg/L)	(µg/⊏)	00 (µg/2)
		0212										
Gjesdal East	WPA											
-		GE1										
		GE2										
Gjesdal West	WPA	014/4										
		GW1			-50	0.50	400	05	<0 F		0.54	~F
		GW1			<50	2.53	403	co	<0.5		0.51	<0
		GW2										
		GW3										
		GW4										
		GW5										
		GW5			60	1.29	90	54	<0.5		0.15	<5
		GW5										
Olson WPA												
		OLS										
		OLS										
		OLS			<50	10 7	2 250	4	<0 F		0.06	~5
					<50	10.7	2,250	4	<0.5		0.00	<5
		OLS										
Parry WPA												
-		PAR1										
		PAR1										
		PAR2										
		PAR3										
		PAR3										
		PAR4										
		PAR4										
Rich Johnson	WPA											
		RJ1										
		RJ2										

Location	GWIC ID	Site Name	Cr (µg/L)	Cu (µg/L)	Hg (µg/L)	Li (µg/L)	Mo (µg/L)	Ni (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	Ti (µg/L)
		GL12										
Gjesdal Ea	ast WPA	GE1 GE2										
Giesdal W	est W/PA											
- Josuari II		GW1 GW1 GW2 GW3 GW4 GW5	<5	<5	<0.1		<10	<5	0.21	0.28	190	<5
		GW5 GW5	<5	<5	<0.1		<10	<5	0.31	0.83	30	<5
Olson WP	4	OLS OLS OLS OLS OLS	<5	<5	<0.1		<10	<5	<0.02	<0.1	<25	<5
Parry WPA	4	PAR1 PAR1 PAR2 PAR3 PAR3 PAR4 PAR4										
Rich Johns	son WPA	RJ1 RJ2										

Location	GWIC ID	Site Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Chloride Index	Comments			
		GL12					0.026				
Giosdal Fa	ot M/PA										
Ojesuai La	51 111 A	GE1					0.050				
		GE2					0.018				
Gjesdal We	est WPA										
		GW1					0.163				
		GW1		<10	12						
		GW1					0.150				
		GW2									
		GW3					0.036				
		GW4					0.000				
		GW5		-10	00		0.047				
		GW5		<10	26		0.005				
		GWS					0.025				
Olson WPA	I										
		OLS					0.007				
		OLS					0.007				
		OLS					0.007				
		OLS		<10	<5						
		OLS					0.005				
Dorny M/DA											
		PAR1					0.011				
		PAR1					0.011				
		PAR2					0.028				
		PAR3					0.014				
		PAR3					0.014				
		PAR4					0.010				
		PAR4					0.009				
RICH JOHNS	ON WPA	D 11					0.040				
							0.013				
		NJZ					0.012				
Location	GWIC ID	Site Name	Latitude	Longitude	TRS	Site Type	Depth	Agency	Sample Date	Water	Field nH
------------	------------	-----------	----------	-----------	------	-----------	-------	---------	----------------	-------	----------
Loodion	errie ib	R I/	18 9567	-104 7235	11(0	Wetland	Bopti	USEWS	6/15/2005	20.46	7 / 8
		110-	40.0007	-104.7200		Wettand		001 110	0/10/2000	20.40	7.40
Rivers WP	A										
		RIV1	48.8005	-104.1672		Wetland		USFWS	4/27/2004	8.88	7.35
		RIV1	48.8005	-104.1672		Wetland		USFWS	6/13/2005		
		RIV1	48.8005	-104.1672		Wetland		USFWS	6/13/2005		
Shoveler F	Puddle WPA										
		SP1	48.9838	-104.3108		Wetland		USFWS	6/14/2005		
State Line	WPA										
		SL1	48.9094	-104.0671		Wetland		USFWS	5/13/2004	10.62	8.12
		SL1	48.9094	-104.0671		Wetland		USFWS	7/8/2005	35.01	8.99
		SL2	48.9090	-104.0600		Wetland		USFWS	7/11/2005		
		SL2	48.9090	-104.0600		Wetland		USFWS	7/11/2005		
		SL3	48.9061	-104.0607		Wetland		USFWS	5/13/2004	13.2	8.27
		SL3	48.9061	-104.0607		Wetland		USFWS	7/8/2005	32.59	7.64
		SL3	48.9061	-104.0607		Wetland		USFWS	7/11/2005		
		SL3	48.9061	-104.0607		Wetland		USFWS	7/11/2005		
		SL3A	48.9057	-104.0635		Wetland		USFWS	9/10/2004	18.58	8.03
		SL4	48.9050	-104.0755		Wetland		USFWS	9/10/2004	19.73	8.61
		SL5	48.9039	-104.0777		Wetland		USFWS	9/10/2004	23.27	8.73
		SL6	48.9000	-104.0511		Wetland		USFWS	7/25/2004	24.44	8.84
		SL6	48.9000	-104.0511		Wetland		USFWS	9/11/2004	13.56	9.11
		SL6	48.9000	-104.0511		Wetland		USFWS	7/8/2005	27.23	8.98
		SL6	48.9000	-104.0511		Wetland		USFWS	7/11/2005		
		SL6	48.9000	-104.0511		Wetland		USFWS	7/11/2005		
Wigeon Slo	ough WPA										
		WS1	48.9748	-104.2362		Wetland		USFWS	4/28/2004	5.33	8.51
		WS1	48.9748	-104.2362		Wetland		USFWS	6/13/2005		
		WS2	48.9779	-104.2375		Wetland		USFWS	9/14/2004	18.32	9.98
		WS3				Wetland		USFWS			
		WS4	48.9772	-104.2533		Wetland		USFWS	4/28/2004	7.69	8.52
		WS5A	48.9690	-104.2546		Wetland		USFWS	4/28/2004	8.83	8.8
		WS6	48.9689	-104.2505		Wetland		USFWS	4/28/2004	6.23	7.84

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples

Location	GWIC ID	Site Name	Field SC	Field DO	Field TDS (g/L)	Field Chloride Conc. (mg/L)	Lab	l ab nH	Lab SC	Ca (mg/L)	Mg (mg/L)	Na (mg/L)
Location	GWIG ID	R I/	3 244	5 32	<u>(9, L)</u> 2 08	68	Lub	Lub pri	(µ0/011)	(IIIg/L)	(IIIg/L)	(119/2)
		1(04	5,244	5.52	2.00	00						
Rivers WP	A											
		RIV1	326	5.47	0.21	15						
		RIV1					TERL			71.8	36.6	<100
		RIV1					UWRBEBL	7.88	1,090	77.05	39.75	28.07
Shoveler P	Puddle WPA											
		SP1										
State Line	WPA											
		SL1	9,228	8.19	5.91	222						
		SL1	21,460	14.55	13.74	1,335.5						
		SL2					TERL			64	71.1	1,650
		SL2						7.98	7,040	68.5	71.69	1,796
		SL3	2,988	11.11	1.91	39						
		SL3	5,846	7.96	3.74	77						
		SL3					TERL			134	110	1,160
		SL3					UWRBEBL	6.46	5,710	140.81	106.77	1,197
		SL3A	6,260	6.05	4.01	68						
		SL4	22,648	3.45	14.49	1,678						
		SL5	23,569	10.79	15.09	1,547						
		SL6	7,155	10.05	4.58	77						
		SL6	8,713	8.97	5.58	86						
		SL6	7,371	8.7	4.72	72.5						
		SL6					TERL			16.8	133	1,600
		SL6					UWRBEBL	9.02	6,890	16.87	131.53	1,755
Wigeon Slo	ough WPA											
		WS1	6,145	12	3.93	205						
		WS1	-, -				UWRBEBL	8.88	14.160	441.88	1.502.35	2.384.47
		WS2	2,191	16.43	1.40	106			,		,	
		WS3	·									
		WS4	4,251	8.12	2.72	109						
		WS5A	2607	6.11	1.67	39						
		WS6	2972	10.59	1.90	30						

Location	GWIC ID	Site Name	K (mg/L)	Fe (mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO₃ (mg/L)	CO₃ (mg/L)	SO ₄ (mg/L)	CI (mg/L)	NO₃ (mg/L)	F (mg/L)
		RJ4										
Rivers WP	A											
		RIV1	135	0 18	6 53	79						
		RIV1	137.32	0.10	0.00	1.5			185	24.39	17.02	
Chauslan F												
Shoveler P	uuule WPA	SP1										
State Line	WPA											
		SL1										
		SL1	00.0	0.00	.0.000	10						
		SL2	33.6	0.08	< 0.002	19			3 232 03	101 54	85 10	
		SL 3	50.2						5,252.05	101.54	05.15	
		SL3										
		SL3	30	0.28	0.006	10						
		SL3	31.79						2,861.61	68.16	285	
		SL3A										
		SL4										
		SL6										
		SL6										
		SL6										
		SL6	34.4	<0.01	1.17	6.5						
		SL6	37.85						3,316.85	56.64	22.34	
Wigeon Sl	ough WPA											
		WS1										
		WS1	237.35						10,579	537	ND	
		WS2										
		WS4										
		WS5A										
		WS6										

