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Descriptions of selected areas
Georgetown Lake

The Georgetown Lake area is shown in figure 4 and in the lower-left part of figure 6. This area
contains more than 400 well records, about 67 percent of which have been drilled since 1990.
Figure 4 displays the locations of wells reportedly completed in surficial unconsolidated aquifers,
generally sand and gravel materials (white circles), and the depth ranges of bedrock wells by color.
Static water-level depths are labeled throughout the figure. There are many surficial aquifer and
shallow bedrock wells along certain edges of the lake. Deep wells are prevalent along the west
shore and east of the lake. The lake altitude on the USGS 1:24,000 topographic map is 6,378 ft,
nearly the same as the 6,383-ft mean groundwater-level altitude reported for bedrock wells within
about 1.25 miles of the lake (all altitudes are reported as feet above mean sea level). Groundwater-
level altitudes in this area range from 6,095 to more than 6,700 ft. About half of the bedrock wells
have water-level altitudes within about 50 ft of the lake level, in the range of 6,330 to 6,430 ft. The
configuration of the potentiometric surface (fig. 6) indicates that on the northeast and southeast
sides regional groundwater flow is toward the lake. The median reported well yield is 18 gpm, with
the majority of reported yields ranging from 5 to 40 gpm.

Blackfoot River and Nevada Creek area

The Blackfoot River and Nevada Creek area is shown in figure 5. Much of the valley floor is
covered with unconsolidated glacial till. The till typically consists of clay with varying amounts of
sand, gravel, and boulders. Till often contains many somewhat separate and disjointed water-
bearing zones rather than acting as a single, unified aquifer. Consequently, water levels and well
depths are more variable than those observed in coarse, more homogeneous materials.

Kleinschmidt Flat, northeast of Kleinschmidt Lake (fig. 5), is a coarse-grained outwash plain of
thick sand, gravel, and conglomerate; the deposits are reportedly cemented at many localities. The
outwash aquifer is bounded by relatively impermeable bedrock or till on all sides. Water enters the
aquifer as direct losses from the North Fork Blackfoot River and its tributaries at the upper end of
the flat, as well as from irrigation losses and direct infiltration of precipitation and snowmelt
(Roberts and Waren, 2001). Groundwater levels at the upper, northeast end of Kleinschmidt Flat
fluctuate seasonally as much as 45 ft. These fluctuations diminish downgradient toward the
discharge area marked by many springs and spring creeks. In the discharge zone, groundwater
levels are relatively stable, changing only a few feet annually.
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Figure 1. Study area map with land ownership information and key to the locations
of selected figures.

Potentiometric Surface Map of Basin Fill and Selected
Bedrock Aquifers: Deer Lodge, Granite, Powell, and
Silver Bow Counties, Montana
By
Kirk B. Waren and John I. LaFave

Author’s Note: This map is part of the Montana Bureau of Mines and Geology (MBMG) Ground Water
Assessment Atlas for the Upper Clark Fork River Area. It is intended to stand alone and describe a single
hydrogeologic aspect of the study area, although many of the area’s hydrogeologic features are interrelated.
For an integrated view of the hydrogeology of the Upper Clark Fork River Area, the reader is referred to
other maps and reports of Montana Ground Water Assessment Atlas 5.

Introduction

This map portrays potentiometric surfaces for surficial unconsolidated, basin-fill, and bedrock
aquifers at selected locations within the Upper Clark Fork River Ground Water Characterization
Area. Figure 1 shows the study area, principal geographic and cultural features, and the extents of
maps in figures 5, 6 and 7, and insets 1, 2, and 3.

A potentiometric surface represents the altitude to which water levels will rise in wells completed
in an aquifer. In the study area, most wells are completed within the surficial unconsolidated
alluvial and Tertiary basin-fill deposits or in fractured rock on the valley margins. The
potentiometric surfaces depicted here are based on water levels in wells of the most common
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The Flint Creek basin is shown in figure 6, with the Drummond Valley shown in the top center and
the Philipsburg Valley in the lower left. Predominant aquifers include sand and gravel deposits
capping the Tertiary deposits northwest of Hall, alluvial sediments in the floodplains of Flint and
Willow creeks, and Tertiary deposits. Logs for deep wells completed in Tertiary sediments
typically report siltstone or shale at depth. In many of these wells, groundwater is encountered in
either thin sand and gravel layers or fractures in semi-consolidated rock.

