STATE OF MONTANA

Thomas L. Judge, Governor

BULLETIN 91

December 1973

BUREAU OF MINES AND GEOLOGY

S. L. Groff, Director

QUALITY AND RESERVES OF STRIPPABLE COAL, SELECTED DEPOSITS, SOUTHEASTERN MONTANA

by Robert E. Matson and John W. Blumer

Montana Bureau of Mines and Geology Analytical Data by Laurence A. Wegelin

STATE OF MONTANA BUREAU OF MINES AND GEOLOGY S. L. Groff, Director

BULLETIN 91

QUALITY AND RESERVES OF STRIPPABLE COAL, SELECTED DEPOSITS, SOUTHEASTERN MONTANA

by

Robert E. Matson and John W. Blumer

Analytical Data by

Laurence A. Wegelin

CONTENTS

																					Page
Abstract																					1
Introduction																					1
Background for study																		•		•	1
Purpose and scope .																					2
Location and extent of	are	a																			2
Field work																					2
Field methods																					4
Previous geologic work																					4
Land ownership																					4
Geography																					6
Surface features and la	nd 1	100											_		_			_	_		6
Population																					6
Transportation				_																	6
Population								_													6
Water supply	•	•	•		i			_													7
Stratigraphy	•	•		•	•																7
Fort Union Formation	•	•	•	•	•	•	•				-										7
Tongue River Memb	er.	•	•	•	•	•	•	•	•	•			•								8
Lebo Member	JQ1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	8
Tulloch Member .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Ċ	8
Wasatch Formation .																					9
Geologic structure	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 9
Coal	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
Coal quantity	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
Burning of the coal.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
Coal quality	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
Coal duality	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
Reserve estimates																					18
Strippable coal deposits																					18
Decker area	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
Witness 1 description	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	31
Kirby coal deposit .	•		•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	37
Canyon Creek coal dep	OOSI	τ	•	•	٠	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	٠	42
Birney coal deposit .		•	٠.,	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	46
Poker Jim Lookout co	al d	epo)SIT		٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	
Hanging Woman Creek														•	•	•	•	•	•	•	49 57
West Moorhead coal de	epos	sit .	•	٠.		•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	٠.
Poker Jim Creek-O'De						•				•	•	•	•	٠	٠	٠	•	٠	•	٠	62
Otter Creek coal depos						•	٠	•	•	•	•	•	•	٠	٠	•	•	•	•	•	66
Ashland coal deposit						•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	71
Colstrip coal deposit.											•	•	•	٠	٠	٠	•	•	٠	٠	76
Pumpkin Creek coal de	-															٠	•		٠	٠	82
Foster Creek coal depo																		•		•	84
Broadus coal deposit																		٠	•	•	89
East Moorhead coal de																			•		92
Diamond Butte, Good																					95
Sweeney Creek-Snyde																					101
Yager Butte coal depo																					103
Sonnette and Threemi																					107
Home Creek Butte coa																					
Little Pumpkin Creek																					
Sand Creek coal depos	sit		-																		117

CONTENTS (continued)

																					Page
Be	eaver Creek-Liscom Cree	ek (coal	dε	ро	sit															119
	reenleaf Creek-Miller Cr																				123
Pi	ne Hills coal deposit .																				126
K	nowlton coal deposit.																				129
Refe	rences																				134
]	LI	LUS	ST	R.A	\T	IO	NS										
Plate																					
In	dex to plates																				In box
	Decker																			i	In box
	Deer Creek																			Ċ	In box
3.	Roland																				In box
	Squirrel Creek																Ċ	Ī	i	·	In box
	Kirby																•	·	•	•	In box
	-					•											•	•	•	•	In box
	B. Dietz																		•	•	In box
	C. Canyon																		•	•	In box
6	Canyon Creek																		•	•	In box
	A. Wall																		•	•	In box
	B. Canyon																		•	•	In box
																				•	In box
	<i>J</i>																			٠	
	Poker Jim Lookout .																			٠	In box
Э.	Hanging Woman Creek																			•	In box
	A. Anderson																			•	In box
-10	B. Dietz																			٠	In box
10.																				٠	In box
																				٠	In box
	B. Dietz																			٠	In box
11	C. Canyon																			٠	In box
11.	Poker Jim Creek-O'Del																		•	٠	In box
						•													٠	٠	In box
10						٠													•	٠	In box
	Otter Creek																			•	In box
13.	Ashland																			•	In box
	A. Knobloch				•	•	•	•									•	•			In box
	B. A, C, and Sawyer.				•	•								•				•	٠		In box
	Colstrip					•						•		•							In box
15.	Pumpkin Creek																				In box
16.	Foster Creek																				In box
	A. Knobloch																				In box
	B. Terret																				In box
	C. Flowers-Goodale .																				In box
17.	Broadus																				In box
18.	East Moorhead																				In box
19.	Diamond Butte																				In box
	Goodspeed Butte									•							•	•	•	•	In box
	Fire Creek							•	•	•	•	•	•	•	•	•	•	•	•	•	In box
	Sweeney Creek-Snyder							•	•	•		•	•	•	•	•	•	•	•	•	In box
	Yager Butte												•	•	•	•		•	٠	•	In box
·	A. Elk and Dunning .									-		-	-	-	-	•	-	•	•	•	
	B. Cook and Wall.						•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	In box
								4	_	_	_	_	_	_							111 11(1Y

ILLUSTRATIONS (continued)

Plate										
24.	Threemile Buttes									In bo
25.	Sonnette									In bo
	A. Pawnee									In bo
	B. Cook									In bo
26.	Home Creek Butte									In bo
	Little Pumpkin Creek									In bo
	Sand Creek									In bo
	Beaver Creek-Liscom Creek									In bo
	Greenleaf Creek-Miller Creek									In bo
	Pine Hills									In bo
	Knowlton									In bo
٠2.	A. South half									In bo
	B. North half									In bo
33	Cross sections						_			In bo
	Cross sections									In bo
51.										
Figur	re ·									Page
_	Index map showing area discussed in this report.				_					3
	Index map showing areas of previous coal studies									5
2.	Structure contour map of Montana portion of Pow	Mer	Rive	r Ras	in.	•	•	•	•	10
	Columnar sections showing relationship of coal bec									12
4.	Columnal sections showing relationship of coal boo	13 11	1 1101	LIIOII	ı pu	100	, i u	·ou	•	12
	TABLES									
	ITUBLO									
Table										
	Coal reserves, acreage, and tons per acre, selected s	trin	nahle	coa	1 de	nos	ite			11
		шp	Paox	, coa	ı uc	pos	110	•	•	
	er area Coal reserves, overburden, overburden ratio, acres,	and	1 tone	nar	000	a ir				
2.										19
2	Decker, Deer Creek, Roland, and Squirrel Creek									20
	Proximate analysis, forms of sulfur, heating value									22
4.	Trace-element analysis	•	• •		•	•	•	٠	•	23
5.	Trace-element analysis, ppm coal, ppm ash	•	• •		•	•	•	٠	٠	23
	Major ash constituents	•			•	•	•	•	•	∠ 4
	Creek									25
	Proximate analysis, forms of sulfur, heating value								•	25
	Major ash constituents	•	• •	. •	•	•	•	•	•	26
Rola										27
	Proximate analysis, forms of sulfur, heating value				•	٠	•	•	•	27
	Major ash constituents	٠			•	•	•	٠	•	28
	rrel Creek									•
	Proximate analysis, forms of sulfur, heating value				•	•	•	•	٠	29
	Major ash constituents	٠			•	•	•	•	•	30
Kirb	•									
	Reserves, overburden, overburden ratio, acres, and								•	32
14.	Proximate analysis, forms of sulfur, heating value	•			•		•	•	•	34
	Major ash constituents	•				•	•		•	36
Cany	on Creek									
16.	Reserves, overburden, overburden ratio, acres, and	tor	is per	acre						37
	Proximate analysis, forms of sulfur, heating value									38
	Major ash constituents									41
Birne	5									
	Reserves overhurden overhurden ratio acres and	tot	is ner	acre	4					42

TABLES (continued)

Table	Page
Birney (continued)	
20. Proximate analysis, forms of sulfur, heating value	43
21. Major ash constituents	44
Poker Jim Lookout	
22. Reserves, overburden, overburden ratio, acres, and tons per acre	46
23. Proximate analysis, forms of sulfur, heating value	47
24. Major ash constituents	48
Hanging Woman Creek	
25. Reserves, overburden, overburden ratio, acres, and tons per acre	49
26. Proximate analysis, forms of sulfur, heating value	50
27. Major ash constituents	54
West Moorhead	
28. Reserves, overburden, overburden ratio, acres, and tons per acre	58
29. Proximate analysis, forms of sulfur, heating value	59
30. Proximate analysis, ultimate analysis, heating value	60
31. Grindability, forms of sulfur, fusibility of ash °F	60
32. Major ash constituents	61
Poker Jim Creek-O'Dell Creek	
33. Reserves, overburden, overburden ratio, acres, and tons per acre	63
34. Proximate analysis, forms of sulfur, heating value	64
35. Major ash constituents	65
Otter Creek	
36. Reserves, overburden, overburden ratio, acres, and tons per acre	67
37. Proximate analysis, forms of sulfur, heating value	68
38. Major ash constituents	70
Ashland	
39. Reserves, overburden, overburden ratio, acres, and tons per acre	71
40. Proximate analysis, forms of sulfur, heating value	72
41. Major ash constituents	74
Colstrip	
42. Reserves, overburden, overburden ratio, acres, and tons per acre	76
43. Proximate analysis, ultimate analysis, heating value	78
44. Forms of sulfur and fusibility of ash °F	80
Pumpkin Creek	
45. Reserves, overburden, overburden ratio, acres, and tons per acre	82
46. Proximate analysis, ultimate analysis, heating value, fusibility of ash °F	83
Foster Creek	
47. Reserves, overburden, overburden ratio, acres, and tons per acre	85
48. Proximate analysis, ultimate analysis, heating value	86
49. Forms of sulfur, fusibility of ash °F	87
50. Major ash constituents	88
Broadus	
51. Reserves, overburden, overburden ratio, acres, and tons per acre	90
52. Proximate analysis, ultimate analysis, heating value	91
53. Major ash constituents and fusibility of ash °F	91
East Moorhead	-
54. Reserves, overburden, overburden ratio, acres, and tons per acre	92
55. Proximate analysis, forms of sulfur, heating value	93
56. Major ash constituents	94
Diamond Butte	77
57. Reserves, overburden, overburden ratio, acres, and tons per acre	
(Diamond Rutte Goodspeed Rutte and Fire Gulch)	95

TABLES (continued)

Table										Page
Diamond Butte (continued)										
58. Proximate analysis, forms of sulfur, heating value					,					96
59. Major ash constituents					,					97
Goodspeed Butte										
60. Proximate analysis, forms of sulfur, heating value										98
61. Major ash constituents										98
Fire Gulch										
62. Proximate analysis, forms of sulfur, heating value			•							99
63. Major ash constituents		•								99
Sweeney Creek-Snyder Creek										
64. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	Э.						101
65. Proximate analysis, ultimate analysis, forms of sulf	ur, h	eati	ng v	alue	. 6					102
66. Major ash constituents and fusibility of ash °F.										102
Yager Butte										
67. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	Э.	. ,					103
68. Proximate analysis, forms of sulfur, heating value					. ,					104
69. Major ash constituents										106
Sonnette										
70. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	Э						
(Sonnette and Threemile Buttes)		٠.								109
71. Proximate analysis, forms of sulfur, heating value						•				110
72. Major ash constituents										111
Threemile Buttes										
73. Proximate analysis, forms of sulfur, heating value										112
74. Major ash constituents										113
Home Creek										
75. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	е.						114
Little Pumpkin Creek		•								
76. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	э.	. ,					115
Sand Creek		1								
77. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	е.	. ,					117
78. Proximate analysis, ultimate analysis, heating value		_								118
79. Major ash constituents and fusibility of ash °F.										118
Beaver Creek-Liscom Creek										
80. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	э.						120
81. Proximate analysis, forms of sulfur, heating value										121
82. Major ash constituents										122
Greenleaf Creek-Miller Creek										
83. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	э.						123
84. Proximate analysis, forms of sulfur, heating value		-								124
85. Major ash constituents										125
Pine Hills			-			-	-	-	•	
86. Reserves, overburden, overburden ratio, acres, and	tons	ner	acre	е.						127
87. Proximate analysis, ultimate analysis, heating value						_				
88. Major ash constituents and fusibility of ash °F.										128
Knowlton		•	-				-	•	•	
89. Reserves, overburden, overburden ratio, acres, and	tons	per	acre	e .				_	_	129
90. Proximate analysis, forms of sulfur, heating value						_			•	130
91. Major ash constituents									-	132
				-						_

			·

QUALITY AND RESERVES OF STRIPPABLE COAL,

SELECTED DEPOSITS,

SOUTHEASTERN MONTANA

By Robert E. Matson and John W. Blumer

ABSTRACT

Quality and quantity of strippable subbituminous and lignite coal in 32 deposits are described, and coal distribution is shown on 46 plates. All of the coal is classified as low in sulfur except the Sweeney Creek-Snyder Creek coal deposit; its reported sulfur content exceeds 1% in four core samples. Total strippable reserves are 32 billion tons on 770,000 acres.

Proximate analyses, forms of sulfur, calorific values, and major ash constituents of the coal samples are tabulated.

The report includes the results of Montana Bureau of Mines and Geology projects in cooperation with Burlington Northern, Inc., and with the Office of Fuel Resources, Environmental Protection Agency, supported by special appropriations by the Legislature.

INTRODUCTION

BACKGROUND FOR STUDY

In recent years, concern about the environment has resulted in legislative restrictions on SO_2 emissions from coal-fired power plants. The power companies are there-

fore seeking low-sulfur fuel to help them to comply with these regulations.

In the late sixties, the National Air Pollution Control Administration, U.S. Department of Health, Education,

National Forest within the mapped area. Both the Bureau of Land Management and the U.S. Forest Service also provided colored photos and high altitude infrared photographs where available. The Pittsburgh Energy Research Center, under Forest E. Walker and Roy S. Abernathy, provided control samples and advice on analytical techniques.

George Nugent and John R. Ratchye of Rosebud Coal Sales Company provided data useful in evaluation of the Decker and Deer Creek coal deposits. Graham R. Curtis of Gulf Mineral Resources helped to name and correlate the coal beds and provided data on the Kirby coal deposit. Ernest Thurlow, Barney Binon, Loren Williams, and Peter Mattson of Burlington Northern, Inc., provided data for this report. Loren Williams also compiled several of the maps in this report from field data.

Over the four-year period, many student assistants, graduate assistants, and staff members of the Montana Bureau of Mines and Geology worked on various aspects of the project. Wayne Van Voast, associated with the project during 1969 and 1970, conducted the field program in the latter part of the 1969 field season and the 1970 field season. Others who worked on the project are Eldon Woods, draftsman for the Bureau, Gardar G. Dahl, Michael R. Garverich, Charles Speake, Jr., Melvin Granberg, Leonard Maki, Van Heare, and Robert Lambeth. Recognition is due the staff involved in the compilation of the final report, including Mrs. Mayme Domme, Mrs. Dorothy Ratcliff, Miss Sheila McCarthy, Mrs. Carol Blankenship, and Miss Vonnie Lavelle.

Dr. Albert P. Talboys, in 1969 the acting Chief of the Office of Fuel Resources, National Air Pollution Control Administration, U.S. Department of Health, Education, and Welfare (now the Air Pollution Control Office of the Environmental Protection Agency), encouraged and supported the major project. The assistance and cooperation of Dr. S.L. Groff, State Geologist and Director of the Montana Bureau of Mines and Geology (then Chief of the Ground Water and Mineral Fuels Division of the Montana Bureau of Mines and Geology), in obtaining this grant is also appreciated. Charles D. Yaffe, former Director, Don R. Goodwin, former Acting Director, and Robert L. Ajax, Chief of the Division of Control Agency Development, facilitated administration of this project. Russel C. Flegal and Robert M. Jimeson, Physical Science Administrators, aided in the completion of this project. Frederick W. Lawrence, Chief of the Washington Liaison Staff of the Environmental Protection Agency, provided support for the project. Henry C. Steed, Chief of the Grants Operation Branch of the Environmental Protection Agency, expedited fourth year project

Several Federal agencies cooperated with the Bureau on this project. Elmer M. Schell, Area Geologist, Northern Rocky Mountain area, Mineral Classification Branch of the U.S. Geological Survey in Casper, Wyoming, took an active interest in the field program as it was executed, and he reviewed the report previous to publication. The Bureau of Land Management provided special use permits for drilling test holes on federally owned coal lands, and the Forest Service also provided such permits on the Custer

and Welfare (now the Air Pollution Control Office of the Environmental Protection Agency) recognized the need for information about the quality and quantity of low-sulfur western coal, as well as about economic conditions that would permit use of this coal to assist in combating air pollution. The Air Pollution Control Office of the Environmental Protection Agency began efforts to evaluate western coals in cooperation with agencies in various states, including the Montana Bureau of Mines and Geology, and with other Federal agencies.

The Fort Union coal region of eastern Montana was of interest because of the known reserves of low-sulfur subbituminous and lignite coal minable by surface methods. Characteristics of the topography and the thickness of the coal beds make possible the mining of large quantities of coal from relatively small, compact areas, which facilitates reclamation. Coal beds 25 to 60 feet thick are not uncommon, and in the Decker area the coal in a single bed reaches a thickness of 80 feet.

Production of coal from thick seams by strip mining is much less costly and much less hazardous for the workmen than production by underground operations. Furthermore, 90% of the coal can be recovered by surface mining, whereas only 50 to 55% can be recovered by underground methods.

Dr. Albert P. Talboys (then acting chief of the Office of Fuel Resources for the National Air Pollution Control Administration) and Dr. S.L. Groff, State Geologist and Director of the Montana Bureau of Mines and Geology, began preliminary planning early in 1969. In June 1969, the Office of Air Pollution Control of the Environmental Protection Agency approved a matching grant (Grant No. 69A-2901D), which was followed by Grant No. 70 (70B-2901D) for the second, third, and fourth years. The title of the project proposal was "Field Evaluation of Eastern Montana's Low-Sulfur, Low-Air-Pollutant Lignite and Subbituminous Coal Reserves." The funds granted by the Environmental Protection Agency were matched on an almost equal basis by the Montana Bureau of Mines and Geology.

PURPOSE AND SCOPE

The purpose of this project was to acquire qualitative and quantitative information on selected strippable deposits of subbituminous and lignite coal in southeastern Montana. That area was chosen because it was known to contain the highest-ranked coal of the Fort Union Formation, whereas most of the coal in the rest of eastern Montana ranked as lignite. Higher-ranked coal was preferred to lignite because of the expectation that much of

the coal would be shipped long distances as a substitute for coal of higher sulfur content then being mined in the midwestern and eastern coal areas. Subbituminous coal has higher Btu (British thermal unit) content and less moisture than lignite. On the "as received" basis, the percentage of sulfur is about the same, but when sulfur content per million Btu is computed, the subbituminous coals have a distinct advantage. Transportation cost on a "cents per million Btu" basis also favors subbituminous coal over lignite.

Portions of Big Horn, Rosebud, Powder River, and Custer Counties were mapped to determine the strippable coal in various coal beds in the Tongue River Member of the Fort Union Formation. The report describes the results of this four-year project and also some work completed earlier.

Some of the work done prior to the start of the EPA project was done by the Montana Bureau of Mines and Geology in cooperation with Burlington Northern, Inc., beginning in 1966, when the Foster Creek coal field was evaluated (Gilmour and Williams, 1969). In 1967 and 1968, cooperative projects continued, and the Broadus, Sand Creek, Sweeney Creek-Snyder Creek, and Pine Hills coal deposits were mapped. Also during 1968, the Bureau completed most of the field work on the West Moorhead coal field (Matson, 1971), the results of which are included in the present publication. The Colstrip and Pumpkin Creek areas, previously mapped by Burlington Northern, are also included.

All available private-company drill-hole information was used in the same manner as project field data. Much information about the Decker and Kirby coal fields was provided by the Rosebud Coal Sales Company, Gulf Mineral Resources Company, and Pat McDonough. Where available, oil-well electronic logs greatly aided in the correlation of the coal beds.

LOCATION AND EXTENT OF AREA

The area described in this report includes parts of Big Horn, Rosebud, Powder River, and Custer Counties, Montana (Fig. 1). The Crow Indian Reservation and the Northern Cheyenne Indian Reservation were excluded from this study. The Sarpy Creek area was also excluded because of the large amount of coal under Indian tribal ownership.

FIELD WORK

Most of the field work for the major project was done during the summers of 1969, 1970, 1971, and 1972.

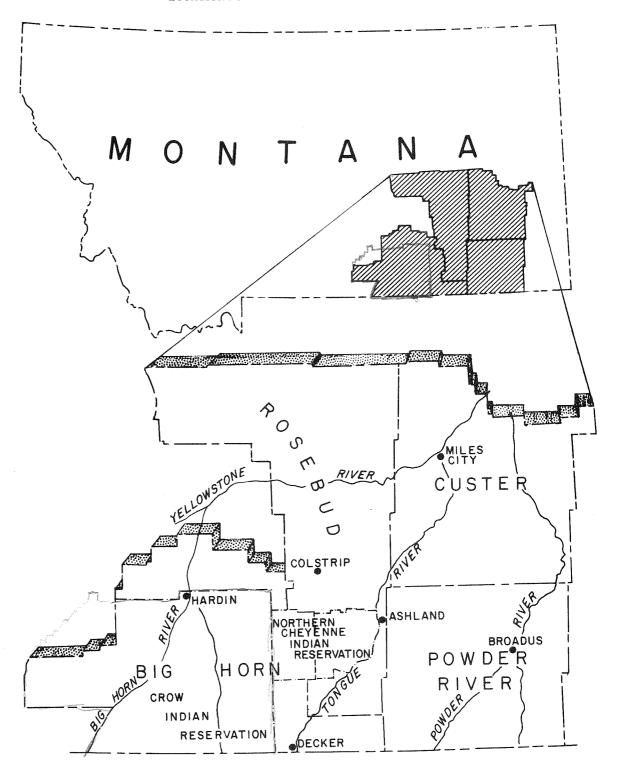


Figure 1.-Index map showing area discussed in this report.