	Appendix B. Analytical results of inc	organic analyses for surface a	nd groundwater samples.
--	---------------------------------------	--------------------------------	-------------------------

		0% N	OPO ₄	A ((1))						Br		
Location	GWIC ID	Site Name	(mg/L)	Ag (µg/L)	AI (µg/L)	As (µg/L)	В (µg/L)	Ba (µg/L)	Be (µg/L)	(µg/L)	Cd (µg/L)	Co (µg/L)
		RJ4										
Rivers WP	A											
		RIV1										
		RIV1			<50	8.06	101	168	<0.5		0.21	<5
		RIV1										
Shoveler F	Puddle WPA											
		SP1										
State Line	WPA											
		SL1										
		SL1										
		SL2			<50	15.5	1,760	105	<0.5		0.09	<5
		SL2										
		SL3										
		SL3										
		SL3			<50	4.12	670	72	<0.5		<0.05	<5
		SL3										
		SL3A										
		SL4										
		SL5										
		SLO										
		SLO										
		SL6			<50	12.5	1 770	8	<0.5		0.06	<5
		SL6				12.0	1,110	0	0.0		0.00	
Wigeon Slo	ough WPA											
		WS1										
		WS1										
		WS2										
		WS3										
		WS4										
		WS5A										
		WSG										

1		Olta Nama		Cu			Mo				0	T : ((1))
Location	GWIC ID	Site Name	Cr (µg/L)	(µg/L)	Hg (µg/L)	LI (µg/L)	(µg/L)	NI (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	TT (µg/L)
		RJ4										
Rivers WP.	A											
		RIV1										
		RIV1	<5	<5	<0.1		<10	<5	0.13	0.23	165	<5
		RIV1										
Shoveler P	uddle WPA											
		SP1										
State Line	WPA											
		SL1										
		SL1										
		SL2	<5	<5	<0.1		<10	<5	0.52	1.16	1,000	<5
		SL2										
		SL3										
		SL3										
		SL3	<5	<5	<0.1		<10	<5	0.13	0.47	1,300	<5
		SL3										
		SL3A										
		SL4										
		SL5										
		SLO										
		SLO										
		SLO	<5	<5	<0.1		<10	<5	<0.05	0.13	245	<5
		SL6	-0	-0	~ 0.1		\$10	-0	<0.05	0.15	240	-0
Wigeon Slo	ough WPA											
		WS1										
		WS1										
		VVS2										
		VV33										
		VV04 \//95/										
		WS6										
		VV30										

RJ4 0.021 Rivers WPA RIV1 RIV1 RIV1 <10 <5 0.046 Shoveler Puddle WPA <10 <5 0.022 Shoveler Puddle WPA sp1 dry	Location G	GWIC ID	Site Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Chloride Index	Comments
Rivers WPA Riv1 0.046 Riv1 <10			RJ4					0.021	
RIV1 RIV1 0.046 RIV1 <10	Divora M/DA								
RIV1 <10	RIVEIS WPA							0.046	
RIV1 0.022 Shoveler Puddle WPA gry State Line WPA dry					<10	~5		0.040	
Shoveler Puddle WPA SP1 dry State Line WPA					\$10	-0		0.022	
Shoveler Puddle WPA SP1 dry State Line WPA								0.022	
SP1 dry State Line WPA	Shoveler Pudd	dle WPA							
State Line WPA			SP1						dry
State Line WPA									
	State Line WP	PA							
SL1 0.024			SL1					0.024	
SL1 0.062			SL1			_		0.062	
SL2 <10 5			SL2		<10	5			
SL2			SL2					0.040	
SL3 0.013			SL3					0.013	
SL3 0.013			SL3		10	10		0.013	
SL3 <10 12			SL3		<10	12			
SL3			SL3						
SL3A 0.011			SL3A					0.011	
SL4 0.074			SL4					0.074	
SL5 0.066			SL5					0.066	
SL6 0.011			SL6					0.011	
SL6 0.010			SL6					0.010	
SL6 0.010			SL6			_		0.010	
SL6 <10 <5			SL6		<10	<5			
SL6 0.008			SL6					0.008	
Wigeon Slough WPA	Wigeon Slougl	ıh WPA							
WS1 0.033	0 0		WS1					0.033	
WS1			WS1						
WS2 0.048			WS2					0.048	
WS3			WS3						
WS4 0.026			WS4					0.026	
WS5A 0.015			WS5A					0.015	
WS6 0.010			WS6					0.010	

Appendix B. Analytica	results of inorganic analyses	for surface and groundwater samples.	

	y	0			<u> </u>				Sample	Water Temp	Field
Location	GWIC ID	Site Name	Latitude	Longitude	TRS	Site Type	Depth	Agency	Date	(°C)	pH
Wigeon Sl	ough WPA										
		WS7	48.9739	-104.2469		Wetland		USFWS	4/28/2004	7.15	8.29
		WS8	48.9751	-104.2497		Wetland		USFWS	5/16/2004	22.41	9.32
Non-WPA	Sites										
	3774	1986Q0957	48.5341	-104.1722	32N58E10CCCC	Well	210	MBMG	6/10/1986	0	
	4148	1985Q0832	48.8727	-104.0486	36N58E13DADD	Well	69	MBMG	7/23/1985	8.9	
	4149	1973Q0402	48.8277	-104.1330	36N58E33CCB	Well	0	MBMG	7/1/1973	0	
	206548	2003-09	48.5593	-104.1396	32N59E2ABCC	Well	180	MBMG	12/12/2003	7.81	
	206548	2003-09	48.5593	-104.1396	32N59E2ABCC	Well	180	MBMG	9/11/2005	9.3	
	890422	1989Q0485	48.7961	-104.1436	35N58E8DDDA	Well	42	MBMG	4/19/1989	5.5	
	890423	1989Q0486	48.7900	-104.1452	35N58E17ADAC	Well	23	MBMG	4/19/1989	4.5	
	890424	1989Q0487	48.7913	-104.1450	35N58E17AADC	Well	36	MBMG	4/19/1989	1	
	890425	1989Q0488	48.7908	-104.1452	35N58E17ADAB	Well	28	MBMG	4/19/1989	6	
	890426	1989Q0489	48.8565	-104.1145	36N58E22CBDA	Well	38	MBMG	4/21/1989	9	
	890427	1989Q0490	48.8558	-104.1158	36N58E22CDBB	Well	43	MBMG	4/21/1989	8.7	
	890428	1989Q0491	48.8516	-104.1086	36N58E27ABBD	Well	22	MBMG	4/20/1989	9	
	890429	1989Q0492	48.8511	-104.1044	36N58E27AABC	Well	8	MBMG	4/21/1989	6.9	
	890430	1989Q0493	48.8502	-104.1183	36N58E27BBCA	Well	27	MBMG	4/1/1989	8.2	
	890431	1989Q0494	48.8502	-104.1177	36N58E27BBDC	Well	33	MBMG	4/20/1989	8.9	
	890432	1989Q0495	48.8525	-104.1116	36N58E27BAAB	Well	17	MBMG	4/20/1989	8.2	
	890433	1989Q0496	48.8522	-104.1105	36N58E27BAAA	Well	23	MBMG	4/20/1989	8.5	
	890434	1989Q0497	48.8361	-104.1386	36N58E33BBDA	Well	27	MBMG	4/20/1989	7	
	890435	1989Q0498	48.9841	-104.2288	37N57E5DCDA	Well	18	MBMG	4/22/1989	7.7	
	890437	1989Q0500	48.9886	-104.1250	37N58E6CAAC	Well	43	MBMG	4/21/1989	9.8	
	890438	1989Q0501	48.7027	-104.0905	34N58E14BDAC	Well	32	MBMG	4/18/1989	8.2	
	890439	1989Q0502	48.7033	-104.0913	34N58E14BDBD	Well	32	MBMG	4/18/1989	7.9	
	890440	1989Q0503	48.6994	-104.0863	34N58E14DBBD	Well	31	MBMG	4/18/1989	7.8	
	890441	1989Q0504	48.6988	-104.0866	34N58E14DBBD	Well	30	MBMG	4/18/1989	7.8	
	890442	1989Q0505	48.7955	-104.1358	35N58E9CDCD	Well	32	MBMG	4/19/1989	5	
	890443	1989Q0506	48.7963	-104.1361	35N58E9CDCA	Well	28	MBMG	4/19/1989	5	
	890444	1989Q0507	48.8272	-104.1452	36N58E32DDAB	Well	33	MBMG	4/20/1989	9	
	890927	1989Q1376	48.8558	-104.1158	36N58E22CDBB	Well	43	MBMG	10/11/1989	11.4	
	890928	1989Q1377	48.8511	-104.1063	36N58E27ABAC	Well	18	MBMG	10/12/1989	14.2	
	890929	1989Q1378	48.8513	-104.1077	36N58E27ABBD	Well	20.5	MBMG	10/17/1989	15.9	
	890930	1989Q1379	48.8505	-104.1063	36N58E27ABDB	Well	17	MBMG	10/12/1989	15.9	