The Drummond and Philipsburg Valleys were the subject of a detailed irrigation return flow study
in the mid-1990s (Voeller and Waren, 1997). The hydrology of both valleys is highly influenced by
irrigation activity and the importation of water from the East Fork Rock Creek reservoir.
Groundwater levels in many areas fluctuate seasonally, largely in response to irrigation practices;
the hydrograph for well 63339 in the upper-middle part of figure 6 is a good example. Voeller and
Waren (1997) provide detailed discussions of the water budget, including irrigation return flows
calculated from four separate sub-basins. Irrigation return flow from excess irrigation water in the
Flint Creek basin, much of it stored and released from basin-fill aquifers, approaches 100 cubic ft
per second after irrigation stops at the end of the summer. This return flow diminishes over a
period of months as groundwater levels decline. Hydrographs from a shallow—deep nested well
pair located on the valley margin southwest of Drummond (wells 15483 depth water enters [DWE]
= 127 ft and 15484 DWE = 40 ft) demonstrate a downward vertical gradient. Downward gradients
are common in recharge areas along valley margins. Away from the recharge areas vertical
gradients diminish as flow becomes lateral toward the topographically lower discharge areas.

Deer Lodge Valley

The Deer Lodge Valley (fig. 7) is characteristic of the intermontane basins of southwestern
Montana. It is approximately thirty miles in length between where Silver Bow Creek enters at its
upper end and where the Clark Fork River exits north of Deer Lodge. It is generally less than 15
miles wide. Konizeski and others (1968) provide an overview of the hydrogeology of the valley.
Surficial unconsolidated sediments are found in the floodplain of the Clark Fork River and
numerous tributary valleys as shown in figure 7. Tertiary basin-fill underlies the surficial deposits
and is thousands of feet thick (Smith, 2009). In many parts of the valley, especially high on
benches underlain by Tertiary sediments, deep wells tend to have lower altitude water levels,
demonstrating downward vertical gradients.

Summit Valley — Butte Area

The Summit Valley in the southeast part of the study area (fig. 7) is surrounded by granitic rock
(quartz monzonite). As much as 800 ft of basin-fill sediments overlie bedrock near the valley
center. Additional potentiometric-surface contours with a 20 ft contour interval are available for
some areas within the gray rectangle shown in figure 7. The rectangle represents the extent of
MBMG Ground-Water Open-File Report 22 (LaFave, 2008), which focused on nitrate in
groundwater and surface water in the Summit Valley. Unconsolidated surficial sediments in the



aeptns at any particular location. In general, the potentiometric surrace Is a subduea representation
of the regional topography; the highest groundwater altitudes coincide with the regional
topographic highs and the lowest altitudes with the regional topographic lows. Lateral groundwater
movement will be in a direction perpendicular to potentiometric contours from higher to lower
altitudes.

The maps are based on about 800 measured water-level and spring altitudes gathered during site
visits between February 2000 and July 2002. In addition, data from previous groundwater
investigations and reports were used where they provided additional detail; reported water levels
from driller’s well logs and water rights applications were used where measured data were sparse.
All the water-level data used to compile this map are available from the MBMG’s Ground Water
Information Center (GWIC).

Geologic setting

The geologic setting of the Upper Clark Fork River Ground Water Characterization Area is
described in detail in Montana Ground Water Assessment Atlas 5, Map 2 (Smith, 2009). The area
consists of bedrock-cored mountains that separate large valleys. The valleys are connected by
distinct canyons along major streams. Smith (2009) defines three principal categories of geologic
materials: surficial unconsolidated sediments, Tertiary sedimentary rocks, and bedrock.

On this plate, areas indicated as bedrock combine many types of consolidated rock. See Smith
(2009) for a more complete discussion of the geologic setting and detail on bedrock geology.
Bedrock forms most of the mountainous parts of the study area and is also present beneath the
basin fill. Within the mountainous areas, there are mapped and unmapped surficial unconsolidated,
glacial, and stream-deposited sediments of limited extent.

During the Tertiary period (about 65 to 2.6 million years ago), large, wide valleys in western
Montana, such as the Deer Lodge Valley, were structurally down dropped relative to surrounding
mountains, and filled with hundreds to thousands of feet of Tertiary and younger sediments (Smith,
2009). Tertiary sediments are typically layered, poorly consolidated deposits that include clay, silt,
sand, gravel, conglomerate, shale, sandstone, and volcanic ash; they may include minor amounts of
limestone, coal, and volcanic rock. Typically the materials are more consolidated at depth, and if
consolidated, are often fractured.