During these periods, 284 project holes were drilled and 3,272 feet of coal core obtained. Of these totals, 74 holes were drilled in 1969, and 1,317 feet of coal core obtained; 105 holes were drilled in 1970, and 1,244 feet of core obtained; 75 holes were drilled in 1971, and 692 feet of core obtained; and 10 holes were drilled in 1972, and 19 feet of core obtained. Most of the field work in 1972 consisted of surface mapping of coal outcrops, burn lines, and geologic structures in the Decker-Birney area. Small amounts of additional drilling during the late fall and winter of 1972 and early 1973 yielded information needed for completion of the overburden maps within that area. Additional drill data and core analyses useful to this project were obtained from a related project sponsored by the Mineral Classification Branch of the U.S. Geological Survey and incorporated in this report.

FIELD METHODS

The field method utilized in this project was patterned after that developed by Burlington Northern, Inc., (Carmichael, 1967) and was modified to fit varying conditions. As the method was originally developed to evaluate areas where adequate topographic maps were not available, it included the setting of temporary bench marks by leveling and the measuring of topographic configurations by altimeter surveys. Concurrently with the altimeter survey, coal outcrops, clinker, and burn lines were mapped; holes were drilled to permit measurement of the thickness of the coal and to obtain core samples for analysis of coal quality. Areas including Colstrip (Pl. 14), Pumpkin Creek (Pl. 15), Broadus (Pl. 17), Sand Creek (Pl. 28), Sweeney Creek-Snyder Creek (Pl. 22), Pine Hills (Pl. 31), and West Moorhead (Pl. 10A, B, and C) were mapped by this method.

Our modifications of the Burlington Northern field method included use of an American Paulin microbarograph for recording variations in air pressure and use of a computer for correcting altimeter elevations for changes in temperature and pressure. In other areas, topographic maps on a scale of 1:24,000 prepared by the U.S. Geological Survey Topographic Mapping Branch were available. In these areas, the principal field work consisted of determination of drill-hole locations and access, surface mapping, and drilling and coring. During the drilling operation, a driller's log showing the lithologic sequence was compiled, lithologic samples were obtained, and coal beds were cored for analysis where possible. After the completion of each drill hole, geophysical logs showing resistivity, spontaneous potential, and natural gamma were obtained, except in 1969 when the logging unit was not

available. Collar altitude at each drill hole was measured by aneroid altimeter from the nearest point of known altitude and is thought to be accurate within 5 feet. Almost all project drill holes were plotted and all coal outcrops, clinker, and burn lines were mapped on 7½-minute topographic quadrangle maps where available or on aerial photos if topographic maps were not available. Cores taken during the drilling were inspected, measured, and wrapped in cellophane for delivery to the Montana Bureau of Mines and Geology analytical laboratory.

PREVIOUS GEOLOGIC WORK

All of the area included in this report had been mapped previously by the U.S. Geological Survey, and parts had been mapped by the Montana Bureau of Mines and Geology (Fig. 2). The U.S. Bureau of Mines published a report (Ayler, Smith, and Deutman, 1969) on various strippable coal deposits in Montana. A recent map of the Decker quadrangle (Law and Grazis, 1972) has been placed on open file. A two-part report entitled "Preliminary Summary Report of the Strippable Low-Sulfur Coals of Southeastern Montana" (Part 1) by Robert E. Matson and Wayne A. Van Voast and "Markets for Montana Coal" (Part 2) by Cameron Engineers, was prepared and placed on open file in 1970.

LAND OWNERSHIP

The largest coal owner in the area discussed in this report is the Federal Government. Burlington Northern, Inc., is the next-largest coal owner, as a result of the land grant of 1864 that gave the railroad all available odd-numbered sections in an area 60 miles on each side of railroad right-of-way. Within that large area, the principal coal ownership is about equally divided between the Federal Government and Burlington Northern, Inc. The State of Montana is the next-largest owner of coal in south-eastern Montana, as two sections per township were granted to the state for school land. Private individuals own some coal throughout the area.

The U.S. Bureau of Land Management and U.S. Forest Service in the Decker-Birney resource study (1972), estimated the coal ownership in the Decker-Birney area (an area south of the land grant to Burlington Northern, Inc.) as 88% federal, 5% state, and 7% private. Of the federallyowned coal, 18% is within the boundaries of the Custer National Forest. The surface ownership in the Decker-Birney resource study area is 26% federal (17% within the Custer National Forest), 5% state, and 69% private.

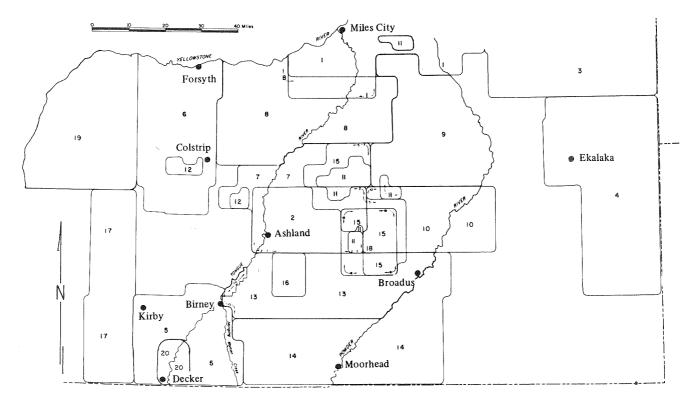


Figure 2.-Index map showing areas of previous coal studies.

- 1909. COLLIER, A.J., and SMITH, C.D., The Miles City coal field, Montana: U.S. Geol. Survey Bull. 341-A, p. 36-61.
- 1910. WEGEMANN, C.H., Notes on coals of Custer National Forest, Montana: U.S. Geol. Survey Bull. 381-A, p. 108-114.
- 1912. BOWEN, C.F., The Baker lignite field, Custer County, Montana: U.S. Geol. Survey Bull. 471-D, p. 202-226.
- 1924. BAUER, C.M., The Ekalaka lignite field, southeastern Montana: U.S. Geol. Survey Bull. 751-F, p. 231-267.
- 1929. BAKER, A.A., The northward extension of the Sheridan coal field, Big Horn and Rosebud Counties, Montana: U.S. Geol. Survey Bull. 806-B, p. 15-67.
- 1930. DOBBIN, C.E., The Forsyth coal field, Rosebud, Treasure, and Big Horn Counties, Montana: U.S. Geol. Survey Bull. 812-A, p. 1-55.
- 1932. BASS, N.W., The Ashland coal field, Rosebud, Powder River, and Custer Counties, Montana: U.S. Geol. Survey Bull. 831-B, p. 19-105.
- 1936. PIERCE, W.C., The Rosebud coal field, Rosebud and Custer Counties, Montana: U.S. Geol. Survey Bull. 847-B, p. 43-120.
- 1939. PARKER, F.S., and ANDREWS, D.A., The Mizpah coal field, Custer County, Montana: U.S. Geol. Survey Bull. 906-C, p. 85-133.
- 1952. BRYSON, R.P., The Coalwood coal field, Powder River County, Montana: U.S. Geol. Survey Bull. 973-B, p. 23-106.
- 11. 1954. BROWN, ANDREW, and others, Strippable coal in Custer and Powder River Counties, Montana: U.S. Geol. Survey Bull. 995-E, p. 151-199.

- 12. 1954. KEPFERLE, R.C., Selected deposits of strippable coal in central Rosebud County, Montana: U.S. Geol. Survey Bull. 995-I, p. 333-381.
- 13. 1959. WARREN, W.C., Reconnaissance geology of the Birney-Broadus coal field, Rosebud and Powder River Counties, Montana: U.S. Geol. Survey Bull. 1072-J, p. 561-585.
- 14. 1966. BRYSON, R.P., and BASS, N.W., Geologic map and coal sections of the Moorhead coal field, Montana: U.S. Geol. Survey Open-file Rept., 37 fig., 3 tables, in 15 sheets.
- 15. 1969. GILMOUR, E.H., and WILLIAMS, L.A., Geology and coal resources of the Foster Creek coal deposit, eastern Montana: Montana Bur. Mines and Geology Bull. 73, 9 p.
 ————Northern Pacific Railway Company cooperative projects with the Montana Bureau of Mines and Geology in 1966 and 1967.
- 1968. MATSON, R.E., DAHL, G.G., JR., and BLUMER, J.W., Strippable coal deposits on state land, Powder River County, Montana: Montana Bur. Mines and Geology Bull. 69, 81 p.
- 17. 1935. THOM, W.T., JR., HALL, G.M., WEGEMANN, C.H., and MOULTON, G.F., Geology of Big Horn County and the Crow Indian Reservation, Montana, with special reference to the water, coal, oil, and gas resources: U.S. Geol. Survey Bull. 856, 200 p.
- 18. 1967. CARMICHAEL, V.W., The Pumpkin Creek lignite deposit, Powder River County, Montana: Unpub. thesis, 79 p.
- 1923. ROGERS, G.S., and LEE, WALLACE, Geology of the Tullock Creek coal field, Rosebud and Big Horn Counties, Montana: U.S. Geol. Survey Bull. 749, 181 p.
- 1972. LAW, B.E., and GRAZIS, S.L., Preliminary geologic map and coal resources of the Decker quadrangle, Big Horn County, Montana: U.S. Geol. Survey Open-file Rept., 3 sheets.

GEOGRAPHY

SURFACE FEATURES AND LAND USE

The principal surface features in the study area are the north- and northeast-trending drainages of Rosebud Creek, Tongue River, Powder River, and the larger tributaries of the Tongue River such as Hanging Woman Creek, Otter Creek, and Pumpkin Creek. All of these occupy broad valleys, which abut the edges of steep-sided ridges. The ridges are benched where resistant clinker is encountered. The tops of most of the divides are gently rolling and covered with grass. Ponderosa pine thrives on the areas of clinker and also marks the breaks where the sides steepen and become dissected.

Livestock grazing is the principal land use. Some hay is raised in meadows along the major valley bottoms, which are either irrigated or sub-irrigated, and some grains, such as wheat, oats, and barley, are cultivated. A small lumbering industry is supported in and around the Ashland area.

POPULATION

Big Horn, Rosebud, Powder River, and Custer Counties had a total population in 1970 of 23,993. As stated previously, the area discussed in this report includes only parts of these counties, and the total population within the report area would be somewhat fewer than the stated figure.

The population density of the four-county area ranges between 0.9 person per square mile in Powder River County and 3.2 persons per square mile in Custer County. Big Horn County's population density is 2.0 persons per square mile; Rosebud County's is 1.2 persons per square mile. From 1950 to 1970, Big Horn, Custer, and Powder River Counties had a small increase in population, while Rosebud County had an 8.2% decrease. The trend has already been reversed in Rosebud County as a result of the increased mining and construction activity at Colstrip.

TRANSPORTATION

The area discussed in this report is served by Burlington Northern, Inc., and by the Chicago-Milwaukee-Saint Paul Pacific Railroad, both of which pass through Forsyth along the Yellowstone River. The Milwaukee turns northwest at Forsyth and passes through Roundup to the west. The Burlington Northern follows the south side of the Yellowstone River eastward through Miles City and westward through Billings. The southern part of the area is tra-

versed by the Burlington Northern line that extends southeastward from Huntley (a short distance east of Billings) through Sheridan and Gillette, Wyoming, and into the midwest. Burlington Northern spur lines extend south from a point west of Forsyth to Colstrip to serve the Western Energy mine and Peabody Coal Company's Big Sky mine, and south along Sarpy Creek to the Westmoreland Coal Company mine. A third spur starting a short distance east of Sheridan extends northward to Decker to serve the Decker Coal Company mine.

Interstate Highway 94 passes through Forsyth and eastward through Miles City and westward through Billings. Interstate Highway 90 extends from Billings southeastward through Sheridan, Wyoming. The central part of the area is traversed by U.S. Highway 212 from Billings, through Hardin, Crow Agency, and Broadus to Colony, Wyoming, and by U.S. Highway 312 connecting Broadus and Miles City. Highway 315 extends from a junction a few miles west of Forsyth southward to Colstrip and Lame Deer. A blacktop road extends from Acme, Wyoming, to a junction a few miles north of Decker, and another blacktop road extends from Busby south to the south boundary of the Northern Cheyenne Indian Reservation. Highway 319, at the eastern edge of the area, connects Broadus with Gillette, Wyoming. Improved roads follow the Tongue River north of Decker to the junction with Highway 312 a few miles south of Miles City. Other improved roads connect Ashland, Otter Creek, and Hanging Woman Creek to Decker. Most of the other roads are gravel or graded dirt roads that become difficult to use during periods of heavy precipitation and during the winter.

CLIMATE

The climate of Big Horn, Powder River, Rosebud, and Custer Counties is characterized by warm summers, cold winters, and pronounced variations in seasonal precipitation.

Although the annual precipitation in the area varies from less than 12 inches to 16 inches a year, depending on the location or the altitude, the greatest amount of precipitation generally occurs at the highest altitudes such as the divides between the major drainages. April, May, June, July, and August are the periods of heaviest precipitation. The largest average monthly precipitation is during June. The highest temperatures occur in July and the lowest in January; the annual mean temperature is about 45 degrees.

STRATIGRAPHY 7

WATER SUPPLY

The area is drained by the northward- and northeastward-flowing Rosebud Creek, Powder River, Tongue River, and their tributaries. All major drainages enter Yellowstone River. Rosebud Creek joins it near Rosebud, which is east of Forsyth, the Tongue River enters at Miles City, and the Powder River near Terry. The principal tributaries of the Tongue River, such as Pumpkin Creek, Otter Creek, and Hanging Woman Creek, and the principal tributary of the Powder River, Mizpah Creek, are all intermittent streams. That is, at times there is no flow although water stands in ponds or pools throughout the year. The maximum discharge in the major drainages normally is during the spring runoff in May and June. Powder River has flooded during periods of heavy precipitation. Gaging stations of the U.S. Geological Survey are located on the Powder River near Moorhead and at locations south of Terry, on the Little Powder River near Broadus, and on the Tongue River below the Tongue River Dam and near Miles City. Sites for collecting data on the quality of water are at Decker and near Miles City on the Tongue River.

The Tongue River Reservoir in T. 8 and 9 S., R. 40 E., has a present storage capacity estimated at 68,000 acrefeet, and of this amount, 32,000 acrefeet is under contract for irrigation. Before water can be used for any other purpose, the approval of the Tongue River Water Users Association is needed. An engineering study of a

high Tongue River dam, proposed to be constructed several miles north of the present dam, has been completed for the Montana Department of Natural Resources by Bechtel Corporation. Another site, which would provide industrial water, is the proposed Moorhead dam and reservoir a few miles north of the Montana-Wyoming border. The proposed reservoir would have a capacity of 1,150,000 acre-feet, of which approximately 92,500 acrefeet would be allocated for industrial use.

Except for Rosebud Creek, Powder River, and Tongue River, very little surface water is available in the area. Although numerous small reservoirs along the tributaries of the major drainages provide small supplies of stock water, most water for domestic, livestock, and agricultural use is obtained from wells. The alluvium along the drainages and the sandstone and coal beds in the Fort Union and Hell Creek Formations (Perry, 1935, p. 40-43) are the principal sources of ground water. Interest in the development of coal deposits has stimulated evaluation of the ground-water resources. Current work by the Montana Bureau of Mines and Geology Hydrology Division includes water-evaluation studies at the Decker mine site, in an area west of Decker at Youngs Creek in T. 9 S., R. 38 E., which is on the Crow Indian Reservation, at Western Energy mine at Colstrip, and at Westmoreland Resources mine at Sarpy Creek. The Billings office of the U.S. Geological Survey is conducting an inventory on water levels and water quality throughout the Montana portion of the Powder River Basin.

STRATIGRAPHY

FORT UNION FORMATION

The coal beds described in this report are in the Tongue River Member of the Fort Union Formation (Paleocene). The Fort Union includes three members which are, from top to bottom, the Tongue River, Lebo, and Tulloch.

The Fort Union Formation was named by Meek and Hayden (1861, p. 433) for old Fort Union, which was situated near the junction of the Missouri and Yellowstone Rivers. Subsequent field work in eastern Montana resulted in the division of the Fort Union into three members on the basis of color, lithology, topographic expression, and occurrence of coal, which were convenient criteria for division of the formation into mappable units.

Along the Yellowstone River between Rosebud and Glendive, the Fort Union Formation is divisible into its members on the basis of color alone—the dark Lebo bed contrasts with the light-colored Tulloch beds below and the light-colored Tongue River beds above—but the color

differences are not in themselves distinctive in all areas of eastern Montana. Farther west, towards the source of the sediments, the dark and the lower light zones lose their identity and merge to form a greenish-gray or gray sandy sequence (Brown, 1962, p. 3). Farther southeast and east, and in western North Dakota, the lower members cannot be distinguished from one another and together are referred to as the lower member in Montana (Bryson, 1952, p. 46-52) and as the Ludlow in North Dakota (Brown, 1962, p. 6).

The base of the Fort Union was defined by Barnum Brown (1907, p. 834) as the base of the lowest coal bed above the dinosaur-containing beds of the Hell Creek Formation (late Cretaceous). Although many writers have attempted to re-define the Cretaceous-Paleocene boundary, Roland Brown (1962, p. 11) concluded after many years of study that the use of the lowest coal bed as the boundary is still valid, and where the coal is missing, the Cretaceous-Paleocene contact can be closely determined from paleontological evidence.

The greatest difference is between the Lebo and the members underlying and overlying it. The Lebo consists of dark, drab, somber beds composed or dark-gray to olive-gray shale containing altered and devitrified volcanic ash and abundant brown ferruginous concretions (Rogers and Lee, 1923, p. 36-39), whereas the Tulloch and Tongue River are both light-colored interbedded fine-grained sandstone, claystone, and siltstone and also show similarities in topographic expression. The Lebo, because of its relative softness, characteristically erodes to form long gentle slopes, whereas the Tulloch and Tongue River both form steep escarpments capped by the resistant sandstone beds that are prominent in both members. The Tongue River Member is further characterized by thick layers of reddish clinker, which have resulted from the burning of the thick coal beds.

TONGUE RIVER MEMBER

The Tongue River Member was named by Taff (1909, p. 129) in describing coal beds exposed along the valley of the Tongue River in the Sheridan coal field, Wyoming. The high divide between the Tongue River and Rosebud Creek near Brandenburg, Montana (Balster, 1971), is now regarded as the type locality, as a more nearly complete section is exposed there.

In the area described in this report, the thickness of the Tongue River Member ranges from 1,200 to 1,700 feet. In many places, the upper part has been eroded or truncated especially in the northern part of the area where the section consists of only the lower few hundred feet.

The Tongue River Member is characterized by paleolive to yellowish-gray fine-grained sandstone, yellowishgray claystone, interbedded claystone and sandstone. interbedded shale and claystone, thick coal beds, and carbonaceous shale. The sandstone beds and the claystone sequences occur in almost equal proportions. The sandstone beds, at various stratigraphic levels, form numerous cliffs, knobs, and pinnacles. The environment of deposition was continental, including abundant swamps that produced coal in a cyclic depositional sequence. The thick coal beds are the major interest in this report, and on the various overburden maps (Pl. 1 through Pl. 32), twenty-six individual coal beds are shown. Perhaps the most striking characteristic of the Tongue River Member is the clinker, which was formed by the burning of the underlying thick coal beds and which covers large areas. This burning has caused fusion and baking of the strata overlying the coal bed and has produced a reddish to orange multicolored zone. In some places, these clinker zones are more than 200 feet thick. The thickness of the

clinker, which is roughly proportional to the thickness of the coal, is one factor utilized in exploration.

The thicker coal beds have burned near their outcrop and back from their outcrop throughout the study area. This phenomenon is attributed to spontaneous combustion, which results where thicker coal beds containing moderate to high volatile matter are exposed at the surface. There the coal can slack and become finely divided, and if it is subjected to a small increment of outside heat, such as the direct rays of the sun during the summer months, combustion begins and persists if the amount of coal is adequate to retain the heat (Rogers, 1918, p. 2). The burning of the coal beds has affected the overlying sediments to varying extent by strictly thermal metamorphism. The alteration of the sedimentary rocks produces a very striking change from the original yellowish gray to bright yellow, red, and orange.

In North Dakota, what is known in Montana as the Tongue River Member has been divided into the Sentinel Butte Member (upper) and the Tongue River Member (lower) on the basis of a color change from the typical buff or yellowish-gray below to somber gray shale beds above (Royse, 1972, p. 32).

LEBO MEMBER

The Lebo Member of the Fort Union Formation, which underlies the Tongue River Member, is 300 to 600 feet thick within the report area. Except for the basal coal bed, called the "Big Dirty", the Lebo is devoid of coal beds. The "Big Dirty" coal bed has been utilized as fuel by local ranchers, but in most places it contains so much carbonaceous shale that it produces too much ash.

The type locality of the Lebo is on Lebo Creek, north of the Crazy Mountains in central Montana, where the unit contains abundant andesitic sandstone (Stone and Calvert, 1910). In eastern Montana, as already stated, the Lebo is composed of dark-gray shale, contrasting strongly with the light-colored Tongue River above and the light-colored Tulloch below. Topographically, the Lebo forms badlands because the weathered rock does not support vegetation.

