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During February and March of 1983, geophysical investigations
‘ consisted primarily of data interpretation. However, additional
| gravity data was collected in the White Sulphur Springs area during
this period.

Geolégical and hydrochemical work consisted of a double well
flow test at Camp Aqua, utilizing a new commercial well and the
research well, and data interpretation.

Transmitted as a part of this report is a copy of the manu-
script entitled "An analysis of resistivity surveys at Norris Hot
Springs', and MBMG Memoir 50, a final report on the Centennial

Valley study.
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INTRODUCTION

The usefullness of electrical resistivity surveys in
delineating geothermal extent and source will be examined by
integrating and interpreting data collected in a geothermal area
by electrical survey methods. Support is provided by the
Department of Energy contract #DE-FC07-701D12033, which funds the
collecting, interpreting, and presenting of data.

Eleetrical surveys were conducted in the Norris Hot
Springs area, at about 45 degrees 35 minutes North latitude and
111 degrees 42 minutes West longitude. An index map of Montana,
Figure 1, shows the general location affNorris Hot Springs, which
lies near the Madison River Valley bounded to the west by the
Tobaceo Root Mountains and to the east by the Madison Range. Hot

Springs Creek, flowing northeast into the Madison River, divides

the area of study.
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Figure 1. Index Map of Montana




LITHOLOGY

The geology in the area of study, Figure 2, is summarized
from a map in the Billings Geological Society Guidebook, Volume
11, Plate 1, by Adretta and Alsup, and from a map by Vitaliano and
others published by the Geological Soeciety of America. Lithology
consists mainly of gquartzofeldspathic gneiss with thin Quaternary
alluvium covering the topographic lows. Approximately a mile west
of Norris, Tertiary volcanics outcrob about a quarter of a mile
south of Hot Springs Cresk.

Small outcrops of hornblende gneiss

and ultramafic intrusives occur near the voleanics. About a mile

furthur to the west lies the Tobaceo Roob Batholith.
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Figure 2. Generalized Geology of Norris Hot Springs area,

adapted from Andretta, Vitaliano, and others.



STRUCTURAL GEOLOGY

Structures generally trend north to northwest in the area
with Norris Hot Springs lying over a northwesterly plunging
anticline (Chadwick and Leonard, 1979). The anticline may be
obliguely intersected by a fault, which is speculated to follow
Hot Springs Creek (Andretta, ibid.). The fault/anticline contact
may be the pathway used by the hot water (Chadwiek, ibid.), which
forms geothermal seepages at Norris Hot Springs.

A normal fault (Vitaliano, et. al., ibid.) is located
about a mile south of the Tertiary volcanics and intersects an arm
of the Tobacco Root Batholith's eastern extension into the Madison

Valley.

GEOPHYSICAL BACKGROUND

Previous studies of Norris Hot Springs were made by
Robert A. Chadwick and others, 1978. A shallow HWenner array
electrical sounding was interpreted by Chadwick to delineate a low
of 30 ohm-meters at 20 meters of depth roughly circular around Hot
Springs Creek. At 100 meters of apparant depth the area lesseans
in extent, elongates in the northeast direction, and increases in
resistivity to 50 ohm-meters.

A hammer seismic survey (Chadwick, ibid.), with
penetration to about 70 meters of depth began at a well, which
bottoms at 23 meters in granitic gneiss, and was profiled in the
east-north-ecast direction over the low. 4 resulting seismic
pattern of velocities is interpreted by Chadwick to show alluviunm
up to about 30 meters deep underlain by what is probably granitic
and mafic gneiss respectively. The thickest alluvium is at the

array center and is directly underlain by the mafic rock.




ELECTRICAL SURVEYS
Tn the summer of 1982, resistivity measurements in the

area were made using a symmetrical Schlumberger array with a

portable transmitter and receiver. Figure 3 shows the locations

of fourteen soundings in the Norris geothermal area.

Five soundings at half spreads of less than 50 meters

will aid in determining resistivities of outcropping rocks for

corprelation. Six soundings atb half‘spreads of 300 to 1000 meters

will help delineate the geographical extent and possibly the depth

limit of the geothermal area and may help locate a possible

source. Two soundings at half spaces of 100 meters were obtained

at desired locations, but were limited in extent because of

physical access or restraints. These will he useful in

correlation of the data and somewhat in delineation of the arsa.
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INTERPRETATION METHODS

Field data was interpreted using forward modeling by
computer methods. A resistivity and depth are given for each layer
as deduced from a log=-log plot of field data. The first two layers
are based on curve matching methods, the other layers are estimated.
Resistivity and depth are varied until a curve, which best fits the
data points, is produced.