Unconsolidated surficial sediments in the floodplains and under terraces along modern streams
typically include sand, gravel, silt, and lesser amounts of clay; in some areas the deposits are
glacially deposited till (gravelly clay, silt, sand, and boulders) and outwash (sand and gravel).
These surficial deposits are typically less than 70 ft thick, but in a few places, notably in the
Blackfoot River and Nevada Creek valleys (fig. 5), the till and outwash may be more than 200 ft
thick.

Within the intermontane basins, basin-fill aquifers are saturated Tertiary sedimentary rocks and
unconsolidated surficial sediments that can deliver water to wells. Basin-fill aquifers are bounded
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summit Valley are sandy with poor soll aevelopment aue to thelr granitic source material, SO
mobile ions like nitrate readily move through the sediment and into the groundwater (LaFave,
2008). The lack of irrigation development in the Summit Valley is reflected by small seasonal
fluctuations in local hydrographs. Apparent downward water-level trends shown in Summit Valley
hydrographs are related to dry climate during the study period.

Geothermal features

Warm and hot springs are present in the Deer Lodge Valley, to the northwest along the Clark Fork
River, and also near Avon (Sonderegger and Bergantino, 1981). The warm springs have
temperatures in the range of about 70 to 80 degrees Fahrenheit, while hot springs at Gregson, about
5 miles south of Opportunity and at Warm Springs are 158 and 172 degrees Fahrenheit,
respectively. Wells between 300 and 600 ft deep at Gregson provide hot water to Fairmont Hot
Springs resort. The Deer Lodge Valley, the Clark Fork Valley in Granite and Powell Counties, and
the valley of the Little Blackfoot River are all mapped as areas expected to contain geothermal
resources suitable for direct heat applications (Sonderegger and Bergantino, 1981).

Data sources

Base layers of physiography, hydrology, and cultural features were derived from Geographic
Information System coverages available at the Montana State Library Natural Resource
Information System, Helena, Montana (http://nris.mt.gov/).
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showing general relationships between bedrock aquifers and basin-fill materials, and general
groundwater flow paths.

Hydrogeologic setting

Precipitation is more abundant in the surrounding mountainous areas than in the inset valleys.
Water, seasonally stored and released from mountain snowpack, contributes substantially to spring
and summer stream flow. The greatest water use in the Upper Clark Fork River Area is irrigated
agriculture. Most of the irrigated acreage is located in the valley bottoms where precipitation is less
than in the mountains, but where the growing season is longer.

Mountainous areas surrounding the valleys are typically underlain by consolidated bedrock, such as
granite, basalt, meta-sedimentary quartzites, and argillites (Smith, 2009). Permeability in these
rocks is through interconnected fractures that typically become less connected with depth (Freeze
and Cherry, 1979). Bayuk (1989) noted that specific yields in Belt Supergroup bedrock southwest
of Missoula, Montana, decreased by a factor of four at depths greater than 250 ft.

Water that infiltrates into the fractured bedrock in the mountains percolates downward and then
moves laterally outward from the mountains to the valleys as permeability allows. The lateral
movement of water from the mountains to the valleys is a source of recharge to basin-fill aquifers,
and can provide baseflow to streams or appear as springs.
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Figure 5. Blackfoot River and Nevada Creek area.
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Monthly water levels were measured at the starred wells
shown on the maps. Hydrographs, presented for some of
the sites, show time-series water levels. The borders are
color coded to match the well's aquifer. The left vertical
axis indicates the depth to water, in feet from ground
surface. Two consistent vertical scales are used in the
graphs, so that the graphs span a total of 20 or 40 ft
vertically, depending on the range of groundwater
fluctuations. The horizontal axis is time, and all graphs
begin in 2000 and end in 2002 during the period when
the wells were monitored monthly. The hydrograph above
has a slightly expanded scale and shows water-level
fluctuations for a shallow--deep well pair located southwest
of Drummond. These two wells display similar groundwater-
level trends, but the level in the shallow well is higher than
in the deep well, indicating a downward vertical gradient.
Water-level trends in this area are discussed in
Voeller and Waren (1997).
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Figure 6. Drummond and Philipsburg Valleys and Georgetown Lake.
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