TULLOCH MEMBER

The Tulloch Member of the Fort Union Formation consists of a sequence of beds of yellow sandstone, sandy shale, carbonaceous shale, and numerous thin impure coal beds and is 275 to 500 feet thick in the study area. The top of the Tulloch is defined as the base of the "Big Dirty" coal bed, and the base is defined as the base of the

coal bed above the dinosaur-containing beds of the Hell Creek Formation, of late Cretaceous age (Brown, 1907, p. 834). The type locality of the Tulloch is the valley of Tulloch Creek, Treasure County, Montana, where the unit is about 270 feet thick. Although in this area it contains ten lenticular coal beds, none of them is of adequate quantity or quality to be economically recoverable.

WASATCH FORMATION

The Wasatch Formation (Eocene) overlies the Fort Union in a few places. It is about 500 feet thick in the

Powder River Basin along the Montana-Wyoming border, where it consists of varicolored claystone, sandstone, and shale. It contains a richly fossiliferous zone, as much as 30 feet thick, not more than 30 feet above the Roland coal bed (Baker, 1929, p. 34; Olive, 1957, p. 29). In some areas it is very arkosic and contains abundant conglomerate of granitic pebbles (Balster, 1971, p. 42).

The top of the Roland coal bed marks the base of the Wasatch Formation. In the Wyoming portion of the Powder River Basin, the Wasatch Formation contains commercial coal.

GEOLOGIC STRUCTURE

The area discussed in this report lies in the northern part of the Powder River Basin. The structural history has been discussed by numerous authors (McGrew, 1971; Curry, 1971, Wyoming Geological Association, 1965). The Miles City Arch-Cedar Creek Anticline separates it from the Williston Basin to the northeast; the Black Hills are adjacent on the southeast, and the Big Horn Mountains are adjacent on the west. The Powder River Basin is asymmetrical, its axis being nearer the west side.

A structure contour map (Fig. 3, from Balster, 1973) of a persistent bentonite marker below the Greenhorn Formation (upper Cretaceous) shows that the lowest point in the Montana portion of the Powder River Basin is on the Wyoming border. The structural relief from the northern part of the area to the lowest point is 2,500 feet. The structure of the Paleocene roughly conforms to this Cretaceous structure, but reversals have been noted.

COAL

COAL QUANTITY

The strippable coal resources in the deposits discussed in this report total 32,024,930,000 tons underlying 770,079 acres (Table 1). Many areas smaller than those included in this report have been omitted intentionally or in some cases inadvertently. The coal beds are fairly evenly distributed throughout the Tongue River Member, and most are remarkably free of parting. Columnar charts show the generalized relationships of the various coal beds in the northern part of the area to one another in each coal field, as well as from one coal field to another, as described in previous reports by the U.S. Geological Survey (Fig. 4). Staggered cross sections show tentative correlations of most of the major coal beds containing strippable reserves (Pl. 33, 34). Certain areas, such as the Greenleaf Creek-Miller Creek coal field (Pl. 30), the Colstrip coal field (Pl. 14), the Sweeney Creek-Snyder Creek coal field (Pl. 22), the Sand Creek coal field (Pl. 28), the Pine Hills coal field (Pl. 31), and the Knowlton coal field (Pl. 32) are not shown on the cross sections.

BURNING OF THE COAL

Large parts of the original near-surface coal reserves of the Tongue River Member have been destroyed by burning at their outcrop and beneath shallow cover. Almost everywhere, each coal bed more than 5 feet thick and of good quality has burned, and the heat has produced brightly colored clinker. Because of its appearance, this clinker is miscalled "scoria", "red shale", or "lava rock". The rocks overlying a burned coal bed have been altered, baked, and fused by thermal metamorphism (Rogers, 1918, p. 1-10).

The amount of alteration of the overlying material is roughly proportional to the original thickness and quality of the coal that has burned. Thickness of clinker can therefore be utilized in exploration as an added indication of the thickness and quality of a coal bed. A coal bed 5 to 10 feet thick will produce a clinker zone 10 to 30 feet thick, whereas a coal bed 50 feet thick may produce a clinker zone 100 to 200 feet thick.

The bright red, orange, yellow, and black clinker is used locally to surface and improve roads. Some of the fused blocks are utilized as a building material for such structures as fireplaces.

As the clinkered areas are porous and permeable, numerous springs emerge along the base of the clinker. Clinkered areas also support the growth of ponderosa pine and other vegetation along the sides of ridges.

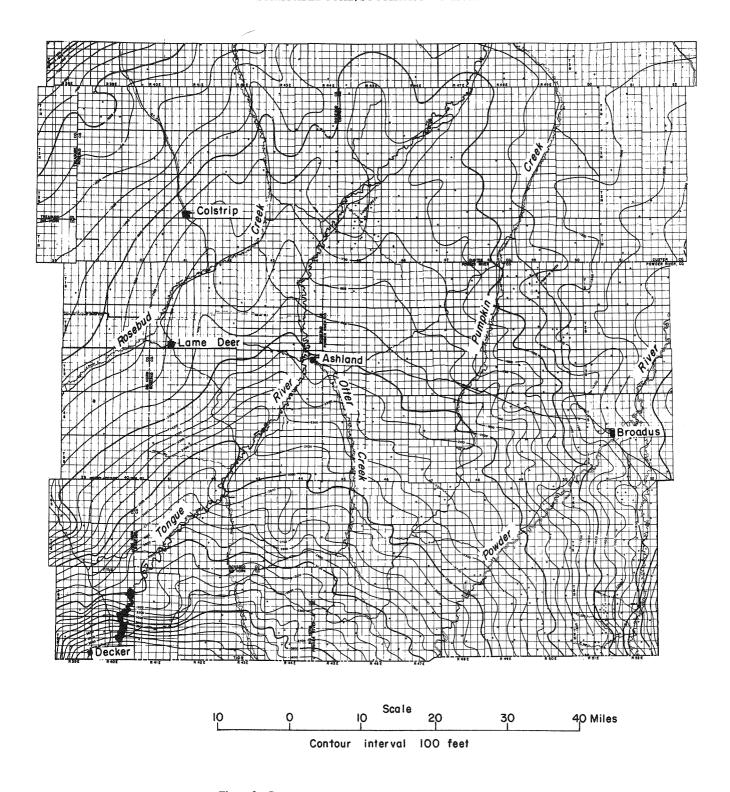


Figure 3.—Structure contour map, Upper Cretaceous, Montana portion of Powder River Basin, by C.A. Balster.

RESERVES 11

Table 1.-Coal reserves, acreage, and tons per acre, selected strippable coal deposits.

Decker 1	Coal deposit	Plate no.	Coal bed	Reserves, million tons	Acreage	Average tons/acre
Deer Creek 2	Decker	1	Anderson and Dietz 1 & 2	2.239.99	25 523	87 763
Roland 3				•	•	
Squirrel Creek					-	•
Kirby 5A Wall Anderson 473.69 216.52 5.655 38,285 Caryon 158 Dietz 834.35 17,516 47,630 Canyon Creek 6 Wall 1,884.25 23,859 78,974 Canyon Creek 6 Wall 1,884.25 23,859 78,974 Poker Jim Lookout 8 Anderson and Dietz 872.65 19,609 44,501 Hanging Woman Creek 9A Anderson and Dietz 872.65 19,609 44,501 Hanging Woman Creek 9A Anderson 1,583.29 30,547 51,830 West Moorhead 10A Anderson 88.374 19,660 44,949 West Moorhead 10C Canyon 690.19 22,547 30,611 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 Poker Jim Creek-O'Dell Creek 11A Knobloch 2,075.55 25,791 80,475 Otter Creek 11A Knobloch 2,075.55 25,791 </td <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>					•	
Wall	-				•	
SB Dietz 834,35 17,516 47,630 Canyon Creek 6 Wall 1,884.25 23,859 78,974 Birney 7 Brewster-Arnold 65.86 2,067 31,859 Birney 7 Brewster-Arnold 180.55 6,969 25,905 Poker Jim Lookout 8 Anderson and Dietz 872.65 19,609 44,501 Hanging Woman Creek 9A Anderson 1,583.29 30,547 11,830 West Moorhead 10A Anderson 883.74 19,660 44,949 Poker Jim Creek-O'Dell Creek 11A Knobloch 337.49 20,416 19,469 Poker Jim Creek-O'Dell Creek 11A Knobloch 337.49 20,416 19,469 Poker Jim Creek-O'Dell Creek 11A Knobloch 337.49 20,416 19,469 Otter Creek 11A Knobloch 2,696.20 27,700 99,125 Ashland 13A Knobloch 2,696.20 27,200 99,125	,	571			•	
Canyon Creek 5C Canyon 158.53 4,066 38,983 Canyon Creek 6 Wall 1,884.25 23,859 78,974 Birney 7 Brewster-Arnold 180.55 6,969 25,905 Poker Jim Lookout 8 Anderson and Dietz 872.65 19,609 44,501 Hanging Woman Creek 9A Anderson 1,583.29 30,547 51,830 West Moorhead 10A Anderson 883.74 19,660 44,949 Hoker Jim Creek-O'Dell Creek 11A Knobloch 373.29 79,800 47,311 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 Poker Jim Creek-O'Dell Creek 11A Knobloch 2,075.55 25,791 80,475 Otter Creek 12 Knobloch 2,075.55 25,791 80,475 Otter Creek 13 Knobloch 2,075.55 25,791 80,475 Ashland 13 Sawyer A and C 357.49		5B				
Canyon Creek 6 Wall 1,884.25 23,859 78,974 Birney 7 Brewster-Arnold 65.86 2,067 31,859 Poker Jim Lookout 8 Anderson and Dietz 872.65 19,609 44,501 Hanging Woman Creek 9A Anderson 1,583.29 30,547 51,830 West Moorhead 10A Anderson 883.74 19,660 44,949 West Moorhead 10B Dietz 397.49 20,416 19,469 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 Poker Jim Creek-O'Dell Creek 11A Knobloch 564.78 7,187 78,581 Otter Creek 12 Knobloch 2,956.20 27,200 99,125 Ashland 13A Knobloch 2,956.20 27,200 99,125 Colstrip 14 Rosebud 1,439.26 33,379 43,118 Purpskin Creek 15 Sawyer 3,456.95 53,102					-	
Birney 7 Brewster-Arnold 65.86 2,067 31,859 Poker Jim Lookout 8 Anderson and Dietz 872.65 19,609 44,501 Hanging Woman Creek 9A Anderson and Dietz 1,583.29 30,547 51,830 West Moorhead 10A Anderson 883.34 19,660 44,949 West Moorhead 10C Canyon 690.19 22,547 30,611 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 Otter Creek 12 Knobloch 2,075.55 25,791 80,475 Ashland 13A Knobloch 2,075.55 25,791 80,475 Ashland 13A Knobloch 2,696.20 27,200 99,125 Ashland 13A Knobloch 2,696.20 27,200 99,125 Ashland 13A Knobloch 2,696.20 27,200 99,125 Colstrip 14 Rosebud 1,439.26 33,379 43,118	Canyon Creek		<u> </u>			•
Birney 7 Brewster-Arnold 180.55 6.969 25.905 Poker Jim Lockout 8 Anderson and Dietz 872.65 19,609 44,501 Hanging Woman Creek 9A Anderson 1,583.29 30,547 1,830 West Moorhead 10A Anderson 883.74 19,660 44,949 West Moorhead 10C Canyon 690.19 22,547 30,611 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 Poker Jim Creek-O'Dell Creek 11A Knobloch 2664.78 7,187 78,581 Otter Creek 12 Knobloch 2,075.55 25,791 80,475 Ashland 13A Knobloch 2,696.20 27,200 99,125 Ashland 14 Rosebud 1,439.26 33,379 43,118 Pumpkin Creek 16A Knobloch 708.13 27,462		Ŭ				_
Poker Jim Lookout 8 Anderson and Dietz 872.65 19,609 44,501 Hanging Woman Creek 9A Anderson 1,583.29 30,547 51,830 West Moorhead 10A Anderson 883.74 19,660 44,949 10B Dietz 397.49 20,416 19,469 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 Otter Creek 11B Knobloch 2,075.55 25,791 80,475 Ashland 13A Knobloch 2,075.55 25,791 80,475 Ashland 13B Sawyer, A and C 357.49 20,262 17,643 Colstrip 14 Rosebud 1,439.26 33,379 43,118 Pumpkin Creek 15 Sawyer 2,426.50 45,695 53,102 Foster Creek 16A Knobloch 708.13 27,801 25,470	Birnev	7				
Hanging Woman Creek	•					
West Moorhead 9B loitz 1,120,96 lost 43,654 lost 25,678 lost West Moorhead 10A Anderson 883.74 lost 19,660 lost 44,949 lost 10B Dietz 397.49 lost 20,416 lost 19,469 lost Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 lost 7,890 lost 11B Knobloch 564.78 lost 7,187 lost 78,581 lost Otter Creek 12 Knobloch 2,075.55 lost,791 lost 80,475 lost Ashland 13A Knobloch 2,696.20 lost,27,200 lost,						
West Moorhead 10A 10B 10bet 10bet 20,416 49,494 10B 10bet 20,416 397,49 20,416 19,660 10C 20,000 690.19 22,547 30,611 Poker Jim Creek-O'Dell Creek 11A Knobloch 373.29 7,890 47,311 11B Knobloch 564.78 7,187 78,581 11B Knobloch 2,075.55 25,791 80,475 Ashland 13A Knobloch 2,696.20 27,200 99,125 80,475 80,475 Colstrip 14 Rosebud 1,439.26 33,379 43,318 33,379 43,118 Pumpkin Creek 15 Sawyer, A and C 357.49 20,262 17,643 2426.50 45,695 53,102 Foster Creek 16A Knobloch 708.13 27,801 25,470 16B Terret 460.87 27,462 16,782 16C,82						
10B	West Moorhead			· ·	•	
Doker Jim Creek-O'Dell Creek					•	•
Poker Jim Creek-O'Dell Creek 11A knobloch 373.29 564.78 7,890 7,890 47,311 Otter Creek 12 knobloch 564.78 7,187 78,581 Ashland 13A knobloch 2,075.55 25,791 80,475 Ashland 13A knobloch 2,696.20 27,200 99,125 Colstrip 14 Rosebud 1,439.26 33,379 43,118 Pumpkin Creek 15 Sawyer 2,426.50 45,695 53,102 Foster Creek 16A knobloch 708.13 27,801 25,470 Foster Creek 16A knobloch 708.13 27,801 25,470 Foster Creek 16C Flowers-Goodale 258.90 14,444 17,924 Broadus 17 Broadus 739.82 18,429 40,142 East Moorhead 18 T 525.21 15,559 33,756 Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch 21 Pawnee 3					•	•
Otter Creek 11B Knobloch 564.78 7,187 78,581 Otter Creek 12 Knobloch 2,075.55 25,791 80,475 Ashland 13A Knobloch 2,696.20 27,200 99,125 Ashland 13B Sawyer, A and C 357.49 20,262 17,643 Colstrip 14 Rosebud 1,439.26 33,379 43,118 Pumpkin Creek 15 Sawyer 2,426.50 45,695 53,102 Foster Creek 16A Knobloch 708.13 27,861 25,470 Foster Creek 16A Knobloch 708.13 27,462 16,782 Foster Creek 16C Flowers-Goodale 258.90 14,444 17,924 Broadus 17 Broadus 739.82 18,429 40,142 East Moorhead 18 T 525.21 15,559 33,756 Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte	Poker Jim Creek-O'Dell Creek		•		•	
Otter Creek 12 Knobloch 2,075.55 25,791 80,475 Ashland 13A Knobloch 2,696.20 27,200 99,125 Ashland 13B Sawyer, A and C 357.49 20,262 17,643 Colstrip 14 Rosebud 1,439.26 33,379 43,118 Pumpkin Creek 15 Sawyer 2,426.50 45,695 53,102 Foster Creek 16A Knobloch 708.13 27,801 25,470 Foster Creek 16B Terret 460.87 27,462 16,782 Foster Creek 16C Flowers-Goodale 258.90 14,444 17,924 Broadus 17 Broadus 739.82 18,429 40,142 East Moorhead 18 T 525.21 15,559 33,756 Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch <						
Ashland 13A Knobloch 2,696.20 27,200 99,125 Colstrip 14 Rosebud 1,439.26 33,379 43,118 Pumpkin Creek 15 Sawyer 2,426.50 45,695 53,102 Foster Creek 16A Knobloch 708.13 27,801 25,470 Foster Creek 16B Terret 460.87 27,462 16,782 Ico Flowers-Goodale 258.90 14,444 17,924 Broadus 17 Broadus 739.82 18,429 40,142 East Moorhead 18 T 525.21 15,559 33,756 Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch 21 Pawnee and Cook 336.69 8,486 39,674 Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A	Otter Creek					
Colstrip						
Colstrip 14 Rosebud 1,439.26 33,379 43,118 Pumpkin Creek 15 Sawyer 2,426.50 45,695 53,102 Foster Creek 16A Knobloch 708.13 27,801 25,470 16B Terret 460.87 27,462 16,782 16C Flowers-Goodale 258.90 14,444 17,924 Broadus 17 Broadus 739.82 18,429 40,142 East Moorhead 18 T 525.21 15,559 33,756 Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch 21 Pawnee and Cook 336.69 8,486 39,674 Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 Threemile Buttes 24 Canyon a						
Pumpkin Creek 15 Sawyer 2,426.50 45,695 53,102 Foster Creek 16A Knobloch 708.13 27,801 25,470 16B Terret 460.87 27,462 16,782 16C Flowers-Goodale 258.90 14,444 17,924 Broadus 17 Broadus 73.82 18,429 40,142 East Moorhead 18 T 525.21 15,559 33,756 Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch 21 Pawnee and Cook 336.69 8,486 39,674 Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A P	Colstrip		-			
Toster Creek	•			•		
16B Terret 460.87 27,462 16,782			•	•		
Broadus						
Broadus 17 Broadus 739.82 18,429 40,142 East Moorhead 18 T 525.21 15,559 33,756 Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch 21 Pawnee and Cook 336.69 8,486 39,674 Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 Threemile Buttes 24 Canyon and Ferry 215,007 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 Sonnette 25A Pawnee 320.25 8,224 38,940 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290						
East Moorhead 18 T 525.21 15,559 33,756 Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch 21 Pawnee and Cook 336.69 8,486 39,674 Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 23B Cook 312.02 14,507 21,507 Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 Home Creek Butte 26 Cook 362.98 10,470 34,668 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290	Broadus				•	
Diamond Butte 19 Canyon 418.02 21,363 19,566 Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch 21 Pawnee and Cook 336.69 8,486 39,674 Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 23B Cook 312.02 14,507 21,507 Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 Little Pumpkin Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch, and Sawyer 453.71	East Moorhead				•	
Goodspeed Butte 20 Cook 628.95 13,446 46,775 Fire Gulch 21 Pawnee and Cook 336.69 8,486 39,674 Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 23B Cook 312.02 14,507 21,507 Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 Look 362.98 10,470 34,668 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch, and Sawyer 453.71 14,918 30,413			Canvon			
Fire Gulch 21 Pawnee and Cook 336.69 8,486 39,674 Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 23B Cook 312.02 14,507 21,507 Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 Sonnette 25B Cook 362.98 10,470 34,668 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch, and Sawyer 453.71 14,918 30,413 Pine Hills 31 Dominy (M & L) 747.51 19			•			
Sweeney Creek-Snyder Creek 22 Terret 326.33 10,921 29,880 Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 Sonnette 25B Cook 362.98 10,470 34,668 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch, and Sawyer 453.71 14,918 30,413 Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448<	*					
Yager Butte 23A Elk and Dunning 1,175.86 26,924 43,673 23B Cook 312.02 14,507 21,507 Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 Look 362.98 10,470 34,668 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch 627.49 25,926 24,203 Knobloch Knobloch 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048	Sweeney Creek-Snyder Creek					-
23B Cook 312.02 14,507 21,507 Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 25B Cook 362.98 10,470 34,668 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and 627.49 25,926 24,203 Knobloch Knobloch 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048 Canyon and Ferry 225.40 13,836 16,289 16,289 38,940 16,289 38,940 16,289 34,068 16,289 38,940 10,470 34,668	- •				·	
Threemile Buttes 24 Canyon and Ferry 225.40 13,836 16,289 Sonnette 25A Pawnee 320.25 8,224 38,940 25B Cook 362.98 10,470 34,668 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch 627.49 25,926 24,203 Greenleaf Creek-Miller Creek 30 Rosebud, Knobloch, and Sawyer 453.71 14,918 30,413 Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048			<u>-</u>	•		
Sonnette 25A Pawnee 320.25 8,224 38,940 25B Cook 362.98 10,470 34,668 Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch 627.49 25,926 24,203 Greenleaf Creek-Miller Creek 30 Rosebud, Knobloch, and Sawyer 453.71 14,918 30,413 Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048	Threemile Buttes					
25B Cook 362.98 10,470 34,668	Sonnette		-			•
Home Creek Butte 26 Canyon and Ferry 217.21 4,851 44,774 Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch 627.49 25,926 24,203 Greenleaf Creek-Miller Creek 30 Rosebud, Knobloch, and Sawyer 453.71 14,918 30,413 Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 Mominy (U) 120.31 4,448 27,048						
Little Pumpkin Creek 27 A, Sawyer, C and D, X, and E 215.83 8,534 25,290 Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch 627.49 25,926 24,203 Greenleaf Creek-Miller Creek 30 Rosebud, Knobloch, and Sawyer 453.71 14,918 30,413 Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048	Home Creek Butte				-	
Sand Creek 28 Knobloch 267.34 5,952 44,915 Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch 627.49 25,926 24,203 Greenleaf Creek-Miller Creek 30 Rosebud, Knobloch, and Sawyer 453.71 14,918 30,413 Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048	Little Pumpkin Creek				•	
Beaver Creek-Liscom Creek 29 Flowers-Goodale, Terret, and Knobloch 627.49 25,926 24,203 Greenleaf Creek-Miller Creek 30 Rosebud, Knobloch, and Sawyer 453.71 14,918 30,413 Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048						•
Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048	Beaver Creek-Liscom Creek		Flowers-Goodale, Terret, and		•	
Pine Hills 31 Dominy 193.87 6,022 32,191 Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048	Greenleaf Creek-Miller Creek	30		453.71	14,918	30,413
Knowlton 32A Dominy (M & L) 747.51 19,613 38,112 32B Dominy (U) 120.31 4,448 27,048	Pine Hills	31	· · · · · · · · · · · · · · · · · · ·			•
32B Dominy (U) <u>120.31</u> <u>4,448</u> 27,048	Knowlton	32A			·	
32,024.93 770,079						
				32,024.93	770,079	

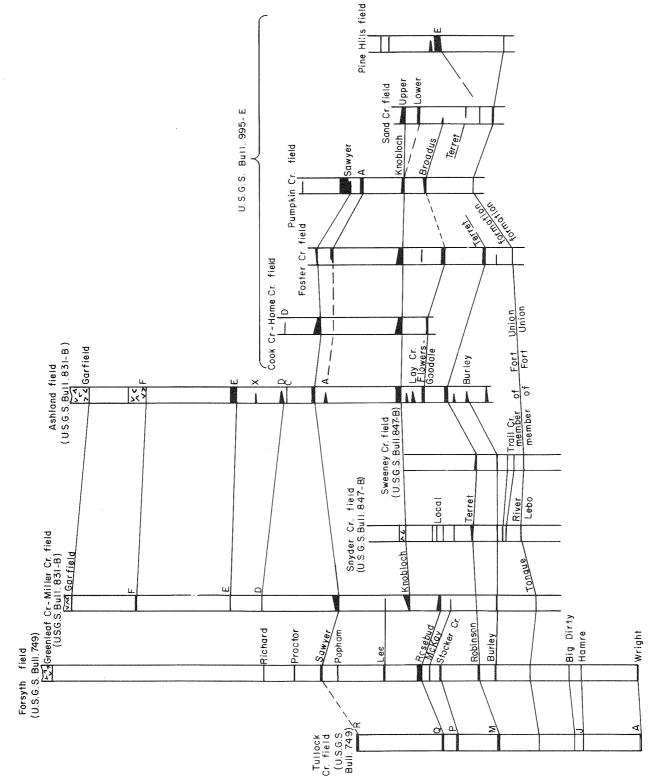


Figure 4.-Columnar sections showing relationship of coal beds in northern part of area.