Figures 4 through 17 are computer plotted curves of the
fourteen resistivity surveys. The x's are the field data points and
the curved line is the computer simulated match based on the layer
resistivities and thicknesses listed in the upper right hand corner
of the graph. Due to the limits of the plotting programs some
curves show a basement thickness of 0.00, which means no basement
thickness was given to compute the curve and implies an infinite
thickness,

Various combinations of resistivities and thicknesses can
produce similar curves because the parameter constant used to
compute the curve is resistivity times thickness. However,
resistivity contrasts, which are evident from the changes in the
curve, are relatively valid. There are conductive layers between
more resistive layers in most of these curves or a bottoming out of

the conductive layer in other curves, dus bto limited depth probing.

GENERAL INTERPRETATION
Curves one and two are modeled on data taken east of the
Hot Springs. Both indicate a high-~low-high resistivity pattern, as
shown in Figures Y4 and 5; Norris one is a north-south array, while

Norris two is along the north side of Hot Springs Creek.
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Figure 4. Norris one -~ the field data points are x's.
The smooth curve is simulated by computer using

the layer data in the upper right hand corner.

Norris one. shows a thicker but more resistive low than
Norris two. The suspected fault (Andretta, ibid.) or shear zone

along the Hot Springs creek is possibly a cause of the conductive

layer in Norris two. Warm water may ascend along a fracture zone

and then percolate laterally through alluvial sediments.
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The conductive layer of Norris one is more difficult bo
explain as Norris one is éituated not over alluvium but over highly
elevated metamorphic rocks. Norris one lies near inactive mines,
an indication of mineral enrichment, which may be the result of
nydrothermal alteration due to ascending waters along fracture

ZONEes.

LAYER RHG TH

i ¥7.0D 1.35

2 117.00 3.50

3 5.80 45_00
NORRIS 2 4 180.00 1000000

1864

RESISTIVITY IN
OHM-METERS

189

4 E,......-——r"i"_‘*\s\

18 5

1 18 108 10ea
HALF SPACING IN METERS

Figure 5. Norris two - the field data points are Fila,
The smooth curve is simulated by computer using
the layer data in the upper right hand corner.
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Figure 6. Norris six - the field data points are x's.
The smooth curve is simulated by compuber using
the layer data in the upper right hand corner.

Norris six, shown in Figure 6, is across Highway 289 from
Horris two. The conductive layer is slightly thinner and more
resistive than found in Norris two, but definitely exists. The
similar low furthur supports a probable shear zone along which hot

water may ascend to saturate the alluvium and lower the resistivity.
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Figure 7. Norris seven - the field data points are x's.
The smooth curve is simulated by compubter using
the layer data in the upper right hand corner.

The shallow resistivity curves, Figures 7 through 11,
indicate three ranges of resistivities. Shallow alluviun, whiech
varies in resistivity, a type layer of about 180 ohm=-meters, and a

third type layer of about 380 ohm-meters.
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Norris eight - the field data points are x's.
The smooth curve is simulated by compubter using
the layer data in the upper right hand corner.

Norris seven and eight show a layer about eight meters in

thickness of 30 ohm-meter and 15 ohm-meter material regpectively,

which may be warm water saturated or altered alluvium. Beneath

these layers, resistivity increases to around 380 ohm-meters.
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Norris nine - the field data points are x's.
The smooth curve is simulated by computer using
f£he layer data in the upper right hand corner.

Norris nine and thirteen, being next to each other, produce

complimentary curves.

Norris nine is assumed to turn up, but,

because it was measured to a twenty neber depth, the actual data

points only show an asymptotic low.

‘A thin conductive layer between

the 380 ohm-meter layers may be a localized zone of hydrothermal

alteration or possibly a vein or leuns.
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Figure 10. Norris thirteen - the field data points are x's.
The smooth. curve is simulated by computer using
the layer data in the upper right hand corner.