	2		· · · · ·		0	Field						
			Field SC	Field DO	Field	Chloride			Lab SC	Ca	Mg	Na
Location	GWIC ID	Site Name	(µS/cm)	(mg/L)	TDS (g/L)	Conc. (mg/L)	Lab	Lab pH	(µS/cm)	(mg/L)	(mg/L)	(mg/L)
Wigeon Slo	ough WPA											
		WS7	5,895	7.17	3.77	189						
		WS8	25,072	11.16	16.05	349						
Non-WPA	Sites											
	3774	1986Q0957					MBMG	7.59	1.522	171	73.2	60.5
	4148	1985Q0832					MBMG	7.52	1.375	115	47.8	139
	4149	1973Q0402					MBMG	7.44	331	1.663	857	5.000
	206548	2003-09					MBMG	7.81	2.160	84.2	48.9	369
	206548	2003-09					MBMG	7.58	2,150	79.4	45.9	404
	890422	1989Q0485					MBMG	6.88	61.872.9	4.120	6.120	3.920
	890423	1989Q0486					MBMG	6.76	10.879	7.270	6.250	23.000
	890424	1989Q0487					MBMG	7.67	4.598.9	514	276	496
	890425	1989Q0488					MBMG	7	71.781.6	3.230	4.370	20.200
	890426	1989Q0489					MBMG	7.31	3.249.9	405	122	157
	890427	1989Q0490					MBMG	7.55	1.829.7	226	76.5	119
	890428	1989Q0491					MBMG	7.36	18.850.3	988	412	2.640
	890429	1989Q0492					MBMG	7.3	29.096.4	501	193	6.180
	890430	1989Q0493					MBMG	7.65	1.202.6	142	66.5	27.6
	890431	1989Q0494					MBMG	7.34	1,111.6	128	46.4	57
	890432	1989Q0495					MBMG	7.45	6,232.7	66.9	31.7	719
	890433	1989Q0496					MBMG	7.08	59,537.8	2,120	1,120	11,100
	890434	1989Q0497					MBMG	7.14	71,208	3,330	4,290	10,600
	890435	1989Q0498					MBMG	7.4	88,377	8,940	3,080	12,800
	890437	1989Q0500					MBMG	7.52	6,280.2	452	287	879
	890438	1989Q0501					MBMG	7.87	3,540.6	311	150	161
	890439	1989Q0502					MBMG	7.93	1,581.4	140	88.1	29.3
	890440	1989Q0503					MBMG	7.9	412	52.7	14.5	5.6
	890441	1989Q0504					MBMG	6.97	8,425.3	488	84.8	1060
	890442	1989Q0505					MBMG	6.93	70,990.4	5,380	2,910	32,500
	890443	1989Q0506					MBMG	6.92	6,923	3,720	4,080	39,500
	890444	1989Q0507					MBMG	7.1	95,261	3,630	1,090	21,600
	890927	1989Q1376					MBMG	7.73	2,213.3	200	83.6	132
	890928	1989Q1377					MBMG	7.44	4,448	1,190	410	9,420
	890929	1989Q1378					MBMG	7.49	2,255.7	790	240	6,500
	890930	1989Q1379					MBMG	7.67	8,817.1	180	62.54	1,590

Location GWIC	ID Site Name	K (mg/L)	Fe (mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO₃ (mg/L)	CO₃ (mg/L)	SO₄ (mg/L)	CI (mg/L)	NO₃ (mg/L)	F (mg/L)
Wigeon Slough WF	PA										
0 0	WS7 WS8										
Non-WPA Sites											
3774	1986Q0957	5.1	2.84	0.41	30.6	422	0	497	7.1	0.09	0.3
4148	1985Q0832	6.1	1.63	0.41	26.1	418	0	356	39.6	5.87	0.3
4149	1973Q0402	32	0.09	1.42	9.2	272	0	413	12,770	<.023	<.1
206548	3 2003-09	7.26	4.99	0.15	24.5	1209	0	291	51.8	<0.5	<0.5
206548	3 2003-09	7.24				1,138.3	0	262	47.4		
890422	2 1989Q0485	66.6	<.002	4.89	13.5	397	0	2030	30,200	1.7	2
890423	3 1989Q0486	219	<.002	0.06	14.2	256.7	0	540	65,800	14	2
890424	1989Q0487	18.2	<.002	1.17	15.2	697	0	2700	81	0.35	0.1
890425	5 1989Q0488	216	<.002	3	13.6	325	0	2840	46,400	6.51	1
890426	5 1989Q0489	11.4	7.87	0.97	24.3	626	0	1330	10.2	0.04	0.3
890427	7 1989Q0490	9.5	0.77	0.86	22.5	591.5	0	633	17.1	0.05	0.4
890428	3 1989Q0491	45.1	0.02	3.8	16.4	252.3	0	144	6,680	2.22	<1
890429) 1989Q0492	110	0.02	0.01	15.4	304	0	234	10,600	12	<1
890430) 1989Q0493	6	0.93	0.57	23.2	344	0	370	26	0.05	0.3
89043 ²	1989Q0494	7.7	0.26	1.44	22.7	381	0	258	56.5	0.03	0.3
890432	2 1989Q0495	12	0.002	0.17	19.4	325	0	111	1,060	3.12	0.3
890433	3 1989Q0496	162	0.01	3.95	16.3	258.7	0	116	23,600	32	<2
890434	1989Q0497	74.9	<.002	3.96	15.3	204.5	0	2840	33,200	1.6	1
890435	5 1989Q0498	275	<.002	0.05	12.2	259.6	0	121	44,300	9.7	0.2
890437	7 1989Q0500	18.5	0.43	1.59	22.7	893	0	3140	177	0.03	0.1
890438	3 1989Q0501	7.2	1.26	0.11	28.9	335	0	291	773	26.9	0.3
890439) 1989Q0502	3.3	0.06	0.01	26.6	355	0	343	18.6	29.2	0.2
890440) 1989Q0503	2.1	<.002	0.002	19.9	195.7	0	10	14	2.81	0.05
89044	1989Q0504	39.3	0.032	0.59	20.9	209.8	0	24	2,570	16.1	0.1
890442	2 1989Q0505	395	<.002	1.62	11	290	0	1890	68,000	1	1
890443	3 1989Q0506	301	<.002	1.84	11.1	240.1	0	1630	78,600	0.4	1
890444	1989Q0507	60.8	0.37	1.96	14.4	276.2	0	197	42,300	17	<5
890927	7 1989Q1376	11	<.004	0.03	25.1	605	0	612	13.9	0.12	0.1
890928	3 1989Q1377	202	1.28	5.71	20	325	0	268	18,000	27.43	0.06
890929) 1989Q1378	154	<.004	0.75	22.8	270	0	177	12,000	0.07	0.9
890930) 1989Q1379	54.57	<.004	0.42	23.8	353	0	183	2,650	9.7	0.9

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Location	GWIC ID	Site Name	OPO₄ (mg/L)	Ag (µg/L)	Al (µg/L)	As (µg/L)	Β (μg/L)	Ba (µg/L)	Be (µg/L)	Br (µg/L)	Cd (µg/L)	Co (µg/L)
Wigeon Slo	ough WPA											
		WS7										
		WS8										
Non-WPA S	Sites											
	3774	1986Q0957	<.1	<2.	<30	0	190		0	100	<2	0
	4148	1985Q0832	<.1			7.5			0	200		0
	4149	1973Q0402				0			0			0
	206548	2003-09	<0.5	<5	<30	13.3	255	27.3	<2	942	<1	<2
	206548	2003-09										
	890422	1989Q0485	0.4	<2	<30	0	330		0	<100	66	0
	890423	1989Q0486	<1	6	<30	0	290		0	<100	96	0
	890424	1989Q0487	<.1	<2	<30	0	410		0	700	<2	0
	890425	1989Q0488	<1	<2	<30	0	9,760		0	<100	63	0
	890426	1989Q0489	<.1	<2	110	0	570		0	<100	<2	0
	890427	1989Q0490	<.1	<2	<30	0	530		0	200	<2	0
	890428	1989Q0491	<.1	<2	100	0	5,750		0	<100	13	0
	890429	1989Q0492	<.1	<2	<30	0	17,500		0	<100	<2	0
	890430	1989Q0493	<.1	<2	<30	0	80		0	100	<2	0
	890431	1989Q0494	<.1	<2	<30	0	200		0	<100	<2	0
	890432	1989Q0495	<.1	<2	<30	0	1,590		0	<100	<2	0
	890433	1989Q0496	<1	<2	<30	0	15,700		0	<100	23	0
	890434	1989Q0497	<1	17	<30	0	930		0	<100	46	0
	890435	1989Q0498	<1	26	<30	0	4,220		0	<100	67	0
	890437	1989Q0500	<.1	<2	<30	0	560		0	1400	<2	0
	890438	1989Q0501	0.1	<2	380	0	<20.		0	<100	<2	0
	890439	1989Q0502	<.1	<2	<30	0	110		0	<100	<2	0
	890440	1989Q0503	<.1	<2	<30	0	80		0	<100	<2	0
	890441	1989Q0504	<.1	<2	<30	0	290		0	<100	<2	0
	890442	1989Q0505	<1	47	<30	0	24,700		0	<100	120	0
	890443	1989Q0506	<1	34	<30	0	11,900		0	<100	73	0
	890444	1989Q0507	<1	19	100	0	14,800		0	<100	39	0
	890927	1989Q1376		<4	<40	0	491		0	300	<5	0
	890928	1989Q1377			168	0	28,500	355	0	65,400	8	0
	890929	1989Q1378		7	100	0	17,800		0	<100	<5	0
	890930	1989Q1379		<4	120	0	5,470		0	4,400	<5	0

