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SUMMARY AND CONCLUSIONS

Anomalously high concentrations of nitrate occur in the ground water and surface water in the Sum-
mit Valley as compared with other parts of the Clark Fork drainage basin. A data set of 239 samples
showed that nitrate concentrations exceed the 10 mg/L health standard in 13 percent of samples, and an
additional 51 percent had concentrations exceeding 2 mg/L, suggesting some land-use impact. Concen-
trations were slightly higher beneath the sewered urban/residential part of the valley than beneath the
unsewered part. Concentrations were highest in the sewered residential area in the east side of Butte.
Detailed sampling beneath unsewered subdivisions in the southeast part of the valley clearly showed a
land-use impact, where median nitrate concentrations were 5 to 9 times higher below unsewered subdi-
visions than adjacent undeveloped land. Concentrations in the alluvial and bedrock aquifers were similar.
The permeable nature of the soils, fractured bedrock, and alluvium has allowed nitrate to penetrate
relatively deeply into the ground-water system. Elevated concentrations were commonly detected in wells
with a depth to the top open interval, or depth water enters, greater than 100 ft. Similarly, elevated con-
centrations of nitrate were detected where the water table was relatively deep; 31 percent of the samples
with nitrate concentrations greater than 2 mg/L (suggesting a land-use impact) were obtained from areas
where the water table was greater than 50 ft below the land surface.

The most likely potential nitrate sources include fertilizers applied to lawns, septic effluent, and/or leaky
sewer pipes. Results from limited N and O isotopic analysis of samples from wells completed in differ-
ent land use and hydrogeologic settings revealed that all the samples were isotopically similar, with the
exception of one sample from the Montana Pole site. The isotopic signature suggests an animal waste

or human sewage source for all sites except the Montana Pole site, for which the data are indicative of a

fertilizer or possibly an explosive source. A few of the samples with somewhat depleted 8'°N values may
indicate a mixed lawn fertilizer/sewage source.

For the residents in the Summit Valley who rely on wells for their drinking water, the elevated nitrate
concentrations observed throughout the valley are a potential concern for human health. Because of the
documented impacts and the vulnerability of the ground-water resources, homeowners that rely on wells
for domestic water should be encouraged to regularly test their well water, maintain their septic systems,
not over-apply fertilizers, and become aware of the potential risks associated with nitrate contamination
of the ground-water resource.

The results suggest that nitrate contamination of the ground water in the Summit Valley is likely to con-
tinue as more of the valley becomes developed. The elevated nitrate concentrations that occur at depth,
and the occurrence of elevated nitrate in the baseflow of Blacktail and Silver Bow Creeks, suggest that
little, if any, natural attenuation of nitrate occurs in the aquifer. Because of the apparent lack of natural
attenuation, the only way for nitrate concentrations to be reduced will be through natural flushing
concurrent with a reduction in nitrate loading to the aquifer.
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BACKGROUND

Elevated nitrate levels detected in ground water in
the Summit Valley have halted some proposed residential
developments and raised concern among citizens not
currently served by the municipal water and sanitary
sewer system (Montana Standard 9/17/2006, Carstar-
phen and others, 2004). High concentrations of nitrate
in ground water generally indicate contamination from
anthropogenic activities and are rarely attributable to
natural sources. The purpose of this report is to describe
nitrate in ground water in the Summit Valley near Butte,
Montana and assess the hydrogeologic factors and land
uses that may contribute to nitrate contamination.

INTRODUCTION

Butte occupies the northern part of the Summit
Valley in southwest Montana. The Summit Valley, a
north—south-oriented intermontane basin, is in the
upper part of the Silver Bow Creek drainage at the
headwaters of the Clark Fork River system (fig. 1). The
basin is bounded on all sides by mountains formed of
granite (Butte Quartz Monzonite) that is part of the
Boulder Batholith (fig. 2). Near land surface, the granite
is fractured and readily weathered. The upland area in
the northwestern corner of the valley (near Big Butte) is
underlain by lava flows and lesser amounts of volcanic
ash (tuff) that are part of the Lowland Creek Volcanics.
The valley floor, or the “flat,” is an alluvial plain that is
about 5 miles long and 3 miles wide; it is drained by
the north-flowing Basin and Blacktail Creeks, which
join about 2 miles upstream from where Blacktail Creek
enters Silver Bow Creek. Silver Bow Creek flows to the
west and exits the northwest part of the valley through
a narrow gap in the bedrock. The part of Silver Bow
Creek that drains the north part of the valley—the Butte
hill, south of the Berkeley Pit (between Montana Street
and Continental Drive)—was channelized and is now
referred to as the Metro Storm Drain (fig. 2).