COAL QUALITY

The coal in the deposits described in this report ranks as lignite A through subbituminous A according to the specifications of the American Society for Testing and Materials (1964, p. 74). Under this classification system, coal having calorific value of 6,300 to 8,300 Btu per pound on a moist, mineral-matter-free basis is classified as lignite A; coal having a calorific value of 8,300 to 9,500 Btu per pound is classified as subbituminous C; coal having a calorific value of 9,500 to 10,500 is classified as subbituminous B; and coal having a calorific value of 10,500 to 11,500 is classified as subbituminous A.

On this project, 457 core samples were obtained and were analyzed in the Montana Bureau of Mines and Geology analytical laboratories by or under the direction of Laurence A. Wegelin. Proximate analysis, forms of sulfur, and calorific value and major ash constituents were determined in accordance with methods specified by the American Society for Testing and Materials, Laboratory Sampling and Analysis of Coal and Coke (1967) and the U.S. Bureau of Mines (1967) methods of analyzing and testing coal and coke. Constituents in the ash were determined by the standard techniques supplemented by atomic-absorption techniques, with the exceptions of sulfur, which was determined only gravimetrically, and phosphorus, which was determined only volumetrically.

Samples obtained under cooperative projects of the Montana Bureau of Mines and Geology with Burlington Northern, Inc., were analyzed by the Grand Forks Coal Research Laboratory, U.S. Bureau of Mines. Samples obtained from West Moorhead coal field in 1968 were analyzed by the Pittsburgh Coal Research Center, U.S. Bureau of Mines. Major ash constituents of these samples were analyzed by the U.S. Geological Survey Analytical Laboratory in Washington, D.C. Trace-element analyses of samples from the Decker area were made by the U.S. Geological Survey Laboratories, Denver (U.S. Geological Survey—Montana Bureau of Mines and Geology open file report, 1973).

With few exceptions, the coal is low in sulfur and has low to moderate ash content. The calorific value on the "as received" basis ranges from 6,500 Btu per pound in the Knowlton coal field (Pl. 32) to 9,850 Btu per pound in the Decker coal field (Pl. 1).

COAL BEDS

ROLAND COAL BED

The Roland coal bed marks the top of the Tongue River Member (Taff, 1909, p. 130), and the top of the Roland is defined as the contact with the Wasatch (Baker, 1929, p. 28). Although no marked difference between the Tongue River and Wasatch strata is visible in the field, on aerial photos the Wasatch has a striated appearance, particularly in the Decker area, which is not shown by the Tongue River strata. The Roland bed is 180 to 220 feet above the Smith coal bed. Strippable reserves were mapped in the Roland (Pl. 3) and Squirrel Creek (Pl. 4) coal deposits.

The Roland coal bed underlies the high divide areas in the Decker (Pl. 1), Deer Creek (Pl. 2), Hanging Woman Creek (Pl. 9), and West Moorhead (Pl. 10A, B, and C).

The Roland coal in the Roland coal deposit ranges in calorific value from 7,021 to 9,114 Btu, the sulfur content is 0.2 to 0.7%, and the ash content 3.8 to 9.7%. The Roland coal in the Squirrel Creek deposit ranges in calorific value from 6,608 to 8,286 Btu, the sulfur content is 0.2 to 0.6%, and the ash content 3.0 to 14.2%.

SMITH COAL BED

The Smith coal bed, named by Taff (1909, p. 130) for a mine of that name in the Sheridan area, was traced into the Decker, Hanging Woman Creek, and Kirby areas by Baker (1929, p. 35) and into the West Moorhead area by Bryson and Bass (1966). Although small areas containing 50 to 75 million tons of strippable coal are known in the Smith coal bed, in the Decker (Pl. 1) and Deer Creek (Pl. 2) coal deposits, they have not been included in this report. In the West Moorhead coal field and in the Hanging Woman Creek area, the Smith bed is thin and lies 110 to 150 feet above the Anderson coal bed. In the western part of the West Moorhead field, it is characterized by petrified tree stumps. The bed is as much as 12 feet thick in the Decker, Deer Creek, and Kirby areas.

Only two core samples were obtained from the Smith bed, both in the Decker coal deposit. The calorific values were 7,607 and 8,272 Btu, the sulfur content 0.6 and 1.0%, and the ash content 6.8 and 30.2%. Silica is a major ash constituent, being 38.5 and 78.3% of the total ash content.

ANDERSON COAL BED

The Anderson coal bed, named by Baker (1929, p. 35), is correlated with the Garfield bed (Matson, 1971, p. 7), named by Bass (1932, p. 55). Strippable reserves in the Anderson coal bed have been mapped in the Decker (Pl. 1), Deer Creek (Pl. 2), Kirby (Pl. 5A), Poker Jim Lookout (Pl. 8), West Moorhead (Pl. 10A), and Hanging Woman Creek (Pl. 9) coal fields.

The Anderson coal bed merges with the Dietz No. 1 bed at the Decker mine, and their combined thickness exceeds 50 feet. A short distance west of the mine, the Anderson, Dietz No. 1, and Dietz No. 2 beds are combined and have a thickness of 80 feet; still farther west, the Anderson splits from the combined Dietz No. 1 and No. 2 coal beds. In the Deer Creek coal field, the three coal beds are separate, and the Anderson bed averages 20 feet in thickness. In the Poker Jim Lookout coal field. the Anderson and Dietz are combined in the northern part of the field and form a coal bed 58 feet thick, but in the southern part, they are separate beds. In the West Moorhead coal field, the Anderson bed is 14 to 30 feet thick and lies 13 to 81 feet above the Dietz No. 1 coal bed and 120 to 200 feet above the Canyon coal bed. In Hanging Woman Creek area, the Anderson coal bed is 25 to 36 feet thick except in the southwestern part of the area, where it thins to 15 feet. It lies 50 to 100 feet above the Dietz No. 1 bed.

The Anderson coal bed in the Decker coal field has a calorific value of 8,705 to 9,850 Btu, sulfur content of 0.2 to 0.6%, and ash content of 2.9 to 6.2%. In the Deer Creek coal deposit, the calorific value is 6,594 to 9,247 Btu, the sulfur content 0.4 to 0.8%, and the ash content 3.2 to 27.3%. In the Kirby coal deposit, the calorific value is 7,277 to 8,864 Btu, the sulfur content is 0.2 to 0.7%. and the ash content 3.2 to 8.1%. In the Poker Jim Lookout coal field, the calorific value is 7,637 to 8,374 Btu. the sulfur content 0.1 to 0.9%, and the ash content 4.0 to 8.9%. In the West Moorhead coal field, the calorific value is 7,950 to 8,790 Btu, the sulfur content 0.3 to 0.4%, and the ash content 4.2 to 6.7%. In the Hanging Woman Creek coal deposit, the calorific value is 6,751 to 9,259 Btu, the sulfur content 0.1 to 0.8%, and the ash content 3.0 to 9.1%.

DIETZ COAL BEDS

The Dietz coal beds were named for the community of Dietz, about 5 miles north of Sheridan, Wyoming. Three Dietz coal beds were mapped in this locality (Taff, 1909, p. 129) and traced northward into the Decker area (Baker, 1919, p. 35). The uppermost Dietz, or Dietz No. 1, is correlated with the Anderson bed in the Decker area, where the names Dietz No. 1 and No. 2 have been applied to the two coal beds underlying the Anderson, but these would probably correlate with the Dietz No. 2 and No. 3 of Taff (1909). Strippable reserves in one or more of the Dietz coal beds have been mapped in the Decker (Pl. 1), Deer Creek (Pl. 2), Kirby (Pl. 5B), Poker Jim Lookout (Pl. 8), Hanging Woman Creek (Pl. 9), and West Moorhead (Pl. 10B) coal deposits.

In the Decker area, the Dietz No. 1 and No. 2 combine with the Anderson bed and have a combined thickness of 80 feet, but at the Decker mine, only the Dietz No. 1 is combined with the Anderson to form one bed 50 feet thick. In the Deer Creek coal field, the Dietz No. 1 and No. 2 are separated by partings, and each averages 18 feet in thickness. In the Kirby coal deposit, the Dietz No. 1 and No. 2 have a combined thickness of almost 50 feet in the southwest part of the area, but split and thin to the northeast. The Dietz No. 1 bed is combined with the Anderson bed in the northern part of the Poker Jim Lookout deposit and forms a bed 58 feet thick, but splits in the southern part of the deposit. In the Hanging Woman Creek coal deposit, the Dietz No. 1 bed reaches a maximum of 18 feet in thickness, but thins to about 4 feet in the southwestern corner. In the West Moorhead deposit, the Dietz No. 1 ranges from 6 to 11 feet in thickness, but seems to be thin or absent in the northeast corner.

The Dietz coal bed in the Decker coal deposit has a calorific value of 6,019 to 9,373 Btu, sulfur content of 0.3 to 0.4%, and ash content of 2.9 to 6.3%. In the Deer Creek coal deposit, the calorific value is 9,142 to 9,561 Btu, sulfur content 0.3 to 0.7%, and ash content 2.5 to 5.2%. In the Kirby coal deposit, the calorific value is 7,467 to 9,502 Btu, sulfur content 0.3 to 2.4%, and ash content 3.2 to 14.1%. In the Hanging Woman Creek coal deposit, the calorific value is 7,722 to 8,707 Btu, sulfur content 0.2 to 0.3%, and ash content 3.7 to 9.9%. In the West Moorhead coal field, the calorific value is 7,907 to 8,080 Btu, sulfur content 0.3 to 0.7%, and ash content 3.3 to 5.2%.

CANYON COAL BED

The Canyon coal bed, named by Baker (1929, p. 36), is one of the most widespread coal beds in the report area and contains strippable coal in such widely separated areas as the West Moorhead (Pl. 10C), Kirby (Pl. 5C), Diamond Butte (Pl. 19), and Threemile Buttes (Pl. 24) coal deposits.

The Canyon coal bed in the West Moorhead coal field is 17 to 24 feet thick and lies 67 to 122 feet below the Dietz coal bed. In the Kirby coal field, the Canyon is 16 to 25 feet thick and is 180 to 230 feet above the Wall coal bed. In the Diamond Butte coal deposit, the Canyon is 7 to 16 feet thick and is about 200 feet above the Cook coal bed. In the Threemile Buttes coal deposit, the Canyon forms two benches 4 to 13 feet thick.

The Canyon coal bed in the West Moorhead coal field has a calorific value of 7,419 to 8,920 Btu, sulfur content 0.1 to 1.3%, and ash content 3.2 to 10.0%. In the Kirby

COAL BEDS 15

coal deposit the calorific value is 8,446 to 9,113 Btu, sulfur content 0.2 to 0.3%, and ash content 3.2 to 10.7%. In the Diamond Butte coal deposit, calorific value is 7,138 to 7,897 Btu, sulfur content 0.2 to 0.5%, and ash content 3.3 to 5.2%. In the Threemile Buttes coal deposit, the calorific value is 6,646 to 7,133 Btu, sulfur content 0.4 to 2.5%, and ash content 3.8 to 8.7%.

FERRY COAL BED

The Ferry coal bed consists of discontinuous lenses underlying the high divide areas between Pumpkin Creek and tributaries of Otter Creek west and northwest of Sonnette (Warren, 1959, p. 573). The Ferry coal bed correlates with the F coal bed in the Ashland coal field (Warren, 1959, p. 567).

Strippable reserves in the Ferry coal bed have been mapped in the Threemile Buttes (Pl. 24) and Home Creek Butte (Pl. 26) coal deposits.

The Ferry coal bed is 6 to 17 feet thick in the Three-mile Buttes coal deposit and 24 feet thick in the Home Creek Butte coal deposit, where it is about 76 feet below the Canyon coal bed.

COOK COAL BED

The Cook coal bed, between the Canyon above and the Wall coal bed below, forms two benches (Warren, 1959, p. 573). Strippable coal in the Cook coal bed has been mapped in the Sonnette (Pl. 25B), Yager Butte (Pl. 23B), and Goodspeed Butte (Pl. 20) coal fields.

In the Sonnette area, the Cook bed occurs in two benches 12 to 40 feet apart. The upper bench is 10 to 14 feet thick, and the lower bench is 5 to 10 feet thick. In the Yager Butte coal deposit, the two benches are 38 to 75 feet apart; the upper bench is 0 to 19 feet thick, and the lower bench is 8 to 11 feet thick. In the Goodspeed Butte coal deposit, the parting between the two benches is 34 to 45 feet thick; the upper bench is 13 to 20 feet thick, and the lower bench is 12 to 14 feet thick.

The Cook coal bed in the Sonnette coal deposit has a calorific value of 6,547 to 7,186 Btu, sulfur content 0.7 to 1.9%, and ash content 6.5 to 13.3%. In the Yager Butte coal field, the calorific value is 5,881 to 7,703 Btu, sulfur content 0.3 to 0.7%, and ash content 3.8 to 20.7%. In the Goodspeed Butte coal deposit, the calorific value is 6,682 to 6,861 Btu, sulfur content 1.2 to 2.1%, and ash content 8.9 to 12.4%.

WALL COAL BED

The Wall coal bed, named by Baker (1929, p. 37), has large strippable reserves, which have been mapped in the Canyon Creek (Pl. 6) and Kirby (Pl. 5A) coal fields, where it is 50 to 60 feet thick. The Wall is 180 to 230 feet below the Canyon bed.

The Wall coal bed in the Canyon Creek coal deposit has a calorific value of 7,637 to 10,079 Btu, sulfur content 0.1 to 1.1%, and ash content 3.1 to 12.5%.

ELK COAL BED

The Elk coal bed, named by Warren (1959, p. 573), crops out along the steep-sided valley of Otter Creek and its tributaries. Strippable coal has been mapped in the Yager Butte coal deposit (Pl. 23A), where the bed is 10 to 21 feet thick. The Elk coal bed is 23 to 39 feet above the Dunning bed.

The Elk coal bed in the Yager Butte coal deposit has a calorific value of 7,125 to 7,943 Btu, sulfur content 0.2 to 0.5%, and ash content 3.5 to 7.4%.

PAWNEE COAL BED

The Pawnee coal bed, named by Warren (1959, p. 572), forms two benches as much as 45 feet apart in T. 4 S., R. 47 and 48 E. Warren correlated the upper bench of the Pawnee with the Dunning bed, but the name Dunning is used west of the Otter Creek-Pumpkin Creek divide. Strippable coal in the Pawnee coal bed has been mapped in the Sonnette (Pl. 25A) and Fire Gulch (Pl. 21) coal deposits. The Pawnee coal bed is 20 to 22 feet thick in much of the Sonnette coal field.

The Pawnee coal bed in the Sonnette coal field has a calorific value of 5,556 to 7,902 Btu, sulfur content 0.2 to 2.7%, and ash content 3.9 to 25.3%. In the Fire Gulch coal deposit the heating value is 7,650 Btu, sulfur content 0.2%, and ash content 6.0%.

DUNNING COAL BED

The Dunning coal bed crops out on the west side of the Otter Creek-Pumpkin Creek divide. It was named by Warren (1959, p. 572), who correlated it with the upper bench of the Pawnee in the Sonnette coal field. It is 23 to 39 feet below the Elk coal bed. Strippable coal in the Dunning coal bed is shown in the Yager Butte coal deposit (Pl. 23A) where the bed is 14 to 20 feet thick.

The Dunning coal bed in the Yager Butte coal deposit has a calorific value of 7,445 to 8,005 Btu, sulfur content 0.2 to 0.4%, and ash content 4.3 to 5.8%.

E COAL BED

The E coal bed, named by Bass (1932, p. 55), is widespread throughout the Ashland coal field. Strippable reserves were mapped in the Little Pumpkin Creek coal field where the bed is 7 feet thick. The E bed is 70 to 100 feet above the X coal bed and is correlated with the Dunning bed in the Birney-Broadus coal field to the south.

X COAL BED

The X coal bed, about 8 feet thick, occurs locally in T. 2 S., R. 46, 47, and 48 E. (Bass, 1932, p. 55) and contains strippable coal in the Little Pumpkin Creek coal field (Pl. 27). The X bed is 40 to 80 feet above the C and D coal bed and about 70 to 100 feet below the E coal bed.

C AND D COAL BEDS

The C and D coal beds, named by Bass (1932, p. 55) are two closely spaced coal beds in the Ashland coal field. Strippable reserves in the C and D coal beds occur in the Ashland coal field (Pl. 13B), and the Little Pumpkin Creek coal field (Pl. 27). The C coal bed contains abundant silicified tree stumps and log fragments and is easily identified (Bass, 1932, p. 55).

Prominent clinker in T. 2 S., R. 47 E., indicates that the thickness of the D coal bed exceeds 10 feet. The bed attains a thickness of 20 feet (Bass, 1932, p. 55) in T. 2 S., R. 45 and 46 E.

The C and D coal beds are 80 to 100 feet above the Sawyer in the Little Pumpkin Creek coal field (Pl. 27).

BREWSTER-ARNOLD COAL BED

The Brewster-Arnold coal bed, named from a mine on the Brewster-Arnold ranch in T. 6 S., R. 43 E., was correlated with the Sawyer coal bed (Baker, 1929, p. 38). Strippable reserves have been mapped in the Birney coal field (Pl. 7).

The Brewster-Arnold bed is 235 to 275 feet below the Wall coal bed and is as much as 20 feet thick. A distinct split is most pronounced west of the Tongue River.

The Brewster-Arnold coal bed in the Birney coal field has a calorific value of 7,987 to 9,417 Btu, sulfur content 0.2 to 0.7%, and ash content 3.1 to 8.2%.

T COAL BED

The T coal bed, named by Bryson and Bass (1966), has been correlated with the Cache coal bed in the Birney-Broadus coal field (Warren, 1959, p. 572). The T coal bed is 15 to 25 feet thick and about 260 feet above the Broadus coal bed.

Strippable reserves in the T coal bed have been mapped in the East Moorhead coal field (Pl. 18).

The T coal bed in the East Moorhead coal field has a calorific value of 6,867 to 7,592 Btu, sulfur content 0.3 to 1.2%, and ash content 4.2 to 13.2%.

SAWYER COAL BED

The Sawyer coal bed, named by Dobbin (1929), has been traced eastward into the Pumpkin Creek coal field (Bass, 1932, p. 52). Strippable coal in the Sawyer coal bed has been mapped in the Ashland (Pl. 13B), Little Pumpkin Creek (Pl. 27), and Pumpkin Creek (Pl. 15) coal fields.

The Sawyer coal bed is 10 to 36 feet thick and lies on or as much as 100 feet above the A coal bed In the Little Pumpkin Creek coal deposit (Pl. 27), the C and D coal beds are 80 to 100 feet above the Sawyer (Bass, 1932, p. 52).

The Sawyer coal bed in the Ashland coal deposit has calorific value of 7,740 to 7,965 Btu, sulfur content 0.3 to 0.9%, and ash content 4.0 to 6.0%. In the Pumpkin Creek coal deposit, the calorific value is 7,140 to 7,570 Btu, sulfur content 0.3 to 0.5%, and ash content 6.5 to 10.0%.

