An Update on the Eureka Groundwater Investigation Public Meeting 11/21/24

Eureka, MT

Andrew Bobst and Ginette Abdo

Assisted by: Tyler Storey, Ali Gebril, Todd Myse, James Rose, Kim Bolhuis, and Kevin Morphis

Montana Bureau of Mines and Geology

Our mission is to provide information for the sound use of Montana's geological and water resources.

- Established in 1919 to provide reliable and unbiased earth science information
- Non regulatory, applied research

Geology

- ✓ Geologic Mapping
- ✓ Geohazards/Earthquake Studies
- ✓ Economic Geology
- ✓ Energy Resources

Water Resources

- ✓ Ground Water Assessment Program
- $\checkmark\,$ Ground Water Investigation Program
- State-wide groundwater monitoring network

https://www.mbmg.mtech.edu/

Ground Water Assessment Program (GWAP)

- Provides basic information about aquifers within areas as prioritized by the Ground Water Assessment Steering Committee
- ✓ Regional scale
- ✓ Well inventories, groundwater levels and chemistry, aquifer framework
- ✓ State-wide long-term groundwater monitoring network

Ground Water Assessment Program (GWAP)

- Provides basic information about aquifers within areas as prioritized by the Ground Water Assessment Steering Committee
- ✓ Regional scale
- ✓ Well inventories, groundwater levels and chemistry, aquifer framework
- ✓ State-wide long-term groundwater monitoring network

Ground Water Investigation Program (GWIP)

- ✓ Answers site-specific water resource questions
- Collect detail information... groundwater and surface-water monitoring, well drilling, aquifer testing, develop water budgets, water quality
- Construct groundwater flow models \checkmark

Background – Population Growth

Background – Groundwater Development

Background – Groundwater Development

Background – Water-Rights Administration

Tobacco River	Kootenai River (Koocanusa Reservoir)	
Existing legal demands (water rights) exceed physical supply in the months of January, February, June, July, September and December.	Physical supply exceeds existing legal demands in all months.	
Water right applications resulting in new or altered net depletions/return flows to the Tobacco River may require a mitigation or aquifer recharge plan.	Water right applications do not require a mitigation or aquifer recharge plan.	

- Provide an understanding of the area's hydrogeology
 Complex Glacial Geology
- Understand effects of groundwater development in different areas on groundwater and surface-water availability
- Develop a water management tool to allow screening the likely location and timing of surface-water depletions from a new groundwater development.

• Understand the 3D distribution of Geologic Units and their aquifer properties (static properties)

- Develop a Dynamic Groundwater Budget
 - Where the water is coming from and going to, how much, and what is the timing

- Use Monitoring Data to Calibrate
 - The combination of static aquifer properties and the dynamic water budget determine groundwater levels and fluxes over time
 - Numerically adjust model properties to simulate observations
 - Groundwater Elevations, Hydrograph Types, Stream Gains and Losses, etc.

A single solution using dissimilar types of information.

Distribution of Geologic Units

Distribution of Geologic Units

Hydrostratigraphic units

- Bedrock
 - Bedrock highs in some areas
- Drift
 - Basal Till
 - Sand and Gravel lenses
- Fluvial Outwash
 - Sand and Gravel
 - Ancestral Phillips Creek, Ancestral Tobacco River, and other tributaries
- Lake (glacial Lake Kootenai)
 - Gravel and sand near shore deposits
 - Sandy to silty deeper lake deposits
- Modern sediments
 - Stream alluvium/ alluvial fans

Distribution of Geologic Units - Bedrock

Rocky Mountain Trench Based on Gravity data from Coffin and others, 1971

Distribution of Geologic Units

164 Well Logs

12ALVM - ALLUVIUM (PLEISTOCENE)		
From	То	Description
0	1	TOP SOIL
1	10	REDDISH BROWN SILTY FINE SAND
10	35	REDDISH BROWN SILTY SAND
35	45	SANDY CLAY
45	80	SILTY CLAY
80	90	SAND AND CLAY
90	110	SILTY CLAY
110	115	CLAY AND GRAVEL
115	125	GRAVEL
125	138	CLAY
138	280	GRAVEL
138	145	COARSE GRAVEL AND SAND
145	180	COARSE GRAVEL AND SAND WITH FEW COBBLES
180	190	SAND AND GRAVEL
190	240	GRAVEL AND SAND WITH FEW COBBLES

Lithologic Log

164 Well Logs RockWorks – Create 3D Geologic Model

Example of Rockworks Cross Section and Fence Diagrams

Aquifer Properties of Geologic Units

Defining Aquifer Properties

- Permeability (hydraulic conductivity)
- Water Storage (storativity)

Existing Aquifer Tests

GWIP Aquifer Test Sites (72 hr tests)

- Deep Outwash Gravel (K=46 ft/d)
- Bedrock (K=0.01 ft/d)
- Deltaic Gravel (K=1,890 ft/d)

(see Bobst, 2024)

Dynamic Groundwater Budget

Dynamic Groundwater Budget

Monitoring (2022-2024)

Groundwater Network (104 wells)

Surface-Water Network (31 sites)

Primary Monitoring Period: October 2022 to October 2023 (Water Year 2023+) Extended Monitoring (fewer sites, with automated transducers): July 2022 to July 2024

Monitoring (2022-2024)

Groundwater Network (104 wells)

Surface-Water Network (31 sites)

Primary Monitoring Period: October 2022 to October 2023 WY24 – Moderate/Dry – 90% Extended Monitoring (fewer sites, with automated transducers): July 2022 to July 2024

Monitoring – April 2023 Groundwater Flow

April 2023

20' Contours

April 2023 20' Potentiometric Lines

00.51 2mi

April 2023 Potentiometric Surface

Distribution of Hydrograph Types

Model Grid

Distribution of Aquifer Properties based on Geologic Model

Boundary Conditions/Sources and Sinks

Simulate Groundwater Levels, and Compare to Observations

Modify aquifer properties, and sources and sinks, within reasonable ranges to improve model fit with observations

A single solution using dissimilar types of information.

Next Steps – Convert to Transient Model

- Dynamic Boundary Conditions
 - Changes over time
- Add Storativity term
 - Aquifer property that defines how water is stored and released over time
- Calibrate to hydrograph types

Next Steps – Questions and Scenarios

- Delineate the area where groundwater development will likely require mitigation due to depletion of the Tobacco River
- Provide the model as a water management tool
- Evaluate the effects of decreased inflow from Phillips Creek
- Evaluate the different effects from the same amount of pumping in different hydrogeologic units
 - Change the shape of the potentiometric surface
- Others?

Questions