GEOLOGIC SETTING

The alluvial basin fill in the interior of the valley is
composed of gravels, sands, silts, and clays derived from
the weathering (decomposition) of the granitic rocks
that form the surrounding mountains. The soils are per-

meable and well-drained; the NRCS (2007) has mapped

most of the soils in the valley as belonging to hydrologic
group A or B, meaning that they have a sandy texture
with low runoff potential (fig. 2). The thickness of the
basin fill is poorly known. A geophysical survey across
the flat immediately south of the airport (fig. 2) suggests
that bedrock underlying the basin fill is at a depth of
600 to 880 ft in this part of the valley (Botz, 1969). In
the northern part of the valley, south of the Berkeley Pit,
the alluvium is reported to range up to 600 ft (ARCO,
1994). For more detail regarding the geology of the
Summit valley the reader is referred to Berg and Har-
grave (2004), Botz (1969), Meinzer (1914), and Smedes
(1967, 1968).

WATER SUPPLY AND WELLS

The city of Butte imports surface water from up-
land reservoirs and the Big Hole River (located about
20 miles southwest of Butte) for its municipal supply;
however, all residences outside of the area serviced by
municipal water and sewer rely on individual wells and
septic systems. The alluvial basin fill and fractured bed-
rock along the valley margin are the principal aquifers
in the Summit Valley. Infiltration of precipitation, snow
melt, and surface water near valley margins provide most
of the ground-water recharge. Hydrographs for wells
located within the valley show that ground-water levels
reach seasonal highs in response to spring runoff and
snow melt, followed by declining water levels through-
out the rest of the year. Annual water-level fluctuations
are generally less than 5 ft, but are more pronounced
in the fractured bedrock aquifer (fig. 3). The alluvial
aquifer in the valley is largely unconfined. The alluvial
basin-fill and bedrock aquifers are generally hydraulically
connected; ground water moves from the topographi-
cally high valley margins toward the topographically low
valley bottoms where it discharges to streams (fig. 3).

Data from the Montana Bureau of Mines and
Geology (MBMG) Ground-Water Information Center
(GWIC) database shows that within the Summit Valley
about 1,300 wells are used for “domestic” purposes.
Many “domestic” wells are located within the area served
by municipal water and are more likely used for lawn
irrigation rather than to supply drinking water. Slightly
more than half of the domestic wells (54 percent) use the
alluvial basin-fill aquifer; the remainder are completed
in the fractured bedrock aquifer along the valley margins
(fig. 4). The depth to the top perforated interval, or the
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Figure 1. The Summit valley is located in the upper Silver Bow Creek drainage at the headwaters of the Clark Fork basin.
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Figure 2. The Summit Valley is an intermontane basin surrounded by mountains composed of Butte Quartz Monzonite
(Kbgm). The valley floor is underlain by alluvium (Qal, Qao) with well-drained soils.
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depth water enters (DWE), is generally shallower for

the alluvial wells; DWEs range from 13 to 398 ft with a
median of 76 ft, whereas those for bedrock wells range
from 10 to 570 ft, with a median of 100 ft (fig. 4). Over
the past 10 years more wells have been developed in the
fractured bedrock than in the basin-fill aquifer, reflecting
residential development along the valley margins (fig. 4).

NITRATE IN GROUND WATER

Nitrate contamination of ground water results from
the combined influence of several factors, including
the type and intensity of the nitrate source, and aquifer
susceptibility characteristics. Aquifer susceptibility
describes the ease with which water (and associated
contamination) can enter an aquifer. It is a characteristic
of the aquifer, the overlying material, and the hydrologic
conditions (Focazio and others, 2002). Factors that con-
tribute to higher susceptibility include soils with rapid
infiltration capacities, thin soils with low organic carbon
contents, thin unsaturated zones, permeable aquifer ma-
terials, and fractured rock settings. In particular, highly
permeable, well-drained soils and fractured bedrock have
been noted to readily convey even small concentrations
of nitrate to the water table (Nolan, 2001).

Nationwide, nitrate is recognized as the most
widespread contaminant of ground water (Halberg
and Keeney, 1993; Canter, 1997). Nitrate (NOs_) isa
form of dissolved nitrogen in water that is stable over
a wide range of environmental conditions and can be
readily transported in ground water and streams. There
are many natural and anthropogenic sources of nitrate;
however, where nitrate contamination of ground water
has been identified it is usually related to a surficial
nitrogen source (Madison and Brunett, 1984). The
primary sources of nitrate contamination are fertilizers,
animal manure, human sewage, wastewater, and in
rare cases, geologic formations. Naturally occurring, or
background, nitrate concentrations in ground water are
generally less than 2 milligrams per liter (mg/L); thus,
concentrations greater than 2 mg/L may indicate effects
of human activities (Mueller and others, 1995; Halberg
and Keeney, 1993; U.S. Geological Survey, 1999).