A COAL BED

The A coal bed, named by Bass (1932, p. 54), contains strippable reserves in the Little Pumpkin Creek (Pl. 27) and Pumpkin Creek (Pl. 15) coal deposits. In T. 1 and 2.S., R. 47 and 48 E., and T. 2 S., R. 48 E., it is 6 to 15 feet thick and is 40 feet below the Sawyer coal bed, but elsewhere it may merge with the Sawyer or lie as much as 100 feet below it. Carmichael (1967, p. 43) therefore thought that the A coal bed may be a lower bench of the Sawyer.

KNOBLOCH COAL BED

The Knobloch coal bed was named for the Knobloch ranch, on the east side of the Tongue River in T. 5 S., R. 43 E. (Bass, 1932, p. 52). It contains larger strippable reserves than any other mapped coal bed. These reserves

COAL BEDS 17

are in the Poker Jim Creek-O'Dell Creek (Pl. 11A and B), Otter Creek (Pl. 12), Ashland (Pl. 13A), Beaver Creek-Liscom Creek (Pl. 29), Foster Creek (Pl. 16A), and Sand Creek (Pl. 28) coal deposits.

The Knobloch is not uniform in thickness, and it develops partings and splits (Pl. 34). Its maximum thickness in the northern part of the Otter Creek (Pl. 12) and in the Ashland coal deposit (Pl. 13A) is 66 feet. The Knobloch is 80 to 188 feet above the Flowers-Goodale and 150 to 300 feet below the Sawyer coal bed.

The Knobloch coal bed in the Poker Jim Creek-O'Dell Creek coal deposit has a calorific value of 8,380 to 9,135 Btu, sulfur content 0.1 to 0.6%, and ash content 3.7 to 6.4%. In the Otter Creek coal deposit, the calorific value is 8,011 to 9,314 Btu, sulfur content 0.1 to 0.4%, and ash content 3.0 to 10.6%. In the Ashland coal deposit, the calorific value is 7,671 to 9,070 Btu, sulfur content 0.1 to 0.5%, and ash content 3.7 to 6.8%. In the Beaver Creek-Liscom Creek coal deposit, the calorific value is 7,362 to 8,417 Btu, sulfur content 0.2 to 0.9%, and ash content 5.1 to 13.8%. In the Foster Creek coal deposit, the calorific value is 7,380 to 7,840 Btu, sulfur content 0.3 to 1.6%, and ash content 6.7 to 8.7%. In the Sand Creek coal deposit, the calorific value is 7,220 to 7,460 Btu, the sulfur content 0.3% average, and the ash content 5.1 to 8.3%.

LAY CREEK COAL BED

The Lay Creek coal bed, 2 to 6 feet thick, was named by Bass (1932, p. 54) for Lay Creek, which is in the southwestern part of T. 1 N., R. 46 E. The Lay Creek bed is 30 to 88 feet below the Knobloch coal bed (Pl. 29), is of irregular thickness and quality, and does not contain strippable reserves. In the southwest part of the Beaver Creek-Liscom Creek area (Pl. 29) drill hole SH-7075 indicates that the Lay Creek may be a split from the Knobloch, as the Knobloch splits and thins to the north.

ROSEBUD COAL BED

The Rosebud coal bed was described by Dobbin (1929, p. 27) as being about 350 feet above the base of the Tongue River Member. Mining on a large scale by Western Energy Company and Peabody Coal Company in the Colstrip area gives the Rosebud bed special significance. Strippable reserves in the Rosebud coal bed have been mapped in the Colstrip coal deposit (Pl. 14).

The Rosebud coal bed averages 25 feet in thickness in the Colstrip coal deposit. It is 18 to 61 feet above the McKay coal bed, which is 8 to 10 feet thick but which is not discussed further in this report.

The Rosebud coal bed in the Colstrip coal deposit has a calorific value of 7,810 to 9,090 Btu, sulfur content 0.5 to 1.1%, and ash content 8.1 to 12.6%.

BROADUS COAL BED

The Broadus coal bed, named for the town of Broadus (Warren, 1959, p. 570), is 100 feet above the base of the Tongue River Member; strippable reserves have been mapped in the Broadus coal deposit (Pl. 17).

The Broadus bed is 5 to 26 feet thick and was correlated by Bryson (1952, p. 75) with the Flowers-Goodale bed.

The Broadus coal bed in the Broadus coal deposit has an average calorific value of 7,438 Btu, sulfur content averages 0.3%, and ash content averages 7.2%.

FLOWERS-GOODALE COAL BED

The Flowers-Goodale coal bed, named for the Flowers mine in sec. 29 and the Goodale mine in sec. 28, T. 1 N., R. 45 E., both small wagon mines supplying coal to local ranchers (Bass, 1932, p. 53), is 9 to 12 feet thick and contains strippable reserves in the Beaver Creek-Liscom Creek coal deposit (Pl. 29). It lies 80 to 188 feet below the Knobloch and about 43 feet above the Terret coal bed.

The Flowers-Goodale coal bed in the Beaver Creek-Liscom Creek coal deposit has a calorific value of 8,102 Btu, sulfur content 1.0%, and ash content 8.1%.

TERRET COAL BED

The Terret coal bed supplied coal to and was named for the Terret ranch on Beaver Creek in T.1 S., R. 45 E., east of the Tongue River (Bass, 1932, p. 51). The Terret coal bed is 6 to 10 feet thick and contains strippable reserves in the Beaver Creek-Liscom Creek area (Pl. 29). It is about 43 feet below the Flowers-Goodale coal bed.

The Terret coal bed in the Beaver Creek-Liscom Creek coal deposit has a calorific value of 8,170 Btu, sulfur content 0.7%, and ash content of 5.8%.

DOMINY COAL BED

The Dominy coal bed was described by Collier and Smith (1909, p. 56) and was named for the Dominy

ranch, where the coal cropped out. Brown and others (1954) described two benches of the Dominy, the lower averaging 19 feet and the upper at least 6 feet in thickness. Strippable reserves in the Dominy coal bed are shown in the Pine Hills (Pl. 31) and Knowlton (Pl. 32A and B) coal deposits. Project drill holes show the upper bench to be 3 to 4 feet thick and the lower bench 17 to 20 feet thick.

The Dominy coal bed in the Knowlton coal deposit has a calorific value of 6,297 to 6,850 Btu, sulfur content 0.2 to 0.9%, and ash content 3.8 to 10.5%. In the Pine Hills coal deposit, it has a calorific value of 7,220 to 7,420 Btu, sulfur content 0.4 to 0.6%, and ash content 6.6 to 8.1%.

RESERVE ESTIMATES

The coal reserve estimates in this report are classified as "indicated" and "inferred" after Averitt (1965, p. 25). Indicated reserves are those calculated on a basis of specific measurements and partly by projection of visible data for a reasonable distance, such as 2 or 3 miles for coal beds of known continuity. Inferred reserves are those based on a broad knowledge of the geology of an area and where few measurements of the thickness of the coal bed are available. Measured reserves are limited to areas where data points for thickness of the coal are closely spaced and the quantity can be estimated accurately. Small areas of measured reserves are included on various plates but are not separately distinguished. On the other hand, areas of inferred reserves are shown on the maps.

Overburden maps were drawn for each of the strippable coal fields, and overburden thicknesses of 0 to 50, 50 to 100, 100 to 150, 150 to 200, and 200 to 250 feet were outlined on the maps. Where the coal is less than 10 feet thick, a limit of 100 feet was assigned as the maximum overburden. Other limits used were 150 feet of overburden where the coal is 10 to 25 feet thick, 200 feet of overburden where the coal is 25 to 40 feet thick, and 250 feet of overburden where the coal is more than 40 feet thick. The areas between the overburden thickness contours were then measured by a planimeter.

Coal reserves were then calculated from the average thickness of the coal as shown on the isopach maps. Measurements of the thickness of each coal bed were sufficiently numerous to assure a fair degree of accuracy in estimation of coal reserves. In calculating the coal reserves, the area as measured by planimeter was converted to acres and the result multiplied by the average coal thickness to obtain the volume of coal in acre-feet. This figure was then multiplied by 1,770 tons, the average weight of an acre-foot of subbituminous coal (Averitt, 1965, p. 21), to yield the total tonnage.

From the same planimeter data, the overburden in each thickness range was calculated in cubic yards, and the number of cubic yards of overburden per ton of coal was computed for each overburden thickness range. The acreage measured for each overburden thickness range is reported, and the tons per acre under each overburden thickness range is also reported. Variations in the tons per acre are accounted for by the irregularity in thickness of the coal.

STRIPPABLE COAL DEPOSITS

DECKER AREA

LOCATION

The Decker area is in T. 8 and 9 S., R. 38, 39, 40, 41, and 42 E., Big Horn County, Montana, approximately 20 miles northeast of Sheridan, Wyoming, by road. The maps outlining the strippable coal in the Decker area include the Decker (Pl. 1), Deer Creek (Pl. 2), Roland (Pl. 3), and the Squirrel Creek (Pl. 4) coal deposits. The area is bounded on the south by the Montana-Wyoming border, on the west by the Crow Indian Reservation boundary, and on the east by the eastern side of the divide between Hanging Woman Creek and the Tongue River. The northern boundary of the area is the limit of strippable coal as indicated by the thickness of the clinker.

FIELD WORK AND MAP PREPARATION

The field work in the Decker area was done during the summers of 1969, 1970, and 1972 under the EPA State Coal Project. In order to solve some of the problems encountered by the U.S. Geological Survey while remapping the area in 1971 and 1972, the Bureau, under a U.S. Geological Survey Mineral Classification Branch Project, drilled additional holes in 1972. Numerous drill logs were provided by the Rosebud Coal Sales Company for preparing the overburden maps in the Decker and Deer Creek areas.

The field methods utilized in evaluation of the strippable coal in the Decker, Deer Creek, Roland, and Squirrel Creek coal fields included geologic mapping on black-andwhite and color photos, drilling of numerous exploration

INDIVIDUAL DEPOSITS—DECKER AREA

Table 2.-Coal reserves, overburden, overburden ratio, acres, and tons/acre, Decker area.

DECKER COAL DEPOSIT-ANDERSON, DIETZ 1, and DIETZ 2 BEDS

Thickness of overburden, ft.		dicated reserves, million tons	i	erburden and nterburden, illion cu. yd.	inter	burden a burden ra c yards/t	atio,	Acres		Tons/acre
0 to 50 50 to 100 100 to 150 150 to 200 200 to 250	Total	87.54 355.35 668.18 716.35 412.57 2,239.99	Total	78.40 697.73 1,743.36 1,887.62 1,250.34 5,657.45	Average	0.89 1.96 2.60 2.63 3.03 2.52	Total	1,433.6 5,689.6 8,467.2 6,553.6 3,379.2 25,523.2	Average	61,063.1 62,456.1 78,913.9 109,306.3 122,091.0 87,763.5
		DEER CRE	EK COAL	DEPOSIT-A	NDERSON,	DIETZ	1, and DIE	TZ 2 BEDS		
0 to 50 50 to 100 100 to 150	Total	82.06 184.87 <u>143.54</u> 410.47	Total	372.87 1,443.81 <u>1,787.75</u> 3,604.43	Average	4.54 7.8 12.45 8.78	Total	2,400 5,344 4,064 11,808	Average	34,191.7 34,593.9 35,319.9 34,762
		D	EER CRE	EK COAL DEI	POSIT-CO	RRAL C	REEK BEI	D		
Thickness of overburden, ft.	In	ferred reserves, million tons		Overburden, illion cu. yd.		ourden ra c yards/t	•	Acres		Tons/acre
0 to 50 50 to 100 100 to 150	Total	16.54 33.30 35.34 85.18	Total	24.98 114.15 201.80 340.93	Average	1.51 3.42 <u>5.71</u> 4.00	Total	467.2 940.8 998.4 2,406.4	Average	35,402.4 35,395.4 35,396.6 35,397.3
			ROL	AND COAL DI	EPOSIT-R	OLAND	BED			
Thickness of overburden, ft.		licated reserves, million tons		verburden, llion cu. yd.		urden ra yards/to	•	Acres		Tons/acre
0 to 50 50 to 100	Total	110.29 107.75 218.04	Total	327.45 <u>716.32</u> 1,043.77	Average	2.97 6.64 4.79	Total	6,156.3 5,920.0 12,076.3	Average	17,914.9 18,200.1 18,055.6
		S	QUIRRE	L CREEK COA	L DEPOSI	T–ROL	AND BED			
0 to 50 50 to 100 100 to 150	Total	76.91 43.87 12.63 133.41	Total	17.28 246.26 <u>122.29</u> 385.83	Average	0.22 5.61 <u>9.68</u> 2.89	Total	3,571.2 2,035.2 601.6 6,208.0	Average	21,537.4 21,558.7 21,000.7 21,490.9

Table 3.-Proximate analysis, forms of sulfur, and heating value, Decker coal field.

					ST	RIPP.	ABLE	COA	L, SC	OUTH	EAST	rern	1 MON	ITANA					
	Heating value (Btu)	8081 10218 13008	9691 12720 13274	9541	12955	8769 12029	15157 9373 12355	12885 6019	7279 12571	9003 12132 12870	9436 12058	12649 8609	11805 12454	9850 12405 13357	9305 12559 13064	9768 12479 13168	9306 12252 12911	12308 12808 8705	11654 12709
	Organic	.400 .506 .644	.094 .124 .129	326 226 825 825	.442	.317	.205 .205	.282 .291	.352	.161	137	184	.219	.249 .314 .338	.242 .326 .340	.222 .283 .299	.194 .255 .269	255 254 254 254 254	.721 .786
Form of sulfur, %	Pyritic	.313 .396 .504	.051 .068 .070	.043 .056	.058	.106	.159 .077 101	.106	.129	.089	.051	080. 080.	.109	.034 .043 .047	.055 .074 .077	.016 .021 .022	.053 .053 .056	.0032 .0442 .044	.106 .116
Form o	Sulfate	.017 .022 .028	000	.009 .011	.012	.008	.002 .009 .109	.012 .018	.021 .037	000	989	888	000.	000. 000. 000.	.008 .011 .011	.008 .010 .011	.016 .021 .022	.021 .021 .022 .022	.032
	Sulfur	.730 .924 1.176	.191	.377 .495	.512	.431	.647 .290 387	399	.448 .774	337	.358 1.88 1.88	252	328	.283 .357 .384	.304 .411 .427	.246 .315 .332	.329 .347	.308 .321 .521	937
	Ash	16.966 21.451	3.181	2.485		6.258 8.585	3.124	34.809	42.096	4.255	3.654	3.803	5.215	5.660	2.863 3.864	4.096	3.881 5.109	3.910	8.302
ate, %	Fixed carbon	35.810 45.278 57.643	53.111	55.425 42.936 56.398	58.301	37.166 50.982	55.770 42.813	26.423 26.663	32.245 55.687	37.606 50.674	53.756 39.609	53.098 36.684	50.301 53.068	39.641 49.919 53.750	39.608 53.459 55.608	41.585 53.131 56.065	41.243 54.296 57.220	41.409 55.323 57.574 30.208	\$2.608 \$7.371
Proximate,	Volatile matter	26.314 33.271 42.357	32.544	44.5 / 5 30.709 40.338	41.699	29.476 40.433	44.230 29.933	27.147 21.147 21.218	25.659 44.313	32.350 43.592	46.244 34.987	44./12 46.902 37.443	44.485	34.109 42.953 46.250	31.619 42.677 44.392	32.589 41.636 43.935	30.836 40.595 42.780	30.514 40.767 42.426	39.090 42.629
	Moisture	20.910	23.810	23.870		27.100	24.130	17 310		25.790	21.750	070 27	200	20.590	25.910	21.730	24.040	25.150	23.300
	Form of 1 analysis 1/	Αщć) 4 m (D ∢ ¤	Ö	B	υ ∀ ι	æ∪∢	:mU	A B	Oei		(m)	CBA	CBA	CBA	CBA	∀ ¤∪∻	¢ m O
	Coal bed	Canyon				Dietz				Anderson				Anderson	Dietz	Anderson	Anderson		
	Lab. number	160	001	. 161	162		171	172	173		187	188	189	190	462	463	464	465	466
	Depth sampled	106 to	116 to	126 ft. 126 to	130 ft.	124 to	134 ft.	134 to 144 ft.	144 to 152 ft.	142 to	148 ft.	148 to 159 ft.	159 to 165 ft.	215 to 218 ft.	240 to 247 ft.	231 to 232 ft.	116 to 127 ft.	127 to 137 ft.	137 to 140 ft.
	Drill hole and location	SH-703 8S 40E S26	CCAB		•	SH-7010 8S 40E S15	CBBA			SH-7017 8S 38E S12	BCDC			SH-7018 9S 40E S19 BCBA	BMC-727 8S 38E S36 CDBD	BMC-728 9S 39E S25 CDBA	BMC-729 9S 39E S29 CDBA		

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

holes, and field checking of the Rosebud Coal Sales Company drill data. Colored aerial photos of the area were lent by the Carter Oil Company.

PREVIOUS GEOLOGIC WORK

The Decker and surrounding area was described by Baker (1929) and by Ayler, Smith, and Deutman (1969), and part is shown on a U.S. Geological Survey open-file report on the Decker quadrangle (Law and Grazis, 1972). Detailed maps on an engineering scale, prepared by Decker Coal Company, were made available for reference.

LAND OWNERSHIP

Because the Decker area lies south of the land grant to Burlington Northern, Inc., the minerals under most of the area are owned by the Federal Government. In sec. 16 and 36 of each township, granted to the State of Montana for school land, the state has both the surface and the mineral rights. In the other sections, the Federal Government generally retained the coal rights, even where it deeded the surface.

SURFACE FEATURES AND LAND USE

The Tongue River Reservoir now occupies much of the broad valley of the Tongue River, which, like the broad valley of Deer Creek, is flanked by steep-sided buttes and cliffs. Numerous drainages, which trend northwest or southeast, are also bordered by steep-sided ridges and buttes. Large areas of clinker in the northern part of the area are hummocky and rolling, and the clinker zone forms vertical cliffs where cut by drainages. All tributaries of the Tongue River are intermittent streams that flow only during periods of heavy precipitation and spring runoff.

Livestock grazing is the principal use of land in the area. A small amount of hay is raised, especially on the bottomland of Tongue River and Deer Creek valleys.

GEOLOGIC STRUCTURE

The geologic structure in the Decker area is more complex than in most of the Powder River Basin; only Kirby and some parts of the Sheridan, Wyoming, area are more so. The complexity of structure is probably due to the proximity of the Big Horn uplift and the axis of the Powder River Basin. Furthermore, the Decker area is on the north flank of the Ash Creek anticline, which contains a producing oil field.

Of the several prominent structural features in the Decker coal field (Pl. 1), the most striking are the clearly defined northeast and northwest lineations consisting of fault-controlled topographic features. The northwest lineations are easily discernible, as they are followed by the North and South Fork of Monument Creek, Spring Creek, South Fork of Spring Creek, Pearson Creek, Squirrel Creek, Dry Creek, and Youngs Creek.

Except for the valley of Tongue River, the northeast-trending features are not as obvious because the faults are masked. These faults have the down-dropped block on the southeast side except in the South Fork of Spring Creek, where the upthrown block is on the southeast side of the fault. Three parallel faults in T.9 S., R. 38, 39, and 40 E., are difficult to follow for long distances, but in some places they have an apparent displacement of as much as 200 feet.

The fault in sec. 16, T. 9 S., R. 40 E., just south of the Decker mining area, has a displacement of about 120 feet, the southeast block being down-dropped, as shown by drill hole SH-7090 on the west line of sec. 22, T. 9 S., R. 40 E. The displacement along the fault in sec. 29 and 30, T. 9 S., R. 40 E., is also approximately 120 feet, the south block being down-dropped. Strata in the Decker area dip gently southeastward 40 to 69 feet per mile except in T. 8 S., R. 39 E., where the dip is about one degree. In small areas, however, relatively steep dips are associated with faulting, especially in sec. 21, T. 9 S., R. 40 E., and in sec. 29 and 33, T. 9 S., R. 39 E.

Altitudes of the top of the Roland coal bed as determined by drilling in the Squirrel Creek coal field (Pl. 4), indicate a dip to the southwest.

Prominent structural features in the Deer Creek coal field (Pl. 2) include the northwest lineation of the drainage patterns of Deer Creek and Corral Creek. Three northeast-trending faults have been mapped in T. 9 S., R. 40 and 41 E. The down-thrown block is on the southeast except on the southernmost fault, which crosses through sec. 36, T. 9 S., R. 40 E., and the NE¼ sec. 31 and SE¼ sec. 30, T. 9 S., R. 41 E. There the down-thrown block is on the north side (Law and Grazis, 1972). Structure contours in the Deer Creek deposit indicate that the dip is to the southwest, but locally it is reversed. A small syncline in sec. 12 and 13, T. 9 S., R. 40 E., occupies an area where the distance between the Anderson and the underlying Dietz No. 1 coal bed changes abruptly. The dip in the south half of sec. 13 and extending into sec. 23, T.9 S., R. 40 E., is about one degree. In sec. 5, 6, 7, and 8, T. 9 S., R. 41 E., the dip is relatively flat but steepens again farther northeast and again approaches one degree.