			Cu			Мо					
Location GWIC ID	Site Name	Cr (µg/L)	(µg/L)	Hg (µg/L)	Li (µg/L)	(µg/L)	Ni (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	Ti (µg/L)
Wigeon Slough WPA											
	WS7										
	WS8										
Non-WPA Sites											
3774	1986Q0957	<2	<2	0	100	<20	<10			790	3
4148	1985Q0832	_	_	0	0					0	-
4149	1973Q0402			0	0					0	
206548	2003-09	<10	<5		57.8	<10	<2	<10	7.45	836	<1
206548	2003-09										
890422	1989Q0485	<2	92	0	1,800	30	250			13,600	<1
890423	1989Q0486	<2	110	0	7,780	<20	180			73,600	<1
890424	1989Q0487	<2	<2	0	510	<20	10			2,730	4
890425	1989Q0488	<2	66	0	8,080	<20	170			68,900	<1
890426	1989Q0489	<2	<2	0	190	<20	<10			1,940	4
890427	1989Q0490	<2	<2	0	120	<20	<10			990	2
890428	1989Q0491	22	34	0	1,070	<20	50			7,120	12
890429	1989Q0492	<2	12	0	2,080	<20	<10			9,810	14
890430	1989Q0493	<2	3	0	110	<20	<10			600	3
890431	1989Q0494	<2	<2	0	120	<20	<10			580	1
890432	1989Q0495	<2	<2	0	280	<20	<10			700	<1
890433	1989Q0496	23	66	0	3,950	60	70			25,700	<1
890434	1989Q0497	<2	66	0	3,410	<20	110			26,700	<1
890435	1989Q0498	<2	110	0	4,200	40	130			32,100	<1
890437	1989Q0500	<2	<2	0	480	<20	<10			2,820	8
890438	1989Q0501	<2	5	0	44	<20	<10			650	38
890439	1989Q0502	<2	<2	0	18	<20	<10			250	6
890440	1989Q0503	<2	<2	0	19	<20	<10			89	1
890441	1989Q0504	2	14	0	540	<20	<10			9,680	19
890442	1989Q0505	<2	96	0	13,100	<20	140			95,100	140
890443	1989Q0506	<2	78	0	12,400	<20	150			78,900	110
890444	1989Q0507	30	78	0	5,840	<20	70			22,400	<1
890927	1989Q1376	<5	<4	0	143	<40	<20			1,050	<4
890928	1989Q1377	7	23	0	4,440	<40	42	220		18,700	<4
890929	1989Q1378	<5	16	0	2,840	<40	20	140		13,800	<4
890930	1989Q1379	<5	4	0	730	<40	<20	<50		3,580	<4

Location	GWIC ID	Site Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Chloride Index	Comments
Wigeon Slo	ough WPA							
0	0	WS7					0.032	
		WS8					0.014	
	0.4							
Non-WPA	Sites	400000057	0		47	- 4	0.005	
	3774	1986Q0957	0	<]	17	<4	0.005	
	4148	1985Q0832	0				0.029	
	4149	1973Q0402	0				38.580	
	206548	2003-09	<3	<10	<2	<2	0.024	
	206548	2003-09					0.022	
	890422	1989Q0485	0	5	17	<10	0.488	
	890423	1989Q0486	0	<1	13	<4	6.048	
	890424	1989Q0487	0	<1	9	<4	0.018	
	890425	1989Q0488	0	9	13	<4	0.646	
	890426	1989Q0489	0	<1	<3	29	0.003	
	890427	1989Q0490	0	<1	<3	<4	0.009	
	890428	1989Q0491	0	36	9	33	0.354	
	890429	1989Q0492	0	6	4	<4	0.364	
	890430	1989Q0493	0	<1	<3	<4	0.022	
	890431	1989Q0494	0	<1	<3	<4	0.051	
	890432	1989Q0495	0	<1	<3	<4	0.170	
	890433	1989Q0496	0	57	15	14	0.396	
	890434	1989Q0497	0	10	6	<4	0.466	
	890435	1989Q0498	0	34	14	<4	0.501	
	890437	1989Q0500	0	<1	7	<4	0.028	
	890438	1989Q0501	0	12	9	<4	0.218	
	890439	1989Q0502	0	<1	<3	<4	0.012	
	890440	1989Q0503	0	<1	<3	<4	0.034	
	890441	1989Q0504	0	11	5	<4	0.305	
	890442	1989Q0505	0	34	12	<4	0.958	
	890443	1989Q0506	0	14	50	<4	11.353	
	890444	1989Q0507	0	61	36	50	0.444	
	890927	198901376	0	<4	<7	<6	0.006	
	890928	198901377	0	20	13	11	4 047	
	890929	198901378	0	20 13	7	7	. 5 320	
	890930	1989Q1379	0	7	7	<6	0.301	

Location	GWIC ID	Site Name	Latitude	Longitude	TRS	Site Type	Depth	Agency	Sample Date	Water Temp. (°C)	Field pH
Non-WPA	Sites										
	890931	1989Q1380	48.8500	-104.1066	36N58E27ABDC	Well	13	MBMG	10/12/1989	16.3	
	890932	1989Q1381	48.8461	-104.0994	36N58E27ADDD	Well	23	MBMG	10/12/1989	14	
	890933	1989Q1382	48.8486	-104.0994	36N58E22ADAA	Well	17	MBMG	10/12/1989	14.3	
	890934	1989Q1383	48.8527	-104.0994	36N58E27AAAA	Well	27	MBMG	10/12/1989	13.7	
	890935	1989Q1384	48.8508	-104.0994	36N58E27AADA	Well	17	MBMG	10/12/1989	12.9	
	890941	1989Q1390	48.8527	-104.1061	36N58E27ABAB	Well	15	MBMG	10/13/1989	10.3	
	890942	1989Q1391	48.8513	-104.1125	36N58E27BAAC	Well	18.9	MBMG	10/12/1989	13.9	

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

1.1			eeune en merge	ine analyeee		<u>g. e a a</u>	ator bampiooi						
Lo	ocation	GWIC ID	Site Name	Field SC (µS/cm)	Field DO (mg/L)	Field TDS (g/L)	Field Chloride Conc. (mg/L)	Lab	Lab pH	Lab SC (µS/cm)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)
No	on-WPA	Sites											
		890931	1989Q1380					MBMG	7.79	2,968	92.92	40.66	447
		890932	1989Q1381					MBMG	7.51	21,375	1970	1,120	1,410
		890933	1989Q1382					MBMG	7.7	40,603	945	1,400	7,500
		890934	1989Q1383					MBMG	7.55	1,596.4	173	74.6	46.2
		890935	1989Q1384					MBMG	7.47	78,617	1900	1,340	18,800
		890941	1989Q1390					MBMG	7.09	9,211.4	469	457	745
		890942	1989Q1391					MBMG	7.51	1,203	116	57.05	26.9

Location	GWIC ID	Site Name	K (mg/L)	Fe (mg/L)	Mn (mg/L)	SiO ₂ (mg/L)	HCO₃ (mg/L)	CO₃ (mg/L)	SO ₄ (mg/L)	CI (mg/L)	NO₃ (mg/L)	F (mg/L)
Non-WPA	Sites											
	890931	1989Q1380	19.5	<.004	0.01	26.8	262	0	110	718	15.7	0.3
	890932	1989Q1381	44.51	0.51	2.7	22.5	314	0	1,220	7,840	1.1	1
	890933	1989Q1382	123	<.004	0.22	22.2	299	0	1,450	16,300	2.4	0.2
	890934	1989Q1383	7.75	<.004	0.64	25.7	395	0	430	40.1	0.08	0.14
	890935	1989Q1384	340	<.004	0.38	20.8	425	0	268	36,500	13.6	
	890941	1989Q1390	52.65	9.47	2.38	31.4	311	0	859	2,560	0.89	0.2
	890942	1989Q1391	9.06	0.98	0.83	27.2	375	0	257	6.6	0.06	0.3