Nitrate is a necessary plant nutrient; however,
excessive concentrations in drinking and natural water
can pose human health and ecological threats. Elevated
concentrations in drinking water can cause methemo-

globinemia (or blue-baby syndrome), a potentially fatal
oxygen deficiency in infants less than 6 months old.
Because of the human health risk, the U.S. Environ-
mental Protection Agency (USEPA) has established a
maximum contaminant level (MCL) of 10 mg/L for
nitrate in public drinking water supplies. Water with
greater than 10 mg/L nitrate should not be used for
drinking, cooking, or formula preparation for infants
under 6 months of age or pregnant women. Excessive
nitrate in surface water can result in eutrophication
(nutrient enrichment) and nuisance algal blooms. As a
general guideline, a concentration of inorganic nitrogen
greater than 0.30 mg/L in surface water is recognized

as having the potential to cause eutrophication or algal
growth (Mackenthun, 1969). For the Clark Fork River
Basin, Dodds and others (1997) recommend total
nitrogen levels be maintained at less than 0.35 mg/L to
prevent nuisance algal growth. Because ground water is a
major component of stream baseflow, elevated nitrate in
ground water represents an ecological threat to rivers and
streams.

SUMMIT VALLEY—PREVIOUS STUDIES

Previous hydrogeologic investigations have all
recognized the intrinsic susceptibility of the ground-
water resources in the Summit Valley. Meinzer (1914),
in the first published report on ground-water resources
in Butte, noted that “Over most of the flat there is a thin
loam soil underlain by very coarse and clean grit,” and
that soil on the flat is “low in organic matter.” He rec-
ognized the permeable nature of the basin-fill deposits:
“Some of the beds of coarse clean grit or gravel, such as
underlie the soil in a large part of the flat, probably have
a porosity of fully 30 percent.” Meinzer also recognized
the high potential for contamination of the ground-
water resources: “Waters with large mineral content may
be found in exceptional wells, and in some localities,
especially in the vicinity of Butte, the ground waters may
be polluted by sewage or mine wastes” (Meinzer, 1914).

The next major hydrogeologic investigation of the
Butte area also recognized the susceptible nature of the
ground-water resources and, more specifically, the threat
posed by on-site waste disposal systems. In his conclud-
ing remarks Botz (1969) notes that, “The use of septic
tanks and wells will undoubtedly aggravate ground-water
pollution problems.”
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Figure 3. Ground water occurs in the fractured bedrock and the alluvium; ground-water flow is away from the valley
margins toward Blacktail and Silver Bow Creeks. Ground-water levels fluctuate seasonally on the order of a few feet.
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Figure 4. Wells used for domestic and irrigation purposes tap the fractured bedrock and alluvial aquifers. Most of the wells
are in the alluvial aquifer, but an increasing number are being completed in the fractured bedrock, reflecting residential
development along the valley margin. Well depths in the fractured bedrock aquifer are more variable than well depths in

the alluvial aquifer.

A report prepared for the Butte—Silver Bow County
City Planning Board at about the same time (Boettcher
and Juvan, 1970) also highlighted the potential threat
from septic systems, rating most of the valley soils as
“severely limited” for septic tank filter sand. A severe rat-
ing indicates the limitations are severe enough to make
their use questionable.

Straw (1980) authored a report titled, “Geology
for Planning in the Butte-Silver Bow Area” and noted,
“Of paramount importance is the adequate provision
for suitable on-site sewage treatment and disposal
facilities and for supplies of potable water. Throughout

8

the country there are many areas where ground-water
supplies have been polluted by inappropriately placed
or inadequately designed on-site sewage facilities.” In a
comment on the above-referenced document, the state
geologist at the time, S.L. Groff, noted, “Tom Straw’s
comments on geologic constraints to septic systems are
pertinent. Not all populated areas in the planning area
can be served by modern-disposal and water distribu-
tion systems. Thus, each housing area or subdivision
outside the sewage and water systems should be carefully
planned to avoid pollution” (Straw, 1980).

Nitrate pollution most likely related to unsewered
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subdivision development in the southeastern part of the
valley was identified by the Butte-Silver Bow Health
Department in 1998. The department analyzed water
samples from 27 homes in the Warne Heights area (fig.
1). The analytical results were not made publicly avail-
able; however, in a letter to participating homeowners
the Health Department stated that “15% of the resi-
dences had nitrate levels that exceeded the EPA health
standard of 10 mg/L” (BSB Health Department, 1998).
In response to concerned landowners in the southeastern
part of the valley, the MBMG sampled seven sites in
Warne Heights (as part of a broader investigation of
ground-water resources in the upper Clark Fork Basin),
an unsewered subdivision with a high density of septics
over a fractured bedrock aquifer. Nitrate was detected in
all the sampled wells at concentrations as high as 11.6
mg/L (Carstarphen and others, 2004).

PURPOSE AND SCOPE

This report compiles and summarizes ground-water
nitrate data from the Summit Valley based on samples
collected by past and ongoing MBMG investigations
(Montana Ground-Water Assessment, Butte Mine
Flooding, Montana Pole, Colorado Tailings, Streamside
Tailings, Metro Storm Drain, Natural Resource Dam-
age Assessment). These data are publicly available from
the GWIC database (http://mbmggwic.mtech.edu/);
additional unpublished nitrate data (appendix) were
obtained from the files of the Montana Department
of Environmental Quality (MDEQ). In addition, this
report presents the results of isotopic analyses performed
on samples specifically collected to assess nitrate sources
(appendix). Some data and interpretations regarding
baseflow nitrate concentrations in Blacktail and Silver
Bow Creeks are also presented.