Norris ten shows a 380 ohm-meter layer with a gradual
decline in resistivity to about 160 ohm-meters, which may indicate
the econtact between the two types of metamorphic rocks interpreted
by the seismic velocity findings of Robert A. Chadwick mentioned in

the geophysical history section on page 3%
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Figure 11. Norris ten - the field data points are x's.
The smooth curve is simulated by computer using
the layer data in the upper right hand corner.

Norris five, shown in Figure 3, lies between Norris ten and
thirteen directly across Highway 289 from Norris Hot Springs. A
matched curve for Norris five (see Figure 12) shows two adjacent
layers of intermediate resistance with higher resistivities above
and below them. The sounding was centered approximately over the

anticlinal feature (Chadwick and Leonard, 1979) shown in Figure two.
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Figure 12. Norris five =~ the field data points are x's.
The smooth curve is simulated by computer usiag
the layer data in the upper right hand corner,

Norris fifteen sounding, shown in Figure 13, was conducted
about a month later than the other surveys due to inaccessibility

because of Hot Springs Creek flooding.



Norris fifteen, situated across the creek from the hot

springs, shows a shallow layer of 15 ohm-meters and beneath it a

layer of about 24 ohm-meters. The sounding 1s in an area of

thickest alluvium, which may aect as a reservoire for the ascending

hot water.
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Figure 13. Norris fifteen - the field data points are x's.
The smooth curve is simulated by computser using
the layer data in the upper right hand coraner.
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' Norris eleven is a north-south sounding about a half mile
southwest of the hot springs, see Figure 14. Though about ten times
furthur from the main spring than Norris fifteen, Norris eleven
shows a greter low, which'may jndicate fracturing and shearing

extends to the southwest.
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Figure 1U4. Norris eleven - the field data points are x's.
The smooth curve is simulated by computer using
the layer data in the upper right hand corner.



LAYER - RHO TH
1 144_00 105
£ ER7.00 4_00
3 22.00 1800
4 3.00 180_00
NCORRIS 4 5 880_00 |410000.00
10606
RESISTIVITY 1IN
OHM-METERS
;_.,....—X/J'"‘r\
106 M
X
=
18
\ .
J>~iﬁf/
1;
1 18 108

HALF SPRCING IN METERS

10006

Figure 15. Norris four - the'field data points are x's.
The smooth curve is simulated by computer using
the layer data in the upper right hand corner.

Norris four and twelve exhibit a thick

conductive layer as

shown in Figures 15 and 16, respectively. Norrisg four is west of

the normal fault mentioned in the structural geology section. This

fault may help control geothermal fiuids in the Norris Hot Springs

viecinity. Norris four and twelve show the greatest low and propose

the interesting possibly of being nearest the source.
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figﬁre 16. Norris twelve - the field data points are x's.
The smooth curve is simulated by computer using
the layer data in the upper pright hand corner.

Tt is of interest to note that Norris twelve is about a
half mile south of Norris eleven,
than was measured nearer the hot springs surface manisfestations.
A possible southwest trend of a thickening conductive layer will

be explored furthur by geoelectric section later in this report.
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which also shows a greater low
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Figure 17. Norris three - the field data points are x's.
The smooth curve is simulated by compuber using
the layer data in the upper right hand corner.

Norris three, in Figure 17, also has a conductive layer at
about the same depth as the layer in Norris 12. These last three
curves, shown in Figures 15 through 17, make a good case for a
nearby source, or possibly water circulation at depth due to a deep

seated fault.



GEOELECTRIC SECTION INTERPRETATION

Six geoelectric sections are included as Figures 18 through
23, Figure 18 is a northwest to southeast line which intersects
Norris one, two, and six. Because eross-section one does not
intersect the centers of the arrays it is assumed there 1is lateral
continuity in each array, which may not be the case.

Cross-section one shows a consistant low beneath Norris two
and six, broadening to a much thicker though slightly more resistant
layer below Norris one. Basement resistivity is at least 180
ohm-meters and could possibly be higher according to the curve of
Norris two, which shows about a 45 degree slope between data points
taken at 100 and 1000 meters.

The Hot Springs Creek fault (Andretta, ibid.) is not
apparent from the reslstivity eross-section. Lateral migration of
warm water through alluvium or hydrothermally altered rock may be
causes of the low. However, a shear zoune or fault can not be
precluded from aiding in £the spread of warm waters into the wide
range they enjoy.