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Location	GWIC ID	Site Name	OPO₄ (mg/L)	Ag (µg/L)	Al (µg/L)	As (µg/L)	Β (μg/L)	Ba (µg/L)	Be (µg/L)	Br (µg/L)	Cd (µg/L)	Co (µg/L)
Non-WPA S	Sites											
	890931	1989Q1380		<4	56	0	1,390		0	1,700	<5	0
	890932	1989Q1381		7	100	0	265		0	15,900	11	0
	890933	1989Q1382		6	<40	0	1,840		0	<100	12	0
	890934	1989Q1383		<4	<40	0	83		0	<100	<5	0
	890935	1989Q1384		14	90	0	34,200	300	0	12,300	12	0
	890941	1989Q1390		<4	<40	0	310		0	2,100	<5	0
	890942	1989Q1391		<4	<40	0	157		0	<100	<5	0

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

	- · · · · · · · · · · · · · · · · · · ·				J		•••					
Location	GWIC ID	Site Name	Cr (µg/L)	Cu (µg/L)	Hg (µg/L)	Li (µg/L)	Mo (µg/L)	Ni (µg/L)	Pb (µg/L)	Se (µg/L)	Sr (µg/L)	Ti (µg/L)
Non-WPA	Sites											
	890931	1989Q1380	<5	<4	0	196	<40	<20	<50		1,010	<4
	890932	1989Q1381	6	26	0	447	<40	60	310		5,600	<4
	890933	1989Q1382	<5	20	0	2,780	<40	<20	270		12,800	9
	890934	1989Q1383	<5	<4	0	34	<40	<20	<50		469	<4
	890935	1989Q1384	7	31	0	9,230	<40	20	400		24,800	<4
	890941	1989Q1390	<5	<4	0	267	<40	23	110		2,110	<4
	890942	1989Q1391	<5	<4	0	69	<40	<20			477	<4

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

Location	GWIC ID	Site Name	U (µg/L)	V (µg/L)	Zn (µg/L)	Zr (µg/L)	Chloride Index	Comments
Non-WPA	Sites							
	890931	1989Q1380	0	<4	<7	<6	0.242	
	890932	1989Q1381	0	22	14	7	0.367	
	890933	1989Q1382	0	14	<6	<6	0.401	
	890934	1989Q1383	0	<4	7	<6	0.025	
	890935	1989Q1384	0	27	9	18	0.464	
	890941	1989Q1390	0	<4	8	<6	0.278	
	890942	1989Q1391	0	<4	<7	<6	0.005	

Appendix B. Analytical results of inorganic analyses for surface and groundwater samples.

APPENDIX C

Analytical results of organic analyses of soil samples

Location	Site Name	Latitude	Longitude	Site Type	Agency	Sample Date	Total Pet Hydroca	roleum Irbons
							DW	WW
Anderson V	VPA							
	A-2S	48.9876	-104.1044	Soil	USFWS	9/13/2005	8,210.00	6,551.58
	A-2S	48.9876	-104.1044	Soil	USFWS	9/11/2006		
	A-3S	48.9872	-104.1046	Soil	USFWS	9/13/2005	50.00	41.00
	A-4S	48.9873	-104.1041	Soil	USFWS	9/13/2005	22,600.00	19,390.80
	A-5S	48.9867	-104.1039	Soil	USFWS	9/13/2005	50.00	42.75
	A-14S	48.9849	-104.0992	Soil	USFWS	9/14/2005	382.00	290.70
	A-14S	48.9849	-104.0992	Soil	USFWS	9/11/2006		
Jerde WPA	JP-1S JP-1S	48.9545 48.9545	-104.1874 -104.1874	Soil Soil	USFWS USFWS	9/15/2005 9/11/2006	50.00	42.90
Melby WPA								
	M-3S M-3S M-3S	48.6391 48.6391 48.6391	-104.0832 -104.0832 -104.0832	Soil Soil Soil	USFWS USFWS USFWS	9/16/2005 9/11/2006 9/11/2006	89,200.00	64,224.00
Mallad Pon	d WPA							
	MP-1S MP-1S	48.5756 48.5756	-104.1357 -104.1357	Soil Soil	USFWS USFWS	9/16/2005 9/11/2006	524.00	486.80
Medicine La	ake NWR RE-2S	48.5262	-104.2575	Soil	USFWS	9/17/2005	246.00	190.65

Appendix C. Analytical results of organic analyses of soil samples (ppm).

Location	Site Name	n-de	cane	n-doco	osane	n-dod	ecane	n-dotriad	contane	n-eico	sane
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	218.00	175.49	955.00	768.78	309.00	248.75	306.00	246.33	1,100.00	885.50
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	0.32	0.26	0.36	0.29	1.10	0.88	<0.02	0.02	0.83	0.67
Jerde WPA											
	JP-1S										
	JP-1S	<0.01	0.01	0.03	0.03	0.03	0.02	<0.01	0.01	0.02	0.02
Melby WPA	1										
	M-3S										
	M-3S	2,810.00	2,509.33	184.00	164.31	2,570.00	2,295.01	77.00	68.76	269.00	240.22
	M-3S	219.00	183.74	28.00	23.49	241.00	202.20	7.50	6.29	36.00	30.20
Mallad Dam											
Mallau Pon											
	MP-15	0.00	0.00	0.00	0.00	0.04	0.04	0.04	0.04	0.00	0.00
	MP-15	0.02	0.02	0.02	0.02	0.01	0.01	<0.01	0.01	0.02	0.02
Medicine La	ake NWR										
	RE-2S										

Appendix C. Analytical results of organic analyses of soil samples (ppm).

Location	Site Name	n-heneid	cosane	n-hentria	contane	n-heptad	cosane	n-hepta	Idecane
		DW	WW	DW	WW	DW	WW	DW	WW
Anderson	WPA								
	A-2S								
	A-2S	948.00	763.14	352.00	283.36	653.00	525.67	2,330.00	1,875.65
	A-3S								
	A-4S								
	A-5S								
	A-14S								
	A-14S	0.57	0.46	0.32	0.26	0.28	0.22	1.30	1.04
Jerde WPA	4								
	JP-1S								
	JP-1S	0.026	0.02	0.086	0.07	0.14	0.12	0.029	0.02
Malby M/D	٨								
	M 2C								
	M 29	214.00	101 10	00.00	00 /1	221.00	107 25	2 000 00	1 796 00
	M 29	214.00	24.22	99.00	7 07	221.00	10 20	2,000.00	210 50
	101-33	29.00	24.33	9.50	1.91	23.00	19.50	201.00	210.59
Mallad Por	nd WPA								
	MP-1S								
	MP-1S	0.02	0.02	0.07	0.06	0.05	0.05	0.05	0.05
		0.02	0.02	0.01	0.00	0.00	0.00	0.00	0.00
Medicine L	ake NWR								
	RE-2S								

Appendix C. A	Analytical res	ults of organi	c analvses o	of soil samples	(ppm).
					\

Location	Site Name	n-hexad	cosane	n-hexa	decane	n-nonac	osane	n-nona	decane	n-octac	osane
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	695.00	559.48	1,870.00	1,505.35	438.00	352.59	1,470.00	1,183.35	561.00	451.61
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	0.21	0.17	1.30	1.04	0.24	0.19	1.00	0.80	0.14	0.11
Jerde WPA	i i i i i i i i i i i i i i i i i i i										
	JP-1S										
	JP-1S	0.051	0.04	0.027	0.02	0.16	0.14	0.024	0.02	0.11	0.09
Melby WPA	ł										
	M-3S										
	M-3S	176.00	157.17	1,530.00	1,366.29	97.00	86.62	736.00	657.25	124.00	110.73
	M-3S	23.00	19.30	201.00	168.64	13.00	10.91	107.00	89.77	13.00	10.91
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	0.03	0.02	0.04	0.04	0.08	0.07	0.03	0.03	0.03	0.03
Medicine La	ake NWR										
	RE-2S										

$\Delta p = 100 \times 0.$	Appendix C. Ana	lytical results of	organic analyses	of soil samples	(ppm).
----------------------------	-----------------	--------------------	------------------	-----------------	--------

Location	Site Name	n-octa	decane	n-penta	cosane	n-penta	Idecane	n-tetrac	osane	n-tetra	decane
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	1,340.00	1,078.70	720.00	579.60	806.00	648.83	798.00	642.39	468.00	376.74
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	1.00	0.80	0.25	0.20	1.30	1.04	0.25	0.20	1.30	1.04
Jerde WPA											
	JP-1S										
	JP-1S	0.031	0.03	0.066	0.06	0.036	0.03	0.047	0.04	0.012	0.01
Malby M/D/	1										
	1 M_3S										
	M-3S	508.00	153 61	186.00	166 10	2 030 00	1 812 70	176.00	157 17	2 270 00	2 027 11
	M-3S	57.00	433.04	24.00	20.14	2,030.00	204 72	21.00	17.62	2,270.00	2,027.11
	101-55	57.00	47.02	24.00	20.14	244.00	204.72	21.00	17.02	232.00	211.45
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	0.02	0.02	0.06	0.06	0.06	0.05	0.03	0.03	0.03	0.02
Medicine L	ake NWR										
	RE-2S										

Appendix C. An	alvtical results c	of organic analyse	es of soil samples ((ppm).
				\p~p~/.