This report builds on the previous work by compil-
ing all available data and evaluating the occurrence of
nitrate with respect to (1) land use, primarily sewered vs.
unsewered areas; (2) aquifer type and setting;: fractured
bedrock vs. basin fill, and depth to water; and (3) well
depth and depth to water.

The analyses from the GWIC database were per-
formed by the Analytical Laboratory at the MBMG;
analyses obtained from MDEQ were performed by
the MSE Analytical Laboratory. All concentrations are
reported as nitrate-N (total nitrate + nitrite as nitrogen).

WATER QUALITY
The total dissolved solids (TDS) of a water sample

provides a general indication of the water quality; the
lower the concentration, the better the water quality.
The secondary drinking water standard for TDS is 500
mg/L. TDS is calculated from the concentrations of
major cations and anions dissolved in a water sample.
Dissolved constituents in ground water are a result of
the initial chemistry of the recharge water and subse-
quent interactions of that water with soils and aquifer
materials. Increased residence time and physical contact
between ground water and the aquifer materials increases
the potential for the water to react, resulting in increased
dissolution of minerals.

Full chemical analyses of ground water are available
for 1,201 sites in the Clark Fork Basin and 123 sites
in the Summit Valley from the GWIC database. The
sites from the Summit Valley exclude monitoring wells.
The results show that the TDS of ground water in the
Summit Valley and the rest of the Clark Fork Basin is
generally low, indicating good quality water for drink-
ing and other uses; the median concentrations in both
areas is less than 250 mg/L (fig. 5). However, there is
a difference in the water composition between the two
areas. A plot of the relative ionic composition of all the
ground-water samples shows that Summit Valley ground
water contains relatively more sulfate than the rest of the
Clark Fork Basin. The average water composition of the
Summit Valley samples is a Ca-SO42 type, whereas the
average composition of the Clark Fork Basin samples is a

Ca-HCOg3 type (fig. 5).

Because the composition of constituents dissolved in
water largely depends on the type of rocks and minerals
with which it has been in contact, the difference in water
chemistry between the Summit Valley and the rest of
the Clark Fork Basin probably reflects differences in the
geology of the areas. In general, the basin-fill deposits
of the Summit Valley are derived from the bedrock that
surrounds it, which is composed of granite associated
with the Boulder Batholith. The Boulder Batholith
hosts rich ore deposits that made Butte a famous min-
ing district. The ore minerals are predominately massive
sulfides. These massive sulfide deposits do not occur, or
occur to a much lesser extent, in other granitic intru-
sions within the Clark Fork Basin, for example the
Idaho Batholith (Smedes and others, 1988). Therefore,
oxidation of the trace sulfide minerals in the bedrock and
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secondary health standard of 500 mg/L. However, sulfate concentrations are notably greater in the Silver Bow Creek
watershed and the Summit Valley in particular. The sulfate is most likely derived from the massive sulfide deposits that
occur within the Boulder Batholith.
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basin-fill materials most likely accounts for the larger
percentage of sulfate in the Summit Valley ground-water
samples.

SUMMIT VALLEY NITRATE

Ground-water nitrate data are available for 391 sites
in the Summit Valley. Those data show that ground
water in many parts of the Summit Valley has been
impacted by nitrate contamination. A comparison of
ground-water nitrate concentrations across the Clark
Fork drainage basin shows that nitrate is detected both
more frequently and at higher concentrations in the
Summit Valley than in other parts of western Montana

(fig. 6).

Within the valley there are two areas that have a
disproportionate sample density from monitoring wells:
(1) the Colorado Tailings/Montana Pole site and (2)
the Metro Storm Drain (fig. 5). The Colorado Tail-
ings/Montana Pole site has samples from 124 monitor
wells that are mostly completed in the shallow alluvium
(average well depth is 25 ft). Of these wells, 120 showed
detectable levels of nitrate. The highest concentration
was 78.0 mg/L, with a median concentration of 6.5 mg/
L and an average of 13.0 mg/L. One well with a nitrate
concentration closest to the average (GWIC ID:166775,
NOj = 12.9 mg/L) was chosen to represent this area.

Of the 30 sample sites in the Metro Storm Drain
area between Montana Street and Continental Drive, 21
showed detectable levels of nitrate. These wells are also
completed in the shallow alluvium, and have an average
depth of 50 ft. Nitrate concentrations range up to 6.89
mg/L, with a median of 1.25 mg/L and an average of 1.8
mg/L. The well with a nitrate value closest to the average
(GWIC ID:4695, NO3™ = 1.74 mg/L) was chosen to

represent this area.