The existance of warm water throughout the area is
supported by temperature measurements of discharge water at the
Waterlode Mine. Located about a quarter mile southeast of Norris
one, it has an anomalous water temperature year round. The mean
annual temperature for Montana is about 7 degrees centigrade. The
water temperatures of the Waterlode were measured to be 10 degrees
centigrade in August, 1976 and about 9.4 degrees centigrade in
February, 1978 (Lawson and Sonderegger). More resistivity surveys

may help pinpoint the source of warm water.
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Figure 19 is a geoelectric section along a line, which lies

north and nearly parallel to Hot Springs Creek. Section two
intersects Norris six, two, seven and eight. A conductive layer
thins to the east and a resistant basement is found at a shallower
depth. Soundings seven and eight seem to mark the easbern limit of
the Worris geothermal area. The conductive layer's termination may
be due to the speculated Hot Springs Creek fault (Andretta, ibid.)
or to the natural thinning of warm water saturated or altered
alluvium.

Figure 20 shows geoelectric section three, through Norris
nine, thirteen, five and ten. The section begins approximately at
the western limit of Figure 19. The attitiude is more northeast to
southwest, but continues to roughly parallel the north bank of Hot
Springs Creek. No conductive layer is evident from this geoelectric
section three. The deeper probe, Norris five, approximately in the
center of the section, has a broad intermediate low which gradually
increases in resistivity at about 75 meters of depth; Then, it rises
more steeply (see Figure 12) to an interpreted layer of 380
chm-meters. At a minimum of 200 meters of depth, resistivity
decreases asymptotically to 121 ohm-meters. Inspection of
geoelectric section three and the contributing curves (Figures 10
through 13) may indicate a northern limit of the geothermal area or
a location at a disadvantage with respect to shear zones and
ascending warm wabter.

Geoelsctric section four, shown in Figure 21, lies along a
line which is oblique to section three. It crosses the creek passes
through Norris Hot Springs, which lies between Norris five and

fifteen, and then roughly parallels the creek on 1ts south bank.
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The inconsistancy between layers in Norris five and fifteen
is evident from geoelectric section four. The abrupt break between
resistivity layers may be due to the Hot Springs Creek fault, which
is inferred by Andretta and others.

The thickness of the conductive layer can only be surmised
from the soundings of Norris eleven and fifteen because probing was
limited to a half-spacing of 100 meters. The fact that conductance
increases to the southwest may indicate a source direction.

Geoeleatric section five (Figure 22) extends geoelectric
section four (Figure 21) to include Norris twelve, but, becauss ik
is slightly offset from section four, it does not intersect Norris
fifteen. Again the increase in conductivity and thickness of the
conductive layer to the southwest is obvious.

A section through Norris four was not drawn. However, a
look at the curves in Figures 15 and 16 indicates a continuing trend
towards a thicker and more conductive layer. Because Norris four
obliguely crosses a power line, the data is questionable. HNorris
twelve was obtained along this same stretch, but north of the power
line, to substantiate the low resistivities of Norris four. An
electric survey south of Norris four would furthur confirm a south
to southwestern trending low.

The last geoelectric section connects Norris three and
twelve and moves northwest of the previous section. A conductive
layer exists, but thins slightly in this direction. The basement is
of a much lower resistivity than previously encountered for a
sounding with a 1000 meter half spacing. An oubtecrop of Tertiary
basalts, located about a quarter of a mile to the south, may cause

the low if they are thick enough to appear as basement rock.
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shows interpreted layer resistivities in
ohm-meters. Vertical exaggeration is 10:1.
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interpreted layer resistivity in ohm-meters.
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CONCLUSIONS

A conductive anomaly is evident from the electrical surveys
and their geoelectric sections. The anomaly exbends roughly over an
eight square mile area of which the southwestern portion shows the
most promise as to source direction. A fault (Vitaliano and others,
1979), shown near Burnt Creek in Figure 2, liess southwest of Norris
four and may provide a pathway for thermal waters. Furthur work
near Burnt Creek is needed to explore the southwest trending low.
Lateral flow into shallow alluvium, which probably acts as a
reservoire for the warm water, may be responsible for the wide range
of low resistivities, measured throughout the area.

Norris one, though not nearly as anomalous as twelve or
four, is interesting because it is not located in a structurally
favorable area. Because of the anomalous mine water it would be
instructive to do another electrical survey in the area, perhaps
nearby the Waterlode Mine, to help determine if a relationship

exists between the warm mine water and Norris Hot Springs.
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