Table 4.-Trace-element analysis, Decker coal field.
(Semiquantitative 6-step spectrographic)

		STRIP	PABLE C	OAL, SOUTH	EASTERN M	ONTANA		
	Zr	200	150	150	200	200	100	100
	χp	m	S	w	e	m	2	3
	> -	30	50	30	30	30	20	50
	>	200	300	300	150	150	150	150
	Ħ	5000	3000	5000	5000	5000	3000	3000 3000 150
	Sr	7000	3000	15000	7000	2000 2000	7000	3000
	Sn	30		20	30			
'n.	Sc	30	30	30	20	15	15	15
Element, ppm.	Z	30	30	20	20	15	15	70
Eleme	N _b	20	20		20	20		
	Mo	70	70	100	200	50	30	50
	Mn	200	200	500	500	100	150	100
	La		70					70
,	Ga	30	30	30	20	20	30	30
	ど	70	70	70	50	50	50	70
	ొ	30	30	20	15	15	1.5	5
	Be		7					6
	Ba	15000	3000	5000	700 10000	7000	700 10000	7000
	EQ.	1500 15000	300	1000	700	700	700	300
Coal	peq	Dietz		Dietz	Anderson	Anderson		
Lab.	number	458- D160662	459- D160663	462- D160666	463- D160667	464- D160668	465- D160669	466- D160670
Depth	sampled	98 to 107 ft.	107 to 110 ft.	240 to 247 ft	231 to 232 ft.	116 to 127 ft.	127 to 137 ft.	137 to 140 ft.
Drill hole	and location	BMC-723 8S 41E S30 BDCD		BMC-727 8S 38E S36 CDBD	BMC-728 9S 39E S25 CDBA	BMC-729 9S 39E S29 CDBA		

Table 5.-Trace-element analysis of coal and ash, Decker coal field.

	%							
	Ash %	3.20	6.80	3.25	4.56	4.56	3.43	7.12
	Zn	185	180	175	195	83	93	240
ash	Pb		275	545	1660	300	195	120
ni mdd	1	27	130	50	93	31	28	44
Element, ppm in ash	ő	335	385	420	909	245	180	145
	PO		1.5	<1.0	<1.0	<1.0	<1.0	1.5
	Ω	\ \ .2	αó	< > .2	4.	.2	<. .2	1.2
	П	× ×	< > .2	\	\ 5	\ \ '2	\ 2	\ \.
n coal	Te	Li.	-:	<.02	.02	<.02	<.02	<.02
Element, ppm in coal	Se		4.	^ 	<u>.</u>	<i>7</i> :	 	9.
Eleme	Sb	43.3	13.7	4.7	19.1	3.8	1.9	1.8
	Hg	.035	.082	.037	.051	.044	.030	.106
	ſī,	40	30	10	10	30	20	30
	As	8	2	7	т	yeard.		т
	Coal bed	Dietz .2	93	Dietz 6	Anderson 7	Anderson 8	6	0
	Lab. sample	458- D160662	459- D160663	462- D160666	463- D160667	464- D160668	465- D160669	466- D160670
	Depth sampled	98 to 107 ft.	107 to 110 ft.	240 to 247 ft.	231 to 232 ft.	116 to 127 ft.	127 to 137 ft.	137 to 140 ft.
· ;	Drill hole and location	BMC-723 8S 41E S30 BDCD		BMC-727 8S 38E S36 CDBD	BMC-728 9S 39E S25 CDBA	BMC-729 9S 39E S29 CDBA		

Table 6.-Major constituents of ash, Decker coal field.

D.::11	4	1,	1000					Con	Constituent, %					1
Drnu note and location	Depun sampled	Lao. number	bed	Al ₂ O ₃	CaO	Fe ₂ O ₃	K20	MgO	Na_2O	P_2O_5	SiO_2	SO_3	TiO ₂	Total
SH-703 8S 40E S26 CCAB	106 to 130 ft.	160-162	Canyon	15.6	6.7	3.4	1.4	1.4	7.0	7	48.2	10.9	∞i	92.6
SH-7010 8S 40E S15 CBBA	124 to 152 ft.	171-173	Dietz	12.4	4.5	2.0	1.9	1.8	2.2	4.	61.6	5.0	∞.	92.6
SH-7017 8S 38E S12 BCDC	142 to 165 ft.	187-189	Anderson	14.7	22.3	5.3	9.	5.2	8.8	o:	29.7	10.9	1.1	5.66
SH-7018 9S 40E S19 BCBA	215 to 218 ft.	190	Anderson	16.6	13.7	3.5	۸:	2.5	6.4	1.0	42.0	8.4	2.2	8.96
BMC-727 8S 38E S36 CDBD	240 to 247 ft.	462- D160666	Dietz	13.0	24.0	4.1	9.	8.7	2.3	5	16.0	20.0		
BMC-728 9S 39E S25 CDBA	231 to 232 ft.	463- D160667	Anderson	10.0	14.0	4.2	ĸ:	3.3	6.1	κi	37.0	12.0		
BMC-729 9S 39E S29 CDBA	116 to 127 ft.	464- D160668	Anderson	10.0	18.0	3.9	e.	9.3	1.8	T.	41.0	13.0		
	127 to 137 ft.	464- D160669		14.0	23.0	5.5	4.	12.3	1.9	4.4	14.0	16.0		
	137 to 140 ft.	464- D160670		18.0	11.0	4.1	1.3	5.7	6 :	3.8	25.0	16.0		

Table 7.-Proximate analysis, forms of sulfur, and heating value, Deer Creek coal field.

						Proximate, %	.te, %			Form of sulfur, %	sulfur, %		
Drill hole	Depth	Lab.	Coal	Form of		Volatile	Fixed						Heating
and location	sampled	number	peq	analysis ¹ /	Moisture	matter	carbon	Ash	Sulfur	Sulfate	Pyritic	Organic	value (Btu)
SH-7020			Anderson	4	24.770	32.136	39.259	3,834	777.	.017	314	446	9247
9S 40E S35	193 to			æ		42.717	52.186	5.097	1.033	.022	.417	.593	12291
DBCD	201 ft.	192		၁		45.012	54.988		1.088	.023	.440	.625	12951
				Α	25.550	32.912	38.311	3.228	.380	800.	.025	.347	9179
	201 to			В		44.207	51.458	4.335	.510	.011	.033	.466	12330
	207 ft.	193		C		46.210	53.790		.533	.012	.035	.487	12888
				А	19.270	21.066	32.349	27.315	.733	.026	.284	.422	6594
	207 to			В		26.094	40.070	33.835	806	.032	.352	.523	8168
	212 ft.	194		၁		39.438	60.562		1.372	.048	.533	.791	12345
SH-7022			Smith	¥	27.900	31.309	33.942	6.849	.591	060.	.148	.353	8272
9S 41E S10	41 to			В		43.424	47.076	9.499	.819	.125	.205	.489	11473
ADCD	50 ft.	197		ပ		47.982	52.018		.905	.138	.226	.541	12678
BMC-723			Dietz	Ą	24.840	31.163	41.440	2.557	.300	.016	.032	.253	9561
8S 41E S30	98 to			В		41.462	55.135	3.403	399	.021	.042	.336	12722
BDCD	107 ft.	458		၁		42.922	57.078		.413	.022	.043	.348	13170
				A	25.350	31.116	38.362	5.172	.725	800.	.148	.569	9142
	107 to			B		41.682	51.390	6.928	.972	.010	.199	.763	12247
	110 ft.	459		၁		44.785	55.215		1.044	.011	.213	.820	13158

 $^{1}/\mathrm{A}$, as received; B, moisture free; C, moisture and ash free.

This flexure has allowed exposure of the Anderson coal bed along the valley bottom, and its subsequent burning in sec. 3, 4, and 9, T. 9 S., R. 41 E.

In the Roland coal deposit (Pl. 3) the structure of the Roland bed is irregular. The highest altitude exceeds 4,000 feet, as shown in drill hole SH-7024 in sec. 25, T. 8 S., R. 41 E., and the lowest is 3,656 feet, as shown in drill hole SH-7021 in the southwestern part of the deposit.

COAL BEDS

In the Decker area, coal beds in the upper part of the Tongue River Member of the Fort Union Formation that contain strippable coal include the Roland, Smith, Anderson, Dietz No. 1, and Dietz No. 2 coal beds. Because reserves in the Smith coal bed are small, they are not shown on the maps. The coal beds in the Decker area have been correlated with those in the Hanging Woman Creek and Kirby areas (Pl. 33).

The major coal beds in the Decker area present an opportunity to study characteristics of coal-bed splitting and coal-field structure. Near the center of the Decker coal deposit, the Anderson, Dietz No. 1, and Dietz No. 2 coal beds are combined into a single bed approximately 80 feet thick. At the Decker mine, in sec. 16, T. 9 S., R. 40 E., east of the center of Plate 1, the Anderson and Dietz No. 1 remain combined and form a bed approximately 50 feet thick, but the Dietz No. 2 coal bed diverges from it and lies 50 feet below it. West of the center of Plate 1, the Dietz No. 1 and Dietz No. 2 remain combined, but the Anderson bed splits from it.

In the valleys of Spring Creek and South Fork of Spring Creek in T. 8 S., R. 39 E., the combined thickness of the Anderson, Dietz No. 1, and Dietz No. 2 coal averages 80 feet, but reaches a maximum of 87 feet. In the Squirrel Creek drainage, the thickness of the combination also averages about 80 feet, and in the Youngs Creek area it totals 73 feet, as shown in drill hole BMC-729, sec. 29, T. 9 S., R. 39 E. The uppermost bed in this drill hole is correlated with the Anderson bed and has a thickness of 35 feet. The underlying strata contain three coal beds 6, 20, and 12 feet thick, which are correlated with the Dietz No. 1 and Dietz No. 2 coal beds (Pl. 1, 33).

In the northeastern part of the Decker area, a prominent burn line marks the limit of unburned coal in the Anderson and Dietz No. 1 coal beds. The Dietz No. 2 coal bed, however, contains strippable reserves beneath the clinker north and northeast into T. 8 S., R. 40 E. Beneath the burn of the Anderson and Dietz No. 1, the Dietz No. 2 bed ranges from 14 to 20 feet in thickness.

		SiO_2	0 (2
	%	P 205	,
oal field.	Constituent, %	Na ₂ O P ₂ O ₅	•
er Creek o	ŭ	MgO	
f ash, De			,
Table 8Major constituents of ash, Deer Creek coal field.		Fe ₂ O ₃ K ₂ O	•
Major cor		CaO	,
Table 8		Al ₂ O ₃ CaO	

15.2

38.5

14.0

				C ~ 7		6070	7	0	7 1
SH-7020 0C 40F C25	102 +0		Anderson	22.0	3.8	4.0	3.6	1.7	5.6
DBCD	212 ft.	192-194							
SH-7022			Smith	13.8	13.6	7.8	7.8 .3 6.2	6.2	1.7
95 41E 510 ADCD	41 to 50 ft.	197							
BMC-723			Dietz	15.0	16.0	8	4	9 6	2.4
8S 41E S30 BDCD	98 to 107 ft.	458- D160662		2	2		:		i
	107 to 110 ft.	459- D160663		22.0 7.9	7.9	4.7	4.	4.6	1.2

Table 9.-Proximate analysis, forms of sulfur, and heating value, Roland coal field.

						Proxima	te, %			Form of sulfur, %	sulfur, %		
Drill hole and location	Depth sampled	Lab. number	Coal bed	Form of 1, analysis 1/	Moisture	Volatile Fix matter carb	Fixed	Ash	Sulfur	Sulfate	Pyritic	Organic	Heating value (Btu)
SH-702 9S 40E S26 DDDA	53 to 63 ft.	159	Roland	CBA	25.920	28.204 38.072 40.201	41.953 56.632 59.799	3.924 5.296	.238 .321 .339	.025 .034 .036	.076 .103 .109	.136 .183 .194	8876 11981 12651
SH-7019 9S 40E S36 ADDB	74 to 83 ft.	191	Roland	ВС	27.160	32.291 44.332 46.752	36.778 50.491 53.248	3.771	.193 .265 .279	.008 .011 .012	.032 .044 .047	.153 .210 .221	9114 12512 13196
SH-7021 9S 41E S19 BAAC	54 to 60 ft. 60 to 65 ft.	195	Roland	C B A C B A	25.750	37.072 49.928 54.142 29.290 39.048 44.842	31.400 42.289 45.858 36.028 48.031 55.158	5.779 7.783 9.691 12.920	296 2432 250 250 333	.016 .022 .024 .017 .022	.066 .089 .042 .055	214 288 312 191 255	8493 11438 12403 8417 11221 12886
SH-7023 9S 41E S23 ACAB	30 to 31 ft. 166 to 170 ft.	198	Local	CBACBA	19.480	31.685 39.350 46.453 25.604 29.416 45.040	36.524 45.360 53.547 31.243 35.895 54.960	12.311 15.289 30.193 34.689	3.562 4.424 5.222 .957 1.099	.156 .194 .229 .037 .043	2.302 2.859 3.375 .409 .470	1.103 1.370 1.618 511 .587 .899	8748 10864 12825 7607 8739 13381
SH-7024 8S 41E S25 ABCA	53 to 63 ft.	199	Roland	CBA	36.300	28.615 44.921 49.485	29.211 45.857 50.515	5.875 9.223	.674 1.058 1.166	.035 .056 .061	.220 .345 .380	.419 .657 .724	7021 11022 12142
SH-7027 9S 42E S18 BDCA	52 to 61 ft.	202	Roland	СВА	35.790	27.573 42.942 48.188	29.647 46.172 51.812	6.990 10.886	.290 .452 .507	.021 .032 .036	.062 .097 .109	.207 .323 .362	7120 11089 12443
SH-7029 9S 42E S23 BBCB	68 to 76 ft.	203	Roland	CBA	30.230	37.275 53.426 57.310	27.767 39.798 42.690	4.728 6.776	.337	.015 .022 .023	.030 .044 .047	.190 .272 .292	8086 11590 12433

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 10.-Major constituents of ash, Roland coal field.

Drill hole	Denth	10,1	1007						Constituent, %	ıt, %				
and location	sampled	number	peq	Al ₂ O ₃	CaO	Fe ₂ O ₃	K20	MgO	Na_2O	P_2O_5	SiO_2	SO_3	TiO_2	Total
SH-702 9S 40E S26 DDDA	53 to 63 ft.	159	Roland	10.9	21.6	13.2	4	4. 4.	4.	1.2	21.7	17.6	٨	95.7
SH-7019 9S 40E S36 ADDB	74 to 83 ft.	191	Roland	14.0	20.5	12.2	5.	3.4	6.3	2.4	23.9	11.8	9.	95.3
SH-7021 9S 41E S19 BAAC	54 to 65 ft.	195-196	Roland	17.8	16.2	5.9	1.7	2.8	1.2	1.0	43.5	7.3	9.	98.0
SH-7023 9S 41E S23 ACAB	30 to 31 ft.	198	Local	14.1	7.4	30.7	6	3.4	∞i	- :	32.4	5.6	٨ċ	95.9
	166 to 170 ft.	201	Smith	10.9	1.3	3.3	1.7	9:	1.4	ιί	73.8	1.6	4.	95.3
SH-7024 8S 41E S25 ABCA	53 to 63 ft.	199	Roland	16.2	17.4	9.3	λί	5.9	L.	3.0	26.9	17.4	٨ċ	8.7.6
SH-7027 9S 42E S18 BDCA	52 to 61 ft.	202	Roland	18.6	12.9	6.2	1.2	3.5	4.6	1.4	38.2	8.5	7.	95.8
SH-7029 9S 42E S23 BBCB	68 to 76 ft.	203	Roland	14.3	14.5	4.7	ιi	3.9	9.4	4.	37.5	11.8	1.5	98.3

Table 11.-Proximate analysis, forms of sulfur, and heating value, Squirrel Creek coal field.

						Proxima	ite, %			Form of	Form of sulfur, %		
Drill hole	Depth	Lab.	Coal	Form of		Volatile Fixed	Fixed						Heating
and location	sampled	number	peq	analysis 1/	Moisture	matter	carbon	Ash	Sulfur	Sulfate	Pyritic	Organic	value (Btu)
SH-7032			Roland	. ∢	34.090	24.607	27.130	14.174	.196	.015	.058	.123	8099
9S R39E S11	28 to			В		37.334	41.162	21.505	.297	.022	880	.187	10026
ACBB	36 ft.	205		ပ		47.562	52.438		.378	.028	.112	.238	12773
SH-7033			Roland	¥	29.750	31.200	34.450	4.601	.259	800.	670.	.173	8082
8S R39E S34	38 to			В		44.412	49.039	6.549	369	.011	.112	.246	11504
BDAB	46 ft.	206		ပ		47.525	52.475		395	.012	.120	.263	12310
				Ą	30.050	28.709	34.573	299.9	.278	800	.077	.193	7866
	46 to			В		41.043	49.426	9.532	398	.011	.110	.276	11246
	48 ft.	207		ပ		45.367	54.633		.440	.012	.122	305	12431
SH-7034			Roland	¥	30.520	29.108	37.100	3.272	.624	.015	.169	.439	9661
8S R39E S20	35 to			В		41.895	53.396	4.709	868.	.022	.244	.632	11508
CDDB	42 ft.	208		ပ ်		43.965	56.035		.942	.023	.256	.663	12077
				¥	28.560	31.124	36.808	3.508	.292	000	.073	.219	8265
	42 to			В		43.567	51.523	4.910	.409	000	.102	.307	11569
	46 ft.	209		၁		45.816	54.184		.430	000	.108	.323	12166
SH-7035			Roland	¥	28.710	30.578	37.753	2.959	.198	.016	.063	.119	8286
9S R39E S21	35 to			В		42.892	52.957	4.150	.277	.022	680	.166	11624
BABA	45 ft.	210		၁		44.749	55.251		.289	.023	.093	.174	12127
SH-7036			Roland	Ą	36.710	28.155	31.887	3.248	.163	.007	.064	.092	7225
9S R39E S17	30 to			В		44.486	50.382	5.133	.258	.011	.101	.146	11416
ADCB	33 ft.	211		ပ		46.892	53.108		.272	.012	.107	.154	12034
				A	31.730	28.152	34.426	5.692	.344	.015	060.	.239	7462
	33 to			В		41.236	50.427	8.337	.503	.022	.131	.350	10930
	36 ft.	212		ပ		44.987	55.013		.549	.024	.143	.382	11924

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

In the Deer Creek coal deposit (Pl. 2, 33) east of the Tongue River Reservoir, the Anderson, Dietz No. 1, and Dietz No. 2 coal beds are all separated by partings. Near the Tongue River Reservoir, the parting between the Anderson and Dietz No. 1 is about 20 feet but it increases eastward to 60 feet. The parting between the Dietz No. 1 and Dietz No. 2 ranges from 50 to 80 feet throughout the area.

In the Deer Creek coal field, the Anderson, Dietz No. 1, and Dietz No. 2 coal beds contain strippable reserves over a large area, but in various parts of the field the Anderson and Dietz No. 1 beds have burned, leaving reserves only in the Dietz No. 2 coal bed. The Anderson coal reserves are in sec. 12, 13, 14, 22, and 23, T. 9 S., R. 40 E., and in sec. 2, 3, 4, 5, 6, 8, 9, 10, 14, 16, 17, and 18, T. 9 S., R. 41 E. The Anderson coal bed in this area averages 20 feet in thickness. Where the Anderson bed has burned or has been removed by erosion, the Dietz No. 1 and Dietz No. 2 coal beds still contain strippable coal. The Dietz No. 1 coal extends throughout the area except in sec. 36, T. 8 S., R. 40 E., and sec. 1 and 2, T. 9 S., R. 40 E. Only the Dietz No. 2 bed remains unburned throughout the area. The principal reserves in the Dietz No. 1 and Dietz No. 2 coal beds include the west half of sec. 1 and sec. 2, 12, 13, and 14, T.9 S., R. 40 E., and sec. 6, 7, and 8, T. 9 S., R. 41 E. The Dietz No. 1 and Dietz No. 2 coal beds are each about 18 feet thick.

Additional strippable reserves are inferred along Corral Creek in sec. 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, and 32, T. 8 S., R. 41 E. The deposit is limited by the burn at the outcrop and by high ground to the southeast.

The Roland coal bed is approximately 350 feet above the top of the Anderson coal bed and underlies the high divides both east and west of the Tongue River. In the Roland (Pl. 3) and Squirrel Creek (Pl. 4) coal deposits, the thickness of the Roland bed ranges from 6 to 14 feet. The Smith coal bed is below the Roland and about 182 feet above the Anderson bed, as shown in drill hole SH-7022 in sec. 10, T. 9 S., R. 41 E.

COAL QUALITY

Core samples from the Roland, Smith, Anderson, Dietz No. 1, and Dietz No. 2 coal beds were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Results of analyses of cores from the Decker coal deposit are shown in Table 3, from the Deer Creek coal deposit in Table 7, from the Roland coal deposit in Table 9, and from the Squirrel Creek coal deposit in Table 11.

Table 12.—Major constituents of ash, Squirrel Creek coal field.