Therefore, for this summary a total of 239 sites
were used (appendix). Most of the samples were col-
lected between 1993 and 2008, and were obtained from
private domestic wells or monitoring wells. For wells
with multiple samples, the result with the greatest nitrate
concentration was used for any statistical summary or
analysis.

For this summary the nitrate concentrations were
grouped into four reporting ranges:

1. less than the detection limit;

2. low level (less than 2.0 mg/L): may reflect
natural occurrence or minor land-use impacts;

3. impacted (2.0-10.0 mg/L): elevated concen-
trations probably reflecting land-use impacts;
and

4. MCL exceedance (greater than or equal to
10.0 mg/L): elevated concentrations that repre-
sent a human health risk.

Figure 7 shows the distribution of nitrate concentra-
tions in the Summit Valley ground water. Concentra-
tions ranged from below the detection limit to 44.7
mg/L, with a median of 3.18 mg/L. A total of 32
samples (13 percent) exceeded the 10 mg/L health
standard; an additional 124 samples (51 percent) had
concentrations between 2 and 10 mg/L, suggestive of a
land-use impact. Elevated concentrations were observed
across the Summit Valley, regardless of aquifer type or
presence of sewers (fig. 7).

LAND USE—SEWERED VS. UNSEWERED

Ground-water contamination by nitrate is typically
related to land use overlying the aquifer (Hallberg and
Keeney, 1993; Mueller and Helsel, 1996). The land uses
within the Summit Valley are primarily mining/indus-
trial, sewered residential, unsewered residential, and
undeveloped range land. Given these land uses, the likely
sources of nitrate to ground water are (1) septic effluent
and animal waste and (2) lawn and agricultural fertiliz-
ers. In the sewered residential area, sanitary sewers route
household wastewater to the wastewater treatment plant
where it is treated and eventually discharged to Silver
Bow Creek. Therefore, household wastewater should
not be a major source of ground-water nitrate in the
sewered area (unless there are leaky sewer lines or older
residences that remain on septic systems). However,
excessive nitrate leaching related to lawn fertilization and
over watering has been documented in residential areas
(Morton and others, 1988). In the unsewered residential
areas, each home is served by an on-site septic system.
Septic systems discharge wastewater to the unsaturated
zone where it percolates downward to the water table
and becomes part of the shallow ground-water system.
Because nitrate is soluble, it is readily transported by the
percolating wastewater. Where they occur in high densi-
ties, septic systems can be a major local source of nitrate
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(Hallberg and Keeney, 1993).

For this evaluation, nitrate data from sewered vs.
unsewered areas were compared. A GIS coverage of the
sewer district boundary provided by the Butte-Silver
Bow GIS department was used to differentiate wells
completed in and out of the sewer district. Of the avail-
able data, 112 samples were obtained from wells in the
sewered part of the valley and 127 samples from wells in
unsewered areas. Slightly more than half of the sampled
wells (64 wells) in the sewered area have a reported use
(domestic/commercial/irrigation) that indicates that the
well is completed at a residence, business, or city park;
the rest of the samples (48 wells) are from dedicated
monitoring wells. Samples from the unsewered area are
mostly from domestic and a few commercial wells (116
wells); the remainder are from monitoring wells (11
wells).

Figure 8 presents a comparison of the nitrate results
in sewered vs. unsewered areas. Both areas show signifi-
cant nitrate impacts to ground water: 71 percent of the
sewered area samples had concentrations greater than 2
mg/L; 19 percent exceeded the health standard. In the
unsewered area, 57 percent of the samples had nitrate
concentrations in excess of 2 mg/L, with 8 percent
exceeding the health standard. Based on overall concen-
trations, the impacts appear more severe in the sewered
part of the valley. The median nitrate concentration from
the sewered area samples, 4.8 mg/L, was nearly double
that of the unsewered area, 2.5 mg/L (fig. 8).

In the sewered area some of the highest concentra-
tions were clustered in the predominately residential area
in the east side of Butte, north of I-90. In this area, the
median nitrate concentration was 7 mg/L, with samples
from 10 wells exceeding the 10 mg/L health standard.

Of particular concern is the unsewered area in the
southeast part of the valley where some proposed hous-
ing developments have been delayed (fig. 9). Extensive
sampling beneath two unsewered subdivisions with
approximately 1- to 2-acre lot sizes shows clear impacts
from the developments. The median nitrate concentra-
tion from 15 samples obtained from the alluvial aquifer
below Lyndale Acres was 4.29 mg/L; approximately
a mile south, 15 samples obtained from the bedrock
aquifer below Warne Heights had a median nitrate
concentration of 6.72 mg/L. In contrast, 5 samples from
monitoring or unused wells in adjacent undeveloped
land had a median nitrate concentration of 0.76 mg/L.
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AQUIFER:
ALLUVIAL VS. FRACTURED BEDROCK

Ground water in the Summit Valley occurs in the
alluvial basin-fill sediments and fractured bedrock along
the valley margins (figs. 3, 4). Of the 239 sample sites,
150 were wells completed in the alluvial aquifer and 89
were wells completed in fractured bedrock. Roughly
two-thirds (103) of the alluvial wells are reported as
domestic (with a few commercial or irrigation wells) and
one-third (47) are monitoring wells. Of the sampled
bedrock wells, 87 percent (77) are reported as domestic
(with a few commercial or irrigation wells) and 13
percent (12) are monitoring wells.