Location	Site Name	n-tetratria	contane	n-triacc	ontane	n-trico	sane	n-tride	ecane	n-tritriac	ontane
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	85.00	68.43	467.00	375.94	798.00	642.39	367.00	295.44	180.00	144.90
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	< 0.02	0.02	0.07	0.05	0.35	0.28	1.20	0.96	0.14	0.11
Jerde WPA											
	JP-1S										
	JP-1S	0.015	0.01	0.015	0.01	0.042	0.04	<0.01	0.01	0.038	0.03
Melby WPA	1										
	M-3S										
	M-3S	27.00	24.11	99.00	88.41	179.00	159.85	3,290.00	2,937.97	74.00	66.08
	M-3S	3.90	3.27	10.00	8.39	22.00	18.46	350.00	293.65	5.00	4.20
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	<0.01	0.01	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02
Medicine L	ake NWR										
	RE-2S										

Appendix C. Analytical results of organic analyses of soil samples (ppm).

Location Site Name		n-und	ecane	phyta	ane	prist	ane	1,6,7-Tri naphth	methyl- alene	1-methylnaphthalene	
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	297.00	239.09	502.00	404.11	368.00	296.24	40.80	32.84	104.00	83.72
	A-3S										
	A-4S										
	A-5S										
	A-14S	0.75	0.00	0.04	0.40	0.54	0.44	0.40	0.00	0.40	0.10
	A-145	0.75	0.60	0.61	0.49	0.51	0.41	0.10	0.08	0.12	0.10
Jerde WPA											
	JP-1S										
	JP-1S	<0.01	0.01	<0.01	0.01	0.044	0.04	<0.005	0.00	<0.005	0.00
Melbv WPA	1										
	M-3S										
	M-3S	3,480.00	3,107.64	65.00	58.05	49.00	43.76	24.00	21.43	108.00	96.44
	M-3S	319.00	267.64	8.10	6.80	5.80	4.87	3.70	3.10	14.50	12.17
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	<0.01	0.01	0.02	0.02	0.02	0.02	<0.005	0.00	<0.005	0.00
Medicine La	ake NWR										

Appendix C. Analytical results of organic analyses of soil samples (ppr	m).
---	-----

RE-2S

		1-		2,6)-	2	-				
Location	Site Name	methylphen	anthrene	dimethylna	phthalene	methylnap	phthalene	acenaph	thalene	acenap	hthene
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	32.50	26.16	90.60	72.93	123.00	99.02	0.97	0.78	4.90	3.94
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	0.05	0.04	0.20	0.16	0.16	0.13	<0.005	0.00	0.03	0.03
Jerde WPA	i.										
	JP-1S										
	JP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Melby WPA	ł										
	M-3S										
	M-3S	45.30	40.45	54.50	48.67	148.00	132.16	1.70	1.52	3.30	2.95
	M-3S	6.30	5.29	6.70	5.62	17.10	14.35	0.37	0.31	<0.05	0.04
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	< 0.005	0.00	< 0.005	0.00	< 0.005	0.00	< 0.005	0.00	< 0.005	0.00
			0.00		0.00		0.00		0.00		0.00
Medicine La	ake NWR										
	RE-2S										

\neg	Appendix C. Ana	lvtical results	of organic analy	vses of soil sam	oles (ppm).
--------	-----------------	-----------------	------------------	------------------	-------------

Location	Site Name	anthra	cene	Benzo(a)ar	nthracene	benzo(a)	pyrene	benzo(b)flue	oranthene	benzo(e)	pyrene
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	2.19	1.76	1.30	1.05	<0.05	0.04	0.61	0.49		
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	0.01	0.01	0.15	0.12	<0.005	0.00	0.10	0.08	0.04	0.03
Jerde WPA											
	JP-1S										
	JP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Melby WPA	l										
	M-3S										
	M-3S	1.47	1.31	0.10	0.09	5.20	4.64	1.50	1.34	6.50	5.80
	M-3S	<0.05	0.04	<0.05	0.04	<0.05	0.04	<0.05	0.04	1.30	1.09
Mallad Dan											
Mallau POI											
	MD 19	-0.005	0.00	-0.005	0.00	-0.005	0.00	-0.005	0.00	<0.00F	0.00
	MP-15	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Medicine La	ake NWR										
	RE-2S										

Appendix C. Analy	vtical results of	organic analyses	s of soil samples	(ppm).
	,			· · · · · · / ·

Location	Site Name	benzo(g,h,i)perylene	benzo(k)flu	oranthene	biphe	enyl	C1-chry	vsenes	C ² dibenzoth	1- iophenes
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S A-3S	2.39	1.92	1.12	0.90	16.90	13.60	4.90	3.94	61.20	49.27
	A-4S A-5S										
	A-14S A-14S	0.21	0.17	0.06	0.04	0.04	0.03	<0.005	0.00	0.06	0.05
larda M/PA			••••								
Jeide Mi A	JP-1S										
	JP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Melby WPA	M-35										
	M-3S	1 20	1 07	0.88	0 79	7 00	6 25	14 60	13 04	22 10	19 74
	M-3S	0.42	0.35	<0.05	0.04	0.77	0.65	1.10	0.92	2.90	2.43
Mallad Pon	d WPA										
	MP-1S MP-1S	0.04	0.04	<0.005	0.00	<0.005	0.00	<0.005	0.00	< 0.005	0.00
Medicine La	ake NWR RE-2S	0.01	0.01		0.00		0.00		0.00		0.00

Appendix C. Analytical results of organic analyses of soil samples (ppm).

		C1-Fluora	Inthenes								
Location	Site Name	& Pyre	enes	C1-fluo	renes	C1-napht	thalenes	C1-phena	Inthrenes	C2-chry	/senes
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	14.70	11.83	35.10	28.26	227.00	182.74	134.00	107.87	1.87	1.51
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	0.09	0.07	0.07	0.05	0.28	0.22	0.27	0.22	<0.005	0.00
Jerde WPA											
	JP-1S										
	JP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Melby WPA											
	M-3S										
	M-3S	11.80	10.54	12.30	10.98	256.00	228.61	168.00	150.02	5.24	4.68
	M-3S	2.50	2.10	2.88	2.42	31.60	26.51	24.90	20.89	<0.05	0.04
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Medicine La	ake NWR										
	RE-2S										

Appendix C.	Analytical	results c	of organic	analyses	of soil	samples	(ppm).

		C2	2-								
Location	Site Name	dibenzothi	ophenes	C2-fluo	renes	C2-naph	thalenes	C2-phena	nthrenes	C3-chry	senes
		DW	WW	DW	WW	DW	DW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	<0.05	0.04	< 0.05	0.04	413.00	332.47	199.00	160.20	< 0.05	0.04
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	<0.005	0.00	<0.005	0.00	0.75	0.60	0.37	0.30	<0.005	0.00
Jerde WPA											
	JP-1S										
	JP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Melbv WPA	4										
	M-3S										
	M-3S	<0.05	0.04	< 0.05	0.04	286.00	255.40	154.00	137.52	< 0.05	0.04
	M-3S	<0.05	0.04	<0.05	0.04	38.00	31.88	24.20	20.30	<0.05	0.04
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Madiairaal											
wealcine L	DE-29										
	NE-23										

	Appendix C. Ana	alvtical results of	organic analyses	of soil samples (ppm).	
--	-----------------	---------------------	------------------	------------------------	--

		C3	}-								
Location	Site Name	dibenzothi	ophenes	C3-fluo	renes	C3-napht	halenes	C3-phena	nthrenes	C4-chry	/senes
		DW	WW	DW	WW	DW	WW	DW	WW	DW	WW
Anderson V	VPA										
	A-2S										
	A-2S	< 0.05	0.04	<0.05	0.04			71.30	57.40	< 0.05	0.04
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	<0.005	0.00	<0.005	0.00	0.86	0.69	0.11	0.09	<0.005	0.00
Jerde WPA											
	JP-1S										
	JP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Melby WPA	١										
,	M-3S										
	M-3S	< 0.05	0.04	<0.05	0.04	147.00	131.27	58.10	51.88	< 0.05	0.04
	M-3S	<0.05	0.04	<0.05	0.04	23.30	19.55	9.40	7.89	<0.05	0.04
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Medicine La	ake NWR										

Appendix C. Analy	vtical results of	of organic analy	vses of soil	samples ((ppm).
		or gaine and	,000 01 001	0001101000	

RE-2S

Location	Site Name	C4-napht	halenes	C4-phena	nthrenes	chrvs	ene	Dibenz(a h)a	nthracene	dibenzoth	ionhene
Location	One Hume				\\\\\\/			D100112(0,11)0	10/10/		\\\\\\
		000	~~~~	DW	****		****	011		DW	
Anderson V	VPA										
	A-2S										
	A-2S	71.60	57.64	7.94	6.39	<0.05	0.04	< 0.05	0.04	43.60	35.10
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	0.21	0.17	0.02	0.01	<0.005	0.00	0.68	0.55	0.03	0.02
Jerde WPA											
	JP-1S										
	JP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Malby M/D/	l l										
	1 M_3S										
	M-3S	114.00	101 80	20.00	18 66	7 00	7.05	0.50	0.53	10.00	8 03
	M 29	114.00	0.49	20.90	2.01	2.30	1.00	<0.05	0.55	1 50	1.26
	101-33	11.50	9.40	2.40	2.01	2.30	1.95	<0.05	0.04	1.50	1.20
Mallad Pon	d WPA										
	MP-1S										
	MP-1S	<0.005	0.00	< 0.005	0.00	<0.005	0.00	0.03	0.03	< 0.005	0.00
Medicine La	ake NWR										
	RE-2S										

Appendix C. Analytical results of organic analyses of soil samples (ppm).