	TiO2	r.		9.		۲	•		t:			Ó	
	SO3	7. 7.		13.4		10 0	17.0		13.1			14.0	
	SiO ₂	55.9		23.4		200	0.77		21.5			18.1	
%	P205	9.				,	7.7		6;			1.6	
nstituent	Na 20	4.		6:		7	t.		2.2			u;	
ŭ	MgO	3.7		8.0		6	6.0		11.1			10.0	
	K20	2.5		٠ċ		"			.2			. 2	
	Fe ₂ O ₃	4.1		8.3		7.7	4.		7.7			∞ ∞.	
	CaO	20.0 7.3 4.1 2.5 3.7 .4 .6		26.6		23.0	6.5.4		28.5			27.6	
	Al ₂ O ₃	20.0		15.8 26.6		15.8	7.64 0.61		11.7		•	14.6	
		Roland		Roland		Roland	AVOIGNIE		Roland		,	Roland	
			205		206-207			208-209		210	2		211-212
		36 +20	36 ft.		38 48 ft.		35 to	46 ft.	,	35 to	; ;	30 to	36 ft.
		SH-7032 oc 30F c11	ACBB	SH-7033	8S 39E S34 BDAB	SH-7034	8S 39E S20	CDDB	SH-7035	98 39E S21 BABA		SH-/036 9S 39F S17	ADCB

101.2

95.8

97.6

Bureau analyses of ash constituents are shown in Tables 6, 8, 10, and 12; these tables also include results reported by the U.S. Geological Survey laboratories, Denver. Traceelement analyses, shown in Tables 4 and 5, were reported by the U.S. Geological Survey laboratories, Denver, (U.S. Geological Survey Open-File Report, 1973). Analyses of four core samples from the combined Anderson and Dietz No. 1 coal beds reported that the Decker deposit showed a calorific value of 10,250 Btu, fixed carbon ranging from 30 to 45%, volatile matter ranging from 30 to 37%, moisture 15.60%, and ash 3.9% (Ayler, Smith, and Deutman, 1969, p. 17). Analyses of two core samples of the Dietz No. 2 bed, which has an average thickness of 18.2 feet, showed a calorific value of 9,600 Btu, fixed carbon 30 to 45%, volatile matter 34 to 43%, moisture 21.0%, and ash 4.87%. All values are reported on the "as received" basis, as determined by Pacific Power and Light Company, and they are comparable with the results obtained under our project.

COAL RESERVES

The coal reserves in the Decker area are shown individually by coal deposit on Table 2. Reserves in the Decker coal field (Pl. 1) total 2,239,990,000 tons in the Anderson, Dietz No. 1, and Dietz No. 2 coal beds. Reserves in the Deer Creek coal field (Pl. 2) total 495,650,000 tons, reported as 410,470,000 tons indicated and 85,180,000 inferred. Reserves in the Roland coal field (Pl. 3) total 218,040,000 tons, and in the Squirrel Creek (Pl. 4) coal deposit, 133,410,000 tons.

KIRBY COAL DEPOSIT

LOCATION

The Kirby coal deposit (Pl. 5A, B, and C) lies in T. 6 and 7 S., R. 39 and 40 E., and in the narrow strip on the eastern edge of T. 6 and 7 S., R. 38 E., that lies east of the Crow Indian Reservation boundary, Big Horn County. The maps of the Kirby area show strippable reserves in the Anderson and Wall coal beds (Pl. 5A), in the Dietz coal bed (Pl. 5B), and in the Canyon coal bed (Pl. 5C). The area is bounded on the north by the Northern Cheyenne Indian Reservation boundary, on the west by the Crow Indian Reservation boundary, and on the south by the limit of strippable coal or the area where burning has removed the coal. The eastern boundary is the eastern side of the divide between the Tongue River and Rosebud Creek or the area where burning has removed the coal.

FIELD WORK AND MAP PREPARATION

Extensive field work and interpretation were required on the Kirby area because of the structural complexity. Drilling was begun during the 1969 field season, and additional holes were drilled during the 1970 field season. In midwinter 1972-73, more holes were drilled to verify some of the interpretations and to assist in the final preparation of the maps. After the first drilling in 1969, preparation of a structure map was attempted, but the area was more complex than had been expected. In the summer of 1972, detailed field mapping on topographic maps and black-and-white photos was completed for six 7½minute quadrangles extending from Rosebud Creek to the Tongue River in the vicinity of Birney. Much of the next winter was spent interpreting this work and in formulating the structure and overburden maps. Gulf Mineral Resources Company supplied colored aerial photos of the area, and Pat McDonough of Billings provided logs of drill holes in the Rosebud Creek area.

PREVIOUS GEOLOGIC WORK

The Kirby area was mapped and described in a U.S. Geological Survey report on the northern extension of the Sheridan coal field (Baker, 1929) and in a U.S. Bureau of Mines report on the strippable coal in Montana (Ayler, Smith, and Deutman, 1969).

LAND OWNERSHIP

Most of the surface is privately owned, with the exception of sec. 16 and 36 in each township, which are owned by the State of Montana, and a small amount of surface in T.6 and 7 S., R. 40 E., which is public domain. Most of the coal, however, is owned by the Federal Government. The state owns the coal underlying its tracts, and some coal is owned in fee by individuals in the valley bottom along Rosebud Creek.

SURFACE FEATURES AND LAND USE

The surface features within the area of the Kirby coal deposit range from the rolling prairie on the high divide between the Tongue River and Rosebud Creek to the deeply incised valleys of Rosebud Creek and its steep tributaries that are bordered by rugged bluffs. Also prominent is the rugged topography on the east side of the divide where tributaries of the Tongue River such as Canyon Creek, Fourmile Creek, and Post Creek are deeply incised. Ponderosa pine grows on clinkered areas along the steep valley sides. Rosebud Creek flows north and joins the Yellowstone near Rosebud.

The principal land use is livestock grazing. Hay is raised along the narrow valleys of Rosebud Creek and some of its tributaries of the Tongue River on the east side of the divide. On part of the high divide area be-

Table 13.-Reserves, overburden, overburden ratio, acres, and tons/acre, Kirby coal deposit.

ANDERSON BED

Thickness of overburden, ft.		licated reserves, million tons		Overburden, tillion cu. yd.		urden rat yards/to		Acres		Tons/acre
0 to 50 50 to 100 100 to 150	Total	49.85 82.89 <u>83.78</u> 216.52	Total	73.87 261.05 425.34 760.26	Average	1.48 3.15 <u>5.08</u> 3.51	Total	1,387.7 2,157.8 2,109.8 5,655.3	Average	35,922.7 38,414.1 <u>39,709.8</u> 38,285.2
				DII	ETZ BED					
0 to 50 50 to 100 100 to 150 150 to 200 200 to 250	Total	180.00 243.95 248.02 80.00 <u>82.38</u> 834.35	Total	232.93 681.78 1,097.66 290.74 379.58 2,682.69	Average	1.29 2.79 4.43 3.63 4.61 3.22	Total	4,371.2 5,632.0 5,440.0 1,030.4 1,043.2 17,516.8	Average	41,178.6 43,314.9 45,591.9 77,639.8 78,968.6 47,630.9
				CAN	YON BED					
0 to 50 50 to 100 100 to 150 150 to 200	Total	19.56 58.31 78.31 2.35 158.53	Total	27.94 180.89 400.45 <u>17.0</u> 626.28	Average	1.42 3.10 5.11 7.23 3.95	Total	524.7 1,495.2 1,986.4 60.3 4,066.6	Average	37,278.44 38,998.12 39,423.07 38,971.80 38,983.42
				WA	LL BED	*				
0 to 50 50 to 100 100 to 150 150 to 200 200 to 250	Total	56.86 74.2 84.11 120.88 <u>137.64</u> 473.69	Total	38.0 112.69 213.65 428.16 628.16 1,420.66	Average	0.67 1.52 2.54 3.54 4.56 2.99	Total	713.9 931.6 1,058.4 1,517.7 1,730.8 5,952.4	Average	79,647.0 79,647.9 79,469.0 79,646.8 <u>79,523.9</u> 79,579.7

tween Rosebud Creek and the Tongue River, grain is cultivated by dry-land farming.

The area in sec. 16, 17, 18, 19, 20, 21, and 22, T. 7 S., R. 39 E., has historic value as the site of the battle between Captain Crook and the Sioux on June 17, 1876.

GEOLOGIC STRUCTURE

The relative complexity of the geologic structure in the Kirby area is the result of numerous faults, which have caused local reversal in the generally southeast dip of the Tongue River beds.

The Kirby coal deposit seems to occupy a zone where the trend of lineations changes from northwest to north-south and east-west. Along the valleys of Canyon Creek, Fourmile Creek, and Post Creek in T. 6 and 7 S., R. 40 E., the northwest lineations are obvious. In the Rosebud Creek tributaries, north-south and east-west lineations are visible. Rosebud Creek flows northward, and in the south-western part of T. 7 S., R. 39 E., it seems to be controlled by this structural pattern.

The faults in the area, although difficult to see except in local small areas, are depicted graphically on Plate 33, cross section SC-K, as normal tensional features. They have been projected on the basis of surface mapping, color-photo interpretation, and drill-hole data. Displacement of most of the faults ranges from only a few feet to about 200 feet. In the northeast corner of T. 7 S., R. 39 E., a graben has dropped the Tongue River strata, as illustrated on Plate 5A, which shows the Anderson coal bed.

COAL BEDS

The strippable coal beds in the Kirby area are in the upper part of the Tongue River Member and include, from top to bottom, the Anderson, Dietz No. 1 and No. 2, the Canyon, and the Wall coal beds, all of which are correlated with beds of the same name in the Decker area. The Smith and Cook coal beds have also been mapped in the area. The Smith bed, above the Anderson bed, is 9 feet thick, as measured in drill hole SH-731A, in the NW¼ sec. 27, T. 7 S., R. 39 E. The Cook bed forms two benches lying between the Canyon and Wall coal beds. Thickness of the upper bench reaches 11 feet; the lower bench ranges from a trace to 3 feet.

The Anderson coal bed contains large strippable reserves. The bed is thickest near the Big Bend of the Rosebud, sec. 21 and 22, T. 7 S., R. 39 E., where it is 30 feet thick. It thins northeastward to 8 feet as in drill hole SH-

41 in sec. 26, T. 6 S., R. 39 E. In drill hole SH-736, the Anderson coal bed has a thickness of 26 feet, and a lower bench 4 feet thick lies 3 feet below the thick end. The combined Dietz No. 1 and No. 2 is only 10 feet below the base of the lower bench of the Anderson coal bed in this area. The Anderson and Dietz beds split northward, as shown on the cross section SC-K, Plate 33.

The Dietz No. 1 and No. 2 beds are combined in the southwestern part of the mapped area and are almost 50 feet thick, but they thin and split northeastward. In the north part of the area (Pl. 5B), only the reserves in the Dietz No. 1 bed are included, although the Dietz No. 2 bed may contain additional reserves.

Because the Canyon coal bed crops out on the steep sides of Rosebud Creek valley, it does not contain nearly as large strippable reserves as the Anderson or the Dietz coal beds. The thickness trend exhibited by the Anderson and Dietz No. 1 and No. 2 coal beds is not followed by the Canyon coal bed. It is thickest in the northernmost part of the area, as in drill hole SH-36 in sec. 16, T. 6 S., R. 39 E., where it is 25 feet thick. It thins southward and is 16 feet thick in sec. 9, T. 7 S., R. 39 E.

The Wall coal bed is below the floor and along the sides of Rosebud Creek valley and along the floor of several tributary valleys in T. 6 S., R. 39 E. Steep-sided clinker-capped ridges along Rosebud Creek preclude stripping of the Wall coal bed in any very large areas. The coal bed is as much as 54 feet thick in the Kirby deposit, and the thickness averages nearly 50 feet in a large area extending into T. 7 S., R. 39 and 40 E. Farther east in drill hole SH-50 in sec. 1, T. 7 S., R. 40 E., the Wall bed is 60 feet thick.

COAL QUALITY

Samples of the Anderson, Dietz No. 1, Dietz No. 2, and Canyon coal beds were obtained for analysis. Analytical results are shown in Tables 14 and 15.

COAL RESERVES

Strippable coal reserves in the Kirby coal deposit have been mapped in the Anderson, combined Dietz No. 1 and No. 2, Canyon, and Wall coal beds. Indicated reserves for these coal beds are shown on Table 13.

Total reserves are: Anderson coal bed, 216,520,000 tons; Dietz No. 1 and No. 2 beds, 834,350,000 tons; Canyon bed, 158,530,000 tons; Wall coal bed, 473,690,000 tons. The total strippable reserves are 1,683,090,000 tons.

Table 14.-Proximate analysis, forms of sulfur, and heating value, Kirby coal deposit.

;	Heating value (Btu)	7277	11664 8275 11543	12393 8308 11834 17387	8383 11680 12879	9113	13096 8446 11693	12281 8808 10534 12089	8391 11500	12185 8637 11601	12275 8491 11573 12219	7708	11999 8422 11637	12169 8864 11378 12052	7467 9826 10441	8074 11194 12020
	Organic	.514 .729	.287 287 287 287	2.213 2.119 2.119 2.11	210 293 323	.146			243	255 1193 193 193	202 4444 2444 2414	389	4143 483 483	202 245 349 370	1.226 1.614 1.715	.223 .310 .333
Form of sulfur, %	Pyritic	.102	1.00.00 0.00.00 0.00.00	0.00.00 0.354 4.450	.067 .094 .103	.052	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000 075 0089 102	.042		0.00.00. 0.00.00. 0.00.00.	.078 1114	.005 2582 2582	0.00.00 0.00.00 0.00.00 0.00.00 0.00.00 0.00.0	.772 1.016 1.079	.058 .080 .086
Form o	Sulfate	.091 1091	.0.0.0 .0.03 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003	\$0000 \$0000 \$00000	0.00 000 000	.026	00000 74884	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	042	0.00 0.023 0.023	0572 060 060 060	.023 450 750		0000 012 012 0000 012 012	.377 .497 .528	.033 .046 .049
	Sulfur	.650 .922 .043		2551 2551 775 74	277 387 426	307	300 300 315 315	335 335 385 384 384 384	.359	282 285 285 285	583 589 621	368		26.44. 226. 44. 24. 26. 44.	2.375 3.126 3.322	.314 .436 .468
	Ash	8.116	4.914 6.855	3.132	6.684	3.243 4.453	3.455	10.754 12.863	4.100	4.084 5.486	3.878 5.286	4.186	3.162	4.360 5.596	4.477 5.891	4.957 6.872
nate, %	carbon	35.636 50.541 57.115	38.096 53.140	39.066 55.649 58.248	35.313 49.203 54.257	42.690 58.616	37.345 51.703 54.301	42.271 50.558 58.021	39.587	54.405 54.405 57.553	38.558 52.552 55.4852 85	35.271 51.544 54.902	37.938 52.422 54.837	40.056 51.414 54.461	45.434 59.790 63.533	35.320 48.967 52.581
Proximate, Volatile	matter	26.757 37.948 42.885	28.679 40.005 47.949	28.002 39.889 41.752	29.772 41.483 45.743	26.897 36.932 38.533	31.430 43.513 45.699	30.584 36.580 41.979	29.274 40.123 47.513	29.861 40.109 42.437	30.934 42.162 44.515	28.973 42.339 45.098	31.270 43.209 45.183	33.494 42.990 45.539	26.079 34.319 36.467	31.853 44.160 47.419
	Moisture	29.490	28.310	29.800	28.230	27.170	27.770	16.390	27.040	25.550	26.630	31.570	27.630	22.090	24.010	27.870
Form of 1	analysis 1/	₹¤∪	- 4 ¤U	CBA	CBA	₹¤∪	CBA	⊄ m∪	⊄ ¤∪	o∢a∪	CBA	V M O	∙∢¤∪	CBA	CBA	CBA
Coal	peq	Anderson	Dietz		Dietz	Canyon			Anderson			Anderson			Dietz No. 1	Dietz No. 1
Lab.	number	83	84	82	87	77	78	79	80	82	81	88	101	102	108	109
Depth	sampled	35 to 45 ft.	96 to 106 ft.	106 to 112 ff.	89 to 99 ft.	104 to 113 ft.	113 to 123 ft.	123 to 130 ft.	40 to 49 ft.	49 to 58 ft.	58½ to 60 ft.	73 to 81 ft.	108 to 117 ff.	117 to 126 ft.	70 to 74 ft.	92 to 100 ft.
Drill hole	and location	SH-31 7S 40E S8 ACAD			SH-35 6S 39E S14 BBCA	SH-36 6S 39E S16 BADC			SH-37 7S 39E S24 BBCB			SH-38 7S 39E S11 DACD			SH-39 7S 39E S10 ADBB	SH-41 6S 39E S26 CADD

ŗ

Anderson Anderson Dietz No. 1 Dietz No. 1 Dietz No. 1	Anderson A Anderson A Dietz No. 1 B Dietz No. 1 B Dietz No. 1 B Dietz No. 1 A Dietz No. 1 A Dietz No. 1 B B B C C Dietz No. 1 B B B C C C C C C C C C C C C C C C C C	Son No. 1 No. 1 No. 1	No. No. No. No. Sison No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Son A 27.200 B B 28.400 B C 25.910 B C 25.910 C C 27.370 C C 24.910 C C 27.150 C C 27.150 C C 27.150 C C C 27.150 C C C C C C C C C C C C C C C C C C C	Son A 27.200 30.133 B 28.400 44.1392 C 28.400 44.1392 B 28.400 42.193 Son B 22.370 44.215 No. 1 B 22.370 42.293 No. 1 B 27.930 42.293 No. 1 A 26.20 30.994 No. 1 A 26.20 22.040 B 31.140 28.726 A 26.220 29.110 B 32.446 A 31.140 28.726 A 31.140 28.726 A 43.996 A 44.996 A 43.996 A 43.996 A 48.840 A 48.840 A 48.840 A 48.816	Son B 27.200 30.133 38.411 B 28.400 30.133 38.411 C 28.400 30.133 38.130 B 28.5795 53.795 C 28.400 30.133 38.130 B 28.790 38.1305 53.755 C 28.400 30.133 38.257 A 28.700 31.798 53.795 No. 1 B 27.370 43.406 45.006 No. 1 A 27.930 40.246 C 22.040 32.262 C 22.040 30.994 36.682 No. 1 A 26.220 30.994 36.682 No. 1 A 26.220 30.994 36.682 C 27.150 30.994 36.682 A 31.140 28.776 C 27.150 30.994 36.682 A 31.295 A 31.305 30.994 36.682 A 36.899 C 27.150 30.994 36.681 B 39.455 C 27.150 30.994 36.681 B 39.455 C 27.150 30.994 36.681 B 39.456 C 27.150 30.994 30.994 A 36.899 A 37.996 B 37.790 31.196 A 41.988 B 28.720 30.994 36.681 A 41.988 B 39.430 39.603 A 41.986 B 39.377 A 41.786 A 48.516 A 48.516 A 48.516 A 48.516 A 48.516 A 48.516	72 to 82 ft. 131 82 to 90 ft. 132 97 ft. 133	35 to 43 ff. 143 90 to 144 152 to 145 162 ff. 145 172 ff. 146	111 to 120 ft. 481 120 to 482	98 to 174 107 ft. 174 106 ft. 175 126 ft. 176 139 ft. 178 139 to 178 146 ft. 178
	女母し女母し女母し女母し女母し女母し女母し女母し女母し女母し女母し		27.200 28.400 25.910 21.500 24.910 22.040 27.930 31.140 26.220 26.220 28.720 28.430 25.340	27.200 30.133 28.400 441.392 28.400 421.193 25.910 31.270 22.370 42.193 24.910 42.351 24.910 42.351 24.910 42.240 22.040 42.240 22.040 42.240 31.140 42.271 22.040 42.271 22.040 43.005 31.140 43.005 31.140 43.005 31.140 43.005 31.150 43.005 31.150 43.005 43.816 43.816 43.816 43.816 43.816 43.816 43.905 28.730 44.055 28.730 44.055 28.730 44.055 28.730 44.055 28.730 44.055 28.730 44.055 39.605 28.730 44.055 47.057	27.200 30.133 38.411 28.400 42.193 52.763 25.910 42.193 53.255 25.910 42.193 53.255 25.910 42.193 53.255 22.370 31.351 51.653 22.370 43.032 54.948 21.500 42.203 54.948 22.040 42.271 57.725 22.040 42.271 57.725 27.930 49.2262 54.968 27.930 30.994 36.682 26.220 29.11796 56.538 27.150 41.796 56.538 27.150 41.796 56.538 27.150 41.796 56.184 26.220 29.1179 57.295 27.150 41.796 56.184 26.220 29.1179 56.184 26.220 29.1179 56.184 26.220 29.1179 56.1184 26.220 29.1188 35.1184 27.1189 31.1188 31.1188 11.1188	27.200 30.133 38.411 4.255 28.400 42.193 52.763 5.845 28.400 42.193 53.255 4.553 44.205 53.795 4.553 25.910 44.205 53.795 4.553 42.351 51.553 5.996 42.351 51.563 5.996 42.351 54.948 4.443 21.500 42.304 40.324 4.384 42.304 42.306 54.944 4.384 42.506 42.546 41.784 43.882 42.507 42.271 54.946 41.384 42.506 42.546 41.384 43.668 42.507 41.366 55.184 4.784 43.005 56.538 4.784 45.796 56.538 4.784 45.707 45.709 56.538 47.140 45.706 56.538 45.707 45.709 31.84 47.027 44.443 16.102 26.220 29.456 56.538 27.20 44.	Anderson	Anderson Dietz No. 1 Dietz No. 2	N	N
30.133 41.392 42.1392 30.133 42.1392 30.210 42.1392 30.210 42.1393 31.2105	38.130 38.130	5.8455 5.8455 5.8455 4.555 6.098	200 200 <td></td> <td>000000000 000000000000 000000 00000000</td> <td></td> <td>00000000000 488800000000000000000000000</td> <td>00000000000000 266400000000000 7864400000000000000000000000000000000000</td> <td>.053 .053 .059 .090</td> <td>1.822 1.1115 1.0359 1.035 1.035 1.035 1.035 1.125 1.135 1.167 1.167 1.167 1.167</td>		000000000 000000000000 000000 00000000		00000000000 488800000000000000000000000	00000000000000 266400000000000 7864400000000000000000000000000000000000	.053 .053 .059 .090	1.822 1.1115 1.0359 1.035 1.035 1.035 1.035 1.125 1.135 1.167 1.167 1.167 1.167
30.133 38.411 4.255 41.392 52.763 5.845 30.133 52.763 5.845 42.193 58.038 3.260 42.193 58.138 3.260 42.193 58.138 3.260 42.193 58.1355 4.553 42.193 3.260 3.326 42.342 4.583 3.260 45.052 4.443 3.386 45.052 4.444 3.384 45.052 4.594 4.444 45.052 4.0821 4.024 45.052 4.0824 4.384 45.056 4.444 3.384 45.056 4.444 3.384 45.056 4.444 3.382 45.056 4.444 3.382 45.06 4.443 3.882 46.24 4.566 4.569 47.02 4.566 4.569 47.02 4.668 4.668 47.02 4.668 4.624 47.02 4.668 4.624 48.36 <t< td=""><td>38.411 5.2.7633 5.2.7633 5.2.7653 5.2.7555 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1266</td><td>5.8455 5.8455 5.8455 5.8455 3.260 4.553 3.260 4.443 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.998 5.996 5.998</td><td>22. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.</td><td>000000000 00000000000 0000000 00000000</td><td>निर्मा १ वर्ष</td><td>0.00.00.00.00.00.00.00.00.00.00.00.00.0</td><td><i>divididi</i>244 600000000000000000000000000000000000</td><td>12211221122 2021221122 2021221122 2021221122 202122 202122 202122 202122 202122 202122 20212 202</td><td>1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0</td><td>6.85.25.65.65.65.65.65.65.65.65.65.65.65.65.65</td></t<>	38.411 5.2.7633 5.2.7633 5.2.7653 5.2.7555 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1265 5.3.1266	5.8455 5.8455 5.8455 5.8455 3.260 4.553 3.260 4.443 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.284 5.996 5.998 5.996 5.998	22. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	000000000 00000000000 0000000 00000000	निर्मा १ वर्ष	0.00.00.00.00.00.00.00.00.00.00.00.00.0	<i>divididi</i> 244 600000000000000000000000000000000000	12211221122 2021221122 2021221122 2021221122 202122 202122 202122 202122 202122 202122 20212 202	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	6.85.25.65.65.65.65.65.65.65.65.65.65.65.65.65
30.133 38.411 4.255 2.73 0.01 41.392 38.136 5.845 3.75 0.02 0.03 42.193 38.130 3.260 2.29 0.00 0.045 44.193 38.130 4.553 3.260 0.00 0.055 44.106 38.130 4.553 3.36 0.00 0.055 45.051 5.1653 5.96 0.00 0.055 45.052 5.245 4.443 3.89 0.01 0.02 45.052 5.2584 4.384 0.02 0.00 0.058 45.066 5.2584 4.384 0.02 0.01 0.03 45.066 5.2584 4.384 0.02 0.03 0.03 45.066 5.2584 4.384 0.03 0.03 0.03 42.271 5.2786 0.01 0.03 0.03 0.03 42.271 5.278 2.06 0.00 0.03 0.03 42.271 5.278 2.08 0.01 0.03 0.03 0.03 42.271 <t< td=""><td>38.411 5.845 2.73 016 0223 033 38.105 0223 033 38.105 0223 033 38.105 023 035 035 035 035 035 035 035 035 035 03</td><td>4.255 3.75 3.75 3.016 0.023 0.035 4.553 3.260 2.298 0.000 0.045 0.035 4.444 3.836 0.000 0.058 0.058 4.444 3.836 0.000 0.058 5.996 5.24 0.018 0.058 5.996 5.28 0.024 0.058 3.403 2.209 0.018 0.027 4.384 2.281 0.024 0.034 4.395 2.281 0.024 0.034 5.098 2.281 0.024 0.034 4.395 2.246 0.017 0.053 4.395 2.246 0.015 0.053 4.395 2.246 0.015 0.053 5.77 0.021 0.090 11.880 1.520 0.021 0.053 16.102 2.056 0.067 0.053 11.058 3.37 0.024 0.084 11.058 3.37 0.024 0.084 11.058 5.56 0.025 0.026 <!--</td--><td>2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.</td><td>0.000000000000000000000000000000000000</td><td>6000000000 000000000000 0000000 81111 4220400000000 000000000000 0000000 811201100000111814 422040000000000000000000 0000000 8112011000000111814 4220400000000000000000000000000000000</td><td></td><td>8426 125574 125574 12557 12557 12557 12557 12557 12509</td><td>8493 109403 114411 1216508 121619 11819 118311 119311 12330</td><td>8552 11867 12637 8226 11946 12525</td><td>0801 0802</td></td></t<>	38.411 5.845 2.73 016 0223 033 38.105 0223 033 38.105 0223 033 38.105 023 035 035 035 035 035 035 035 035 035 03	4.255 3.75 3.75 3.016 0.023 0.035 4.553 3.260 2.298 0.000 0.045 0.035 4.444 3.836 0.000 0.058 0.058 4.444 3.836 0.000 0.058 5.996 5.24 0.018 0.058 5.996 5.28 0.024 0.058 3.403 2.209 0.018 0.027 4.384 2.281 0.024 0.034 4.395 2.281 0.024 0.034 5.098 2.281 0.024 0.034 4.395 2.246 0.017 0.053 4.395 2.246 0.015 0.053 4.395 2.246 0.015 0.053 5.77 0.021 0.090 11.880 1.520 0.021 0.053 16.102 2.056 0.067 0.053 11.058 3.37 0.024 0.084 11.058 3.37 0.024 0.084 11.058 5.56 0.025 0.026 </td <td>2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.</td> <td>0.000000000000000000000000000000000000</td> <td>6000000000 000000000000 0000000 81111 4220400000000 000000000000 0000000 811201100000111814 422040000000000000000000 0000000 8112011000000111814 4220400000000000000000000000000000000</td> <td></td> <td>8426 125574 125574 12557 12557 12557 12557 12557 12509</td> <td>8493 109403 114411 1216508 121619 11819 118311 119311 12330</td> <td>8552 11867 12637 8226 11946 12525</td> <td>0801 0802</td>	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	0.000000000000000000000000000000000000	6000000000 000000000000 0000000 81111 4220400000000 000000000000 0000000 811201100000111814 422040000000000000000000 0000000 8112011000000111814 4220400000000000000000000000000000000		8426 125574 125574 12557 12557 12557 12557 12557 12509	8493 109403 114411 1216508 121619 11819 118311 119311 12330	8552 11867 12637 8226 11946 12525	0801 0802