Analyses show little difference in the nitrate concen-
trations between the aquifers. The majority of samples
from both aquifers indicate nitrate impacts. Concentra-
tions exceeded 2 mg/L in 66 percent (98) of the alluvial
samples and 62 percent (55) of the bedrock samples
(fig. 10). The median concentration of alluvial samples
was 3.41 mg/L while the median concentration of the
bedrock samples was 2.61 mg/L.

WELL DEPTH AND DEPTH TO WATER

Because nitrate sources occur at the land surface,
nitrate concentrations will typically be greater at the top
of the water table and will decline with depth, resulting
in an inverse relationship between nitrate concentration
and depth below the land surface. The depth to the
top open interval, or depth water enters (DWE), for
the sampled wells ranged from 2.8 to 471 ft below the
land surface. The alluvial wells tended to be shallower,
with DWEs ranging from 2.8 to 260 ft and a median
of 60 ft, while DWEs for the bedrock wells ranged
from 35 to 471 ft with a median of 120 ft. A plot of
nitrate concentrations against the DWE shows very little
correlation between concentrations and sample depth
(fig. 11). Elevated concentrations (greater than 2 mg/L)
were commonly detected in samples from depths up to
200 ft below the land surface. In the alluvium, most of
the samples that exceeded the health standard were from
shallower wells (DWE <70 ft). In the bedrock aquifer,
sample results that exceeded the health standard were
from wells with DWEs between 50 and 300 ft deep; five
samples with nitrate concentrations greater than 9 mg/L
were from wells with DWEs greater than 150 ft (fig. 11).
The presence of elevated nitrate at such depths illustrates
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Figure 9. Nitrate concentrations below unsewered subdivisions in the southeast part of the valley are significantly
higher than in adjacent undeveloped land.
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Figure 11. Nitrate concentrations vs. depth water enters (DWE) does not show a clear trend. Samples with nitrate con-
centrations greater than 2 mg/L (impacted) were obtained from wells at depths greater than 150 ft in both the alluvial and

bedrock aquifers. Samples with concentrations greater than

10 mg/L (exceeds health standard) were from shallower wells

in the alluvial aquifer; however, samples with health standard exceedances were obtained from wells that ranged from 50

to more than 300 ft deep in the bedrock aquifer.

how fracture porosity (as compared to inter-granular
porosity, which characterizes the alluvial aquifer) can
facilitate relatively deep transport of water and associated
contamination into the subsurface with relatively little
dilution (mixing) or dispersion.

The widespread presence of elevated nitrate concen-
trations at depths greater than 100 ft in both the alluvial
and bedrock aquifers can most likely be attributed to the
combination of highly permeable, well-drained soils with
low organic carbon content and the highly permeable
underlying aquifer material. In this environment nitrate
is able to move quickly downward without being chemi-
cally reduced or inhibited physically.

Areas where the water table is close to the land sur-
face (shallow water table) generally have higher nitrate
concentrations than areas where the distance is large
(Mueller and others, 1995). The relationship between
depth to water and nitrate concentration in samples
from the alluvial and bedrock aquifers is shown in figure
12. The results do not show a strong correlation. The
depth to the water table ranged from 3 to 158 ft below
the land surface in the alluvial wells, with a median of 24
ft. In the bedrock wells the depth to water ranged from
3 to 420 ft, with a median of 45 ft. Elevated concentra-
tions occur near the water table (in the shallow part of

18

the flow system); however, there is not a sharp decline in
concentrations with depth (fig. 12). In both the alluvial
and bedrock aquifers elevated nitrate concentrations
were detected at water table depths greater than 100 ft
below the land surface. Samples that exceed the health
standard were detected where the water table was as deep
as 60 ft in the alluvium and 70 ft in the bedrock aquifer
(hg. 12).

ISOTOPE ANALYSIS:
SOURCE IDENTIFICATION

The widespread distribution of nitrate—in the sew-
ered and unsewered areas and in the alluvial and bedrock
aquifers—suggests multiple potential sources of nitrate
to the ground water. Stable isotope ratios of nitrogen
(15N/14N) and oxygen (180/160 of the nitrate) can
be helpful in distinguishing between various sources of
nitrate. Isotopic ratios are reported relative to a standard
in units of parts per thousand, or per mil (%o), using
delta (0) notation (Clark and Fritz, 1997). The reference
standard for nitrogen is N, in atmospheric air, and the
reference for oxygen is Vienna Standard Mean Ocean
Water [V-SMOW] (Clark and Fritz, 1997). A negative
d value indicates that the sample is depleted in the heavy
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Figure 12. Nitrate concentrations vs. depth to water does not show a pronounced trend. Samples showing impacts
were obtained from areas where the water table was more than 100 ft below the land surface in both alluvial and

bedrock aquifers.

isotope relative to the standard; a positive value indicates
that the sample is enriched in the heavy isotope relative
to the standard.