	Cite Nome	<u>fl </u>	4h o 10 o	fluor		indeno	(1,2,3-	n o n b th c			
Location	Sile Name	nuoran			ene	cu)py		naphtha		pery	ene
		DW	VVVV	DW	VVVV	DW	VVVV	DW	VVVV	DW	VVVV
Anderson \	NPA										
	A-2S										
	A-2S	< 0.05	0.04			0.83	0.67	41.80	33.65	1.83	1.47
	A-3S										
	A-4S										
	A-5S										
	A-14S										
	A-14S	0.04	0.03	0.03	0.03	0.14	0.11	0.03	0.02	0.10	0.08
Jerde WPA	l										
	JP-1S										
	JP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	0.02	0.01
Melbv WPA	4										
	M-3S										
	M-3S	0.39	0.35	8.60	7.68	0.09	0.08	72.10	64.39	0.80	0.71
	M-3S	<0.05	0.04	1.40	1.17	0.64	0.54	7.80	6.54	1.20	1.01
Mallad Pon	nd WPA										
	MP-1S										
	MP-1S	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00	<0.005	0.00
Medicine L	ake NWR RE-2S										

Appendix C.	Analytical	results of	organic	analyses	of soil	samples	(ppm).

Location	Site Name	phenan	threne	pyre	ne
		DW	WW	DW	WW
Anderson V	NPA				
	A-2S				
	A-2S	39.80	32.04	3.90	3.14
	A-3S				
	A-4S				
	A-5S				
	A-14S				
	A-14S	0.06	0.05	0.04	0.03
Jerde WPA					
	JP-1S				
	JP-1S	<0.005	0.00	<0.005	0.00
Malby M/D	n				
	- M-3S				
	M-3S	56 70	50.63	5 40	4 82
	M-3S	8.30	6.96	0.96	0.81
		0.00	0.00	0.00	0.01
Mallad Por	nd WPA				
	MP-1S				
	MP-1S	<0.005	0.00	<0.005	0.00
Medicine L	ake NWR				
	RE-2S				

Appendix C. Analytical results of organic analyses of soil samples (ppm).
APPENDIX D

				•	•		Total Petroleum		n-	n-
						Sample	Hydrocarbons	n-decane	docosane	dodecane
Location	Site Name	Latitude	Longitude	Site Type	Agency	Date	(mg/L)	(µg/L)	(µg/L)	(µg/L)
Anderson	WPA									
	A-2MW	48.9876	-104.1044	Well	USFWS	9/14/2005	300			
	A-2MW	48.9876	-104.1044	Well	USFWS	8/31/2006		<0.5	<0.5	<0.5
	A-3MW	48.9872	-104.1046	Well	USFWS	9/13/2005	550			
	A-3MW	48.9872	-104.1046	Well	USFWS	8/31/2006		<0.5	5.00	6.00
	A-4MW	48.9873	-104.1041	Well	USFWS	9/13/2005	810			
	A-4MW	48.9873	-104.1041	Well	USFWS	8/31/2006		<0.5	<0.5	<0.5
	A-5DMW	48.9867	-104.1039	Well	USFWS	9/13/2005	510			
	A-14MW	48.9849	-104.0992	Well	USFWS	9/14/2005	570			
	A-14MW	48.9849	-104.0992	Well	USFWS	8/31/2006		0.80	0.80	0.70
Jerde WP	4									
	JP-1MW	48.9545	-104.1874	Well	USFWS	9/14/2005	500			
	JP-2MW	48.9547	-104.1878	Well	USFWS	9/14/2005	210			
	JP-2MW	48.9547	-104.1878	Well	USFWS	8/31/2006		<0.5	<0.5	<0.5
Melby M/P	Δ									
Weby W	~ M-3MM	48 6391	-104 0832	\\/ell	LISEW/S	9/16/2005	810			
	M-3MW	48 6391	-104.0832	Well	USEWS	8/31/2006	010	<0.5	3 50	3 80
Mallard Dr	and M/PA	40.0001	104.0002	Wen	001 110	0/01/2000		<0.0	0.00	0.00
Mallalu I C		18 5756	-10/ 1357	Wall		0/16/2005	240			
Medicine I	ako NIM/R	40.07.00	-104.1337	Weil	031 113	9/10/2003	240			
Medicine L		18 5262	-10/ 2575	\\/oll	LISE/MS	9/17/2005	200			
		48 5262	-104.2575	Well	USE/WS	8/31/2005	230	~0.5	0.50	<0.5
	R\/-1M\/	48 5254	-104.2645	Well	USEWS	9/17/2005	<100	<0.5	0.50	<0.5
		40.0204	104.2040	Weil	001 110	3/11/2000				
Rabenberg	g WPA									
	RS-1MW	48.8504	-104.1226	Well	USFWS	9/15/2005	<100			
	RS-2MW	48.8499	-104.1225	Well	USFWS	9/15/2005	460			
	RS-3MW	48.8484	-104.1210	Well	USFWS	9/15/2005	410			
	RS-4MW	48.8477	-104.1193	Well	USFWS	9/15/2005	<100			

		n-					n-	n-	
Location	Site Name	dotriacontane (µg/L)	n-eicosane (µg/L)	n-heneicosane (µg/L)	n-hentriacontane (µg/L)	n-heptacosane (µg/L)	heptadecane (µg/L)	hexacosane (µg/L)	n-hexadecane (µg/L)
Anderson	WPA								
	A-2MW								
	A-2MW	<0.5	<0.5	<0.5	<0.5	0.80	<0.5	1.10	<0.5
	A-3MW								
	A-3MW	<0.5	<0.5	<0.5	<0.5	2.80	<0.5	2.90	<0.5
	A-4MW	0.00	0.5	0.5	0.70	0.00	0.5	0.5	0.5
		0.90	<0.5	<0.5	0.70	0.90	<0.5	<0.5	<0.5
	A-14MW	<0.5	<0.5	<0.5	0.90	6 20	<0.5	6 60	<0.5
Jerde WF	2A	1010		1010	0.00	0.20	0.0	0.00	40.0
	JP-1MW								
	JP-2MW								
	JP-2MW	0.50	<0.5	<0.5	<0.5	1.60	<0.5	1.10	<0.5
Melby Wł	PA								
-	M-3MW								
	M-3MW	1.60	4.90	4.00	2.20	4.00	25.00	3.00	19.00
Mallard P	ond WPA								
	MP-1MW								
Medicine	Lake NWR								
	RE-2MW	-0 F	-0 F	-0 F	1 70	2.60	-0 F	2.00	-0 F
	RE-21VIVV R\\/_1\/\\/	<0.5	<0.5	<0.5	1.70	2.60	<0.5	2.00	<0.5
- <i>.</i> .									
Rabenbei	g WPA								
	RS-1WW								
	RS-3MW								
	RS-4MW								

ripportaix	Diffinalytica	a roodito or organite	analyses of great						
Location	Site Name	n-nonacosane (µg/L)	n-nonadecane (µg/L)	n-octacosane (µg/L)	n-octadecane (µg/L)	n-pentacosane (µg/L)	n- pentadecane (µg/L)	n- tetracosane (µg/L)	n-tetradecane (μg/L)
Anderson	WPA								
	Δ_2Ν/\\/								
	Δ_2Ν/\\/	0.80	~0.5	0.70	<0.5	0.90	~0.5	0.70	~0.5
	Δ-3Μ///	0.00	<0.0	0.70	<0.0	0.00	<0.0	0.70	<0.0
	A-3MW	1 20	<0.5	1 10	< 0.5	2 20	<0.5	1 50	<0.5
	A-4MW	1.20	(0.0	1.10	(0.0	2.20	\$0.0	1.00	\$0.0
	A-4MW	<0.5	<0.5	<0.5	< 0.5	0.60	< 0.5	<0.5	<0.5
	A-5DMW								
	A-14MW								
	A-14MW	2.70	<0.5	3.90	<0.5	5.20	<0.5	3.80	0.60
Jerde WP	A								
	JP-1MW								
	JP-2MW								
	JP-2MW	<0.5	<0.5	0.90	<0.5	1.10	<0.5	0.50	<0.5
Melby WF	PA								
,	M-3MW								
	M-3MW	2.70	11.00	2.60	7.70	3.60	19.00	3.70	18.00
Mallard Po	ond WPA								
	MP-1MW								
Medicine	Lake NWR								
	RE-2MW								
	RE-2MW	1.80	0.50	1.90	<0.5	1.70	<0.5	1.40	<0.5
	RW-1MW								
Rabenber	g WPA								
	RS-1MW								
	RS-2MW								
	RS-3MW								