Nitrogen isotope values are most useful in dif-
ferentiating between synthetic fertilizer-derived nitrate
and animal waste (including sewage). 815N values from
fertilizer-derived nitrate range from about -4 to +4 %o,
whereas reported 81°N values from animal waste range
from about +7 to +20 %o (Kendall and Aravena, 2000;
Fogg and others, 1998; Wassenaar, 1995; Aravena and
others, 1993). For oxygen ratios, the 8180y of nitrate
derived from chemical fertilizers is characterized by
enriched values (+18 to +22 %o), whereas nitrate origi-
nating from animal and human wastes would be more

depleted (Aravena and others, 1993).

Between October 2001 and November 2007, 21
wells in the Summit Valley were sampled for 81N and
81803 analysis (one of the wells was sampled twice),
and two additional samples were analyzed for 1N only
(table 1). HKM Engineering sampled 5 of the wells
and the remainder were sampled by the MBMG. All of
the isotope analyses were performed by the University
of Waterloo Environmental Isotope Laboratory, and
all samples were also analyzed for nitrate. Sample sites
were chosen to assess potential source variability from
different land uses (sewered vs. unsewered), aquifer types

(bedrock vs. alluvium), and well depths. The sample sites
and results are shown in figure 13.

The nitrate concentrations in the 21 samples ranged
from 2.28 to 45.5 mg/L, with a median of 6.6 mg/L;
4 samples exceeded the 10 mg/L health standard. The
315N values ranged between +4.29 to +11.1 %o with a
median of +8.8 %o. The 5180N03 values ranged from
-7.43 to +11.86 %o, with a median of -1.7 %o0. All of
the samples, with the exception of one obtained from
the Montana Pole site, had a similar isotopic signature.
The 35N and the §'80y (3 values are generally consis-
tent with an animal waste or sewage source (fig. 13). It
should be noted that nitrate derived from human wastes
is indistinguishable isotopically from that derived from
animal waste. There was no apparent correlation between
815N and nitrate, or between 8!°N and DWE; §!°N
values did not vary significantly between aquifer type or
land use. The 81N values between +5 and +8 %o may
reflect a mixture of fertilizer and septic sources, as many
of the sample sites were below or near residences with
well-maintained, apparently well-fertilized lawns. How-
ever, overall the results suggest that fertilizer was not a
major contributor to the observed ground-water nitrate.

One sample, obtained from a shallow monitoring
well at the Montana Pole site, did have a distinct isotopic
signature suggestive of a fertilizer source. The sample

19



John LaFave

also had the greatest nitrate concentration (45.5
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Figure 13. Samples for nitrogen and oxygen isotope analysis were collected from sewered and unsewered areas, and
alluvial and bedrock aquifers. The results suggest that most of the nitrate was derived from an animal waste or sewage

source.
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are in, and downstream
from, unsewered residential
developments. Stations 4
and 5 are surrounded by
sewered, urban/residential
land. Station 6 is located at
the U.S. Geological Survey
(USGS) gauge 1232340,
above the confluence

of Blacktail Creek and

the Metro Storm Drain.
Station 7 is near the
Montana Pole/Colorado

p |USGS B90e 12320240 - station § sampling Evets Sewer District: # -;| '* % v Tailings sites, station 8 is

Stream discharge
45

LSS gage 12323250 - staton 8

8

discharge - cfs
&

Jan-01 Julo1 Jan02 Jul-02 M%< - Boundary, A A
. immediately downstream

from the wastewater
treatment plant outfall, at
USGS gauge 1232350, and
station 9 (only sampled in
May 2002) is at the first
bridge located about 1,000
ft downstream from the
wastewater treatment plant
outfall.

Although the stream
flow at station 8, below
the wastewater treatment

RAW. R7TW

w00 Specific Conductance plant outfall, is nearly
Nov. 9, 2001 double that at station 6 on
LY . Blacktail Creek, the dis-
2.0 7 charge patterns are similar
Eq
: 3 3/ \s ? (fig. 14). The measured
0.5 iy Ay A : 1
detecion imi W | discharge during the first
0.5 mgiL . .
" 0o - 0 . . sampling event at Blackrail
= gE z
o2t zge gL B0 2 8% %85 M ¥ Creek on November 9,
3k 50 5 3 g5 8 ;
May 29,2002 22 50 A May 29,2002 =& 5 ”l,/k: 2001 was 7.5 cubic feet per
15
< £ 400 | F second (cfs). The second
o 4 .
5 1.0 ¥E L 2 3 55 sampling event on May
g = 2 3 Eio @ 200 4 Eoz .
- iz S5E HE 29, 2002 occurred during
detection limit_W g3 £ basefl iod b
0smoL "~ _ _ _ g . _ _ 3 a baseflow period between
0 2 4 6 8 10 12 0 2 4 6 s 10 12 runoff events; the measured
river miles from first sample location river miles from first sample location discharge at Blacktail Creek

was 8.1 cfs.

Figure 14. Baseflow samples from Blacktail and Silver Bow Creeks show elevated nitrate
concentrations upstream from the wastewater treatment plant, indicating ground-water
impacts. The lack of nitrate at station 8 on Nov. 9, 2001, probably indicates that the sample
consisted mostly of wastewater treatment effluent and the N was in a reduced state. tance (SC) increased in the
downstream direction along

Blacktail and Silver Bow

The baseflow concentra-
tions of specific conduc-
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Table 2. Nitrate data for baseflow sampling in Nov. 2001 and May 2002.

GwWIC specific
GWIC ID sample Sample - Nitrate  conductance

number number date Latitude Longitude Source Area (mg/L) (uS/cm)
191284  2002Q0587 11/9/2001 45.8892  -112.4646 GWIC unsewered < 0.50 234
191285  2002Q0595 11/9/2001  45.9303  -112.4763 GWIC unsewered < 0.50 254
191286  2002Q0596 11/9/2001  45.9603  -112.4827 GWwWIC unsewered 1.17 275
123162  2002Q0588 11/9/2001 45.9825  -112.5044 GWIC sewered 1.21 308
191287  2002Q0589 11/9/2001 459889  -112.5212 GWwWIC sewered 1.78 342
127593  2002Q0590 11/9/2001  45.9947  -112.5363 GWIC sewered 1.47 387
158214  2002Q0597 11/8/2001 45.9948  -112.5484 GWIC sewered 1.48 421

4930 2002Q0598 11/8/2001  45.9965 -112.5628 GwIC sewered < 0.50 588
191284  2002Q1316 5/29/2002 45.8892  -112.4646 GWIC unsewered < 0.50 194
191285  2002Q1320 5/29/2002 459303  -112.4763 GWIC unsewered < 0.50 213
191286  2002Q1318 5/29/2002 45.9603  -112.4827 GWIC unsewered < 0.50 250
123162  2002Q1314 5/29/2002 459825  -112.5044 GWIC sewered 0.53 276
191287  2002Q1323 5/29/2002 45.9889 -112.5212 GWIC sewered 1.20 313
127593  2002Q1322 5/29/2002 459947  -112.5363 GWwWIC sewered 0.95 353
164317  2002Q1321 5/29/2002 459942  -112.5560 GWIC sewered 1.26 439

4930 2002Q1317 5/29/2002 459964  -112.5627 GwiIC sewered 1.70 518
195673  2002Q1315  5/29/2002  45.9992  -112.5770 GWIC unsewered 1.74 494

Note. Source: GWIC, Ground-Water Information Center; MDEQ, Montana Department of Environmental Quality.
Unit: ALVM, alluvial aquifer; BDRCK, fractured bedrock aquifer

mg/L: milligrams per liter

uS/cm: microsiemens per centimeter at 25 degrees Celsius

Creeks. However, on both sampling events, the rate of
increase was much greater downstream from station 5,
reflecting the more mineralized inputs from the urban
area and the wastewater treatment plant (fig. 14). The
drop in SC between station 8 (wastewater treatment
plant) and 9 on the May 29th sampling event most
likely represents mixing of the high-SC wastewater treat-
ment plant efluent with the lower-SC receiving water.

The baseflow concentrations of nitrate reflect the
land use and ground-water concentrations. In November
2001, nitrate was not detected at the farthest upstream
stations (1 and 2). At station 3, just upstream from the
sewered area, concentrations exceeded 1 mg/L (fig. 14).
Between stations 3 and 7 (within the sewered area), ni-
trate concentrations were between 1 and 2 mg/L. Nitrate
was not detected immediately downstream of the waste-
water treatment plant most likely because the sample was
primarily undiluted discharge from the plant, and not
mixed well with the receiving water, and the nitrogen
was in a reduced state.

In May 2002 nitrate was not detected at stations 1
through 3; however, by station 5 concentrations were
generally greater than 1 mg/L and sites further down-
stream showed progressively higher concentrations,
except at station 6 (fig. 14).

Wastewater treatment plants in the Clark Fork Basin
are recognized as major contributors of nutrients to
surface water (Tri-State Implementation Council, 1998).
In the Summit Valley ground-water contamination is
the most probable nitrate source to the streams above
the wastewater treatment plant. Nitrate concentrations
measured in streams throughout the Clark Fork Basin
during water years 1999-2003 were generally less than
0.05 mg/L; the maximum concentration detected in
the 14 streams that were monitored was 0.26 mg/L
(Lambing and Cleasby, 2006). The sampling results
from the Summit Valley show that along a 4- to 6-mile
reach above (upstream of) the wastewater treatment
plant, nitrate concentrations are well above that of other
streams in the watershed.
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