RS-4MW

	Site	n- tetratriacontane	n-triacontane	n-tricosane		n-tritriacontane	n-undecane	nhvtane	
Location	Name	(µg/L)	(µg/L)	(µg/L)	n-tridecane (µg/L)	(µg/L)	(µg/L)	(µg/L)	pristane (µg/L)
Anderson	WPA								
	A-2MW								
	A-2MW	<0.5	<0.5	0.70	<0.5	<0.5	<0.5	<0.5	<0.5
	A-3MW								
	A-3MW	0.70	0.90	1.10	<0.5	<0.5	<0.5	<0.5	<0.5
		<0 F	-0.5	0.50	-0.5	-0 F	-0.5	-0 F	<0 F
		<0.5	<0.5	0.50	<0.5	<0.5	<0.5	<0.5	<0.5
	A-14MW								
	A-14MW	0.50	1.60	2.30	<0.5	<0.5	<0.5	<0.5	<0.5
Jerde WP	A								
	JP-1MW								
	JP-2MW								
	JP-2MW	<0.5	<0.5	0.70	<0.5	0.50	<0.5	<0.5	<0.5
Melby WF	PA								
	M-3MW								
	M-3MW	0.80	2.20	3.70	15.00	0.90	1.40	1.80	0.90
Mallard Po	ond WPA								
Modicino	NP-1NV								
Medicine									
	RE-2MW	1.10	2.50	0.90	<0.5	0.60	<0.5	<0.5	<0.5
	RW-1MW								
Rabenber	a WPA								
	RS-1MW								
	RS-2MW								
	RS-3MW								
	RS-4MW								

		1-	1-	2,6-	2-			
Location	Site Name	methylnaphthalene (µg/L)	methylphenanthrene (µg/L)	dimethylnaphthalene (µg/L)	methylnaphthal ene (µg/L)	acenaphthalene (µg/L)	acenaphthene (µg/L)	anthracene (µg/L)
Anderson	WPA							
	A-2MW							
	A-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-3MW							
	A-3MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-4MW							
	A-4MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-5DMW							
	A-14MW							
	A-14MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Jerde WPA	4							
	JP-1MW							
	JP-2MW			0.0				
	JP-2IVIVV	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Melby WP.	A							
	M-3MW							
	M-3MW	2.60	0.30	0.70	0.60	<0.3	<0.3	<0.3
Mallard Po	ond WPA							
	MP-1MW							
Medicine L	ake NWR							
	RE-2MW							
	RE-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	RW-1MW							
Rabenberg	g WPA							
	RS-1MW							
	RS-2MW							
	RS-3MW							
	RS-4MW							

Location	Site Name	Benzo(a)anthracene (ug/L)	benzo(a)pyrene (µg/L)	benzo(b)fluoranthene (ug/L)	benzo(e)pyrene (µa/L)	benzo(a.h.i)pervlene (µa/L)
Anderson	WPA					
	A-2MW					
	A-2MW	<0.3	<0.3	<0.3	<0.3	<0.3
	A-3MW					
	A-3MW	<0.3	<0.3	<0.3	<0.3	<0.3
	A-4MW	-0.2	-0.2	-0.2	-0.2	-0.2
		<0.3	<0.3	<0.3	<0.3	<0.3
	A-14MW					
	A-14MW	<0.3	<0.3	<0.3	<0.3	<0.3
Jerde WPA	4					
	JP-1MW					
	JP-2MW					
	JP-2MW	<0.3	<0.3	<0.3	<0.3	<0.3
Melby WP	A					
	M-3MW					
	M-3MW	<0.3	<0.3	<0.3	<0.3	<0.3
Mallard Po	ond WPA					
	MP-1MW					
ivieaicine L						
	RE-2MW	<0.3	<0.3	<0.3	<0.3	<0.3
	RW-1MW					
Rabenberr	n WPA					
rabonborg	RS-1MW					
	RS-2MW					
	RS-3MW					
	RS-4MW					

Appendix D. Anal	vtical results of	organic analy	vses of o	groundwater	samples.
	J				

Location	Site Name	biphenyl (µg/L)	C1-chrysenes (µg/L)	C1-dibenzothiophenes (µg/L)	C1-Fluoranthenes & Pyrenes (μg/L)	C1-fluorenes (µg/L)	C1- naphthalenes (µg/L)	C1- phenanthrenes (µg/L)
Anderson	WPA							
	A-2MW							
	A-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-3MW							
	A-3MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-4MW							
	A-4MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-5DMW							
	A-14MW	0.0	0.0	0.0	0.0	0.0	0.0	0.0
larda M/D	A-14IVIVV	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Jerde WP7	4 IP-1M\\/							
	JP-2MW							
	JP-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Melbv WP	A							
,	M-3MW							
	M-3MW	<0.3	<0.3	<0.3	<0.3	<0.3	3.20	2.20
Mallard Po	ond WPA							
	MP-1MW							
Medicine L	ake NWR							
	RE-2MW							
	RE-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	RVV-1IVIVV							
Rabenberg	g WPA							
	RS-1MW							
	RS-2MW							
	RS-4MW							

		C2-			C2-		C3-	
Location	Site Name	dibenzothiophenes (µg/L)	C2-fluorenes (µg/L)	C2-naphthalenes (µg/L)	phenanthrenes (µg/L)	C3-chrysenes (µg/L)	dibenzothiophenes (µg/L)	C3-fluorenes (µg/L)
Anderson	WPA							
	A-2MW							
	A-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-SIVIV A-3MW	<0.3	< 0.3	<0.3	<0.3	< 0.3	<0.3	<0.3
	A-4MW							
	A-4MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-5DMW							
	A-14ΜW Δ-14ΜW	<0.3	~0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Jerde WP/	A	<0.0	<0.0	<0.0	<0.0	<0.0	(0.0	<0.0
	JP-1MW							
	JP-2MW							
	JP-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Melby WP	A							
	M-3MW	~0.3	~0.3	3 00	1 70	-0.3	~0.3	~0.3
Mallard Po	and WPA	<0.5	<0.5	5.50	1.70	<0.5	<0.5	<0.5
manarare	MP-1MW							
Medicine L	ake NWR							
	RE-2MW	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RE-2MW RW-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	1MW							
Rabenberg	g WPA							
	RS-1MW							
	RS-2MW							
	RS-4MW							

		C3-	C3-	1 -				
Location	Site Name	naphthalenes (µg/L)	phenanthrenes (µg/L)	C4-chrysenes (µg/L)	C4-naphthalenes (µg/L)	C4-phenanthrenes (µg/L)	chrysene (µg/L)	Dibenz(a,h)anthracen e (µg/L)
Anderson	WPA							
	A-2MW							
	A-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-3MW							
	A-3MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-4MW							
	A-4MVV	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-14MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Jerde WP	A	\$0.0	(0.0	(0.0	(0.0	\$0.0	\$0.0	(0.0
	JP-1MW							
	JP-2MW							
	JP-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Melby WP	PA							
	M-3MW							
	M-3MW	2.00	<0.3	<0.3	0.50	<0.3	<0.3	0.30
Mallard Po	ond WPA							
	MP-1MW							
Medicine I	Lake NWR							
	RE-2MW							
	RE-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	RVV-1IVIVV							
Rabenber	g WPA							
	RS-1MW							
	RS-2IVIVV							
	RS-4MW							

Location	Site Name	dibenzothiophene (µg/L)	fluoranthene (µg/L)	fluorene (µg/L)	indeno(1,2,3-cd)pyrene (μg/L)	naphthalene (µg/L)	perylene (µg/L)	phenan threne (µg/L)	pyrene (µg/L)
Anderson W	Anderson WPA								
	Δ-2Ν/\\/								
	A-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-3MW			1010			(0.0	40.0	40.0
	A-3MW	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	A-4MW								
	A-4MW	<0.3	<0.3	<0.3	<0.3	< 0.3	0.50	<0.3	<0.3
	A-5DMW								
	A-14MW								
	A-14MW	<0.3	<0.3	<0.3	<0.3	<0.3	0.30	<0.3	<0.3
Jerde WPA									
	JP-1MW								
	JP-2MW								
	JP-2MW	<0.3	<0.3	<0.3	<0.3	<0.3	0.40	<0.3	<0.3
Melbv WPA									
	M-3MW								
	M-3MW	<0.3	<0.3	<0.3	<0.3	0.70	<0.3	0.50	<0.3
Mallard Pon	d WPA								
	MP-1MW								
Medicine La	ike NWR								
	RE-2MW								
	RE-2MW	<0.3	<0.3	< 0.3	<0.3	< 0.3	0.50	<0.3	<0.3
	RW-1MW								
Rabenbera	WPA								
, las en serg	RS-1MW								
	RS-2MW								
	RS-3MW								
	RS-4MW								