¹/A, as received; B, moisture free; C, moisture and ash free.

Table 15.-Major ash constituents, Kirby coal deposit.

Drill hole	Denth	Le te	Coat					Const	Constituent, %					
and location	sampled	sample	peq	Al ₂ O ₃	CaO	Fe ₂ O ₃	K20	MgO	Na ₂ O	P_2O_5	SiO_2	SO3	TiO_2	Total
SH-31 7S 40E S8 ACAD	96 to 112 ft.	84-85	Dietz No. 1	9.6	35.4	3.5	ч	8.1	4;	<i>t</i> :	31.0	11.5	1.6	102.0
SH-35 6S 39E S14 BBCA	89 to 99 ft.	87	Dietz No. 1	16.1	14.5	4.0	∞ .	5.5	ω.	1.2	43.1	7.7	1.1	94.3
SH-36 6S 39E S16 BADC	104 to 130 ft.	61-11	Canyon	12.4	18.8	5.5	1.6	9.9	1.5	eg	40.3	6.6	.	5.76
SH-37 7S 39E S24 BBCB	40 to 60 ft.	80-82	Anderson	10.2	21.3	7.3	ω	5.3	7.6	4	33.6	13.3	1.0	100.3
SH-38 7S 39E S11 DACD	108 to 126 ft.	101-102	Anderson	14.8	8.1	4.	2.0	3.0	1.8	7	56.2	6.3	t.	97.5
SH-39 7S 39E S10 ADBB	70 to 74 ft.	108	Dietz No. 1	20.5	6.0	12.6	7	2.7	1.8	ui.	48.3	5.6	œί	99.3
SH-41 6S 39E S26 CADD	92 to 100 ft.	109	Dietz No. 1	11.2	19.6	6.6	w,	5.1	7.4	٨	23.9	13.0	7.	91.1
SH-56 7S 39E S18 DDCD	72 to 97 ft.	131-133	Anderson	10.6	23.3	4.7	e.	5.6	6.3	٠ ک	32.8	12.3	1.1	5.76
SH-107 7S 40E S30 BAAA	35 to 43 ft.	143	Anderson	17.8	25.0	3.2	6	8.5	4.0	1.5	19.2	15.6	έφ	95.9
	90 to 94 ff.	144	Dietz No. 1	12.2	18.5	3.3	4	3.9	8.7	بو.	35.9	0.6	1.0	93.3
	152 to 172 ft.	145-146	Dietz No. 2	17.6	23.4	2.6	ω <u>i</u>	7.2	1.5	εί	28.1	13.7	1.1	95.8
SH-7012 7S 40E S29 CDBC	98 to 146 ft.	174-178	Dietz No. 1	18.2	7.8	6.7	1.9	4.3	1.6	λi	47.3	9.5	1.1	98.9

Table 16.-Reserves, overburden, overburden ratio, acres, and tons/acre, Canyon Creek coal deposit.

WALL BED

Thickness of overburden, ft.		dicated reserves, million tons		Overburden, illion cu. yd.		urden rat yards/to	•	Acres		Tons/acre
0 to 50 50 to 100 100 to 150 150 to 200 200 to 250	Total	246.73 450.64 483.46 386.52 316.90 1,884.25	Total	204.44 741.88 1,273.54 1,209.72 1,212.71 4,642.29	Average	.82 1.64 2.63 3.12 <u>3.82</u> 2.46	Total	3,833.6 6,112.0 6,291.2 4,288.0 3,334.4 23,859.2	Average	64,359.9 73,730.4 76,849.5 90,139.9 95,039.6 78,974.3
				BREWSTER	-ARNOLE	BED				
0 to 50 50 to 100 100 to 150	Total	4.69 30.38 <u>30.79</u> 65.86	Total	7.84 115.39 194.85 318.08	Average	1.67 3.79 <u>6.32</u> 4.82	Total	147.2 953.6 966.4 2,067.2	Average	31,861.4 31,858.2 31,860.5 31,859.5

CANYON CREEK COAL DEPOSIT

LOCATION

The Canyon Creek coal deposit is in portions of T.5, 6, and 7 S., R. 40, 41, and 42 E., Big Horn and Rosebud Counties (Pl. 6). The area is limited on the east by the clinker of the Wall coal bed and by Tongue River, on the north by the boundary of the Northern Cheyenne Indian Reservation, and on the west by the increasing overburden on the Wall coal bed.

FIELD WORK AND MAP PREPARATION

The largest part of the field work in the Canyon Creek coal deposit was completed in 1969. Additional holes were drilled in 1970 along Fourmile Creek and Cook Creek. Coal outcrops, burn lines, clinkered areas, and faults were mapped in 1972 on aerial photos and 7½-minute topographic quadrangle maps.

PREVIOUS GEOLOGIC WORK

The Canyon Creek area was described in a U.S. Geological Survey report (Baker, 1929).

LAND OWNERSHIP

The Federal Government has large contiguous blocks of land within the area, and it is the largest single owner

of surface. Private ownership is next, followed by the State of Montana, which owns each sec. 16 and 36, and then by the Burlington Northern, Inc., which owns some alternate sections along Cook Creek in T. 5 S., R. 41 and 42 E.

The Federal Government also owns the largest share of the coal in the area, but the next largest owner is the State of Montana (all sec. 16 and 36), followed by Burlington Northern, Inc. Private individuals own small tracts along Cook Creek and along some other tributaries of the Tongue River.

SURFACE FEATURES AND LAND USE

The topography of the area ranges from rugged to rolling. The rugged areas are capped by clinker along the sides of the valleys of Tongue River and its tributaries. Rolling topography characterizes the divides at the heads of the numerous northwest-trending valleys. Ponderosa pine grows on the clinkered areas along the steep valley sides.

The principal land use in the area is livestock grazing. Although virtually none of the area is cultivated, some hay is raised in meadows along the valley of the Tongue River.

Table 17.-Proximate analysis, forms of sulfur, and heating value, Canyon Creek coal deposit.

:	Heating value (Btu)	9675 11634 12457	8868 11726 12312	8955 11788 12585	12194 12757	8545 11542 12663	8739 11809 12582	8892 11605 12588	8606 11746 12381	9045 12107 12681	8735 11727 12634	7637 10373 12511	9303 12161 13038	9480 12423 13083	9030 11773 12510	9316 12411 12876	8738 11695 12311	9043 12236 12960
	Organic	282 3339 3639 3639	.051 .067	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	921.1.5 1326.	.333 332	.731 .731	202 2642 8642	2043 2043 2043	1000 000 000 000 000 000 000 000 000 00	3228 328 328 328	9814 982 282	.078 .102 .109	11304 486 486	0.00 0.00 0.00 0.00	138 143	.085 .114 .120	3344 364 364
Form of sulfur, %	Pyritic	.145 .175 .187	0.056 0.056 0.596 0.596	500.00 67.00.00 67.00.00	0.050 0.057 0.060	.105 .115	.093 .126 .134	.060 080 780 780	0.057 10.057	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	163	.367 .443	.102	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.057 .060 .060	.051 .068 .072	0.00 0.00 0.00 0.00 0.00
Form	Sulfate	.045 .055 .058	00000 344 500000000000000000000000000000	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.00 200 8 8 8 8 8	1093 102	.076 .103 .110	.026 .034 037	0.00 0.03 0.34 0.36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.080 .082 .082	.318	.069 .091 .097	0.00 2.88 2.88 2.88	0.00 8.52 8.53 8.53	888 888	.017 .023 .024	.034 .046 .049
	Sulfur	.472 .568 .608	.119 .157 .165	120	207	500 549 549	.710 .960 1.023	378	294 310	208 208 208 208	14:25. 55.22 5.22 5.22	1.064 1.445 1.743	225 295 316	202 273 2873	.173 .226 .240	.195 203	.153 .205 .216	.356 .481 .510
	Ash	5.495	.59 .75	333	5.4. 7		4.549 6.148	5.982	3.756	3.382 4.527	5.347	12.584 17.091	5.142 6.721	3.849 5.044	5.888	2.710 3.610	3.742 5.008	4.133 5.592
ate %	rixed	43.378 52.163 55.853	40.068 52.979 55.626	54.595 58.285 58.285	55.171 57.718	58.613 52.159 57.227	40.716 55.022 58.627	38.991 50.888 55.198	39.347 53.701 56.603	41.567 55.638 58.776	53.889 58.056	32.693 44.402 53.556	41.592 54.369 58.287	41.536 54.431 57.322	41.098 53.583 56.935	40.426 53.858 55.875	40.728 54.507 57.381	41.727 56.457 59.801
Proxim	Volatile I	34.287 41.230 44.147	31.963 42.262 44.374	29.685 39.074 41.715	40.416 42.282	28.861 38.985 42.773	28.734 38.830 41.373	31.648 41.305 44.802	30.167 41.172 43.397	29.761 39.836 41.724	29.001 38.933 41.944	28.352 38.507 46.444	29.766 38.910 41.713	30.925 40.525 42.678	31.086 40.529 43.065	31.924 42.532 44.125	30.250 40.485 42.619	28.050 37.951 40.199
	Moisture	16.840	24.370	24.030	25.030	0/6:57	26.000	23.380	26.730	25.290	25.510	26.370	23.500	m d	23.300	24.940	25.280	26.090
ţ	rorm of 1/	√æ∪	4 ª∪-	¢щ∪∢	≮¤∪∙	¢α∪	CBA	₹¤U) ⊄ m∪) ∢ ¤∪	∙∢m∪	o Ra⊖	VMO.	⊄ m∪-	∢¤∪.	₹ ªO	₹¤U	CMA
	Coal	Wall	Wall					Wall					Wall					Wall
,	Lab. number	89	112	113	114	115	116	118	119	120	121	122	103	104	105	106	107	91
ş	Depth sampled	35 to 46 ft.	57 to 66 ft.	66 to 75 ft.	75 to 84 ft.	84 to 94 ft.	94 to 104 ft.	40 to 50 ft.	50 to 60 ft.	60 to	70 to 80 ft	80 to 89 ft.	40 to 50 ft.	50 to 59 ft.	59 to 65 ft.	65 to 74 ft.	74 to 79 ft.	200 to 209 ft.
	Drill hole and location	SH 42 2/ 7S 42E S9 ABDA	SH 45 68 41E S21 CDDA					SH46 6S 41E S16 CABC					SH 49 6S 40E S24 CCCA					SH-50 7S 40E S1 BDDD

92	218 to 227 ft. 93	227 to 236 ft. 94	236 to 245 ft. 95	245 to 254 ft. 96	254 to 260 ft. 97	150 to	: 2±	130 to		155 ft. 155	155 to 165 ft. 156	165 to 157	73 to 165				113 to 123 ft. 169
Wall						Wall		Wall					Wall				
∀ ₩₽	⊄ m∪•	¢¤∪•	¢m∪•	¢m∪•	CBA	ΦŒĆ	OBAC	∀ m∀	J∢m	DAC	ಶ∪∢	ce:	ΑMC	o≪¤∪	o∢¤∪	₹¤∪∙	d ao
26.640	24.800	24.400		009.57	26.400	22.360	20.220	21.520	19.940	26.160	75 990		23.390	24.660	24.490	23.310	73.600
27.980 38.141 39.981	39.471 43.026	50.671 51.342	46.365 48.846 546	38.370 42.608	26.345 39.325 41.460	000	33.868 42.452 45.366	30.227 38.516	42.931 31.891 39.833	42.834 29.526	39.986 41.737 28.990	39.171 42.059	29.799 38.897 41.013	23.325 30.960 33.142	29.455 39.008 41.063	30.831 40.203 42.010	29.179 38.193 40.652
42.004 57.257 60.019	52:265 56:974	45.972 48.658 500 500 500 500 500 500 500 500 500 5	50.000 48.556 51.154	51.683 57.392	55.524 58.540	40.991 52.797 57.052	40.788 51.125 54.634	0=1	57.069 42.562 53.162		റയത	(C)	α	$\sim \sim \sim$	$\sim \sim \sim$	42.559 55.495 57.990	45C CD
3.376	8.264	5.521	5.079	9.947	5.151	5.790 7.458	5.124 6.423	8.070 10.283	5.608 7.004	3.098	5.082	6.866	3.953 5.160	4.960 6.583	3.780 5.006	3.299 4.302 4.203	4.022 6.049
322 322 322 322	328 328 328 328	301 318 318	54.4.0 57.29 50.00	3.55 3.10 3.10 3.10	.606 639 639	.380 .489 .528	.189 .237 .254	1.115	167 208	.128 .128	.181 .181 .236	319	.578 .578 610	.313 335 335	261 346 364	3270 3270 341	.471 .502
.035 .034 .036	023	032 034 74 74	023	.036 .036 .036	.022 .023	.062 .080 .086	.018 .023 .024	.195 .248	.018 .022	.024 .017 .033	024	.046 .049	.017 .022 .023	.025 .034 .036	.025 .033 .035	.023 .023 .024	.022 .024 .024
.103 .107 .107	086. 094. 7.30.	.080 500 500 500 500 500 500 500 500 500	.079 079 080	1198	.097 .103	.114	.045 .057 .060	.513 .654	.044 .055	.039 034 046	0.048 0.048	.091 .098	.111	.076 .101 .108	.093 .123 .129	0 0 1 1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.135
171 171 179	.194 .211 .46	205 205 205 205	3376 396 104	155 155 258	.513	.229 .296 .319	.126 .158 .169	.407 .519 .578	132	.141 .077 104	109	.182 .196	.315 434 434	.135 .179 .191	.190 .200	.191 .200 .200	334 334 34
	7250	, <u>2</u> ,5		11541 12816 9062	123	115 124 124	9331 11696 12499	8725 11117 17392	1189	12081 2962	1263	118/	124	92 123 131	124 131	9724 12679 13249	131

 $1/A,\, as$ received; B, moisture free; C, moisture and ash free. 2/Not shown on map.

;	Heating value (Btu)	9316 12331 12969	8910 11988	12878 9206 12320	9153 9153 12177 12045	12544 13050	12538 12538	12376 12376	13054 9566 12904 13373	7979 10625	12751 8494 11580	12/35 8859 12100 12707	8006 11181	12345 7759 10897	11795 11795	12529 8719 11719 20174	8914 11446	47 70 86	12388 6958 9458 12382
	Organic	.338 .447 .470	.366 .366	25. 20. 20. 20. 20. 20.	1148 1197 100	11.11. 0.85. 0.65.	11:1: 22:2:	232. 200. 200.	25.00 811.00 811.45	392		.278 .298 .407		2125 2972 2972	5.53 4.04 4.04 4.04	.362 .753 1.013	.098	n coc	233 717 717 717
of sulfur. %	Pyritic	.068 .089 .094	0.064 490.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.00 8.44.00 8.44.00	0.03 0.043 0.043	0.00 2.00 2.00 2.00 5.00 5.00 5.00 5.00	0.00 244 224 244	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.145	230 033 148 148 148 148	0.00 0.40 0.43 0.43 0.43 0.43 0.43 0.43	.063 .088 .088	, 60 7, 60 7	0000 0000 0000 0000	2.213 2.975 5.122	.054 .069	0.050 0.051 0.050	2582 2882 2883 2883 404
Form	Sulfate	.017 .022 .024	0220		0000	666 666	999 988	900	9 9 9 9 9 9 9	017	0.016 0.022 0.022	0.00 0.023 0.023	.047 .066	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0000 0000 0000 0000 0000 0000 0000 0000 0000	.369 .369 .369	.036 046 050	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.058 0.079 104
	Sulfur	.422 .559 .588	.352 .474 509	.187 250 250 262	241 241 256	.173 .228 .237	195 202	365 465 465	;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	.737	291 291 724 724	2564.5 7884.2 7888	.909 .909	298 418 418		3.242 4.357 7.501	.188 241 741	2213 2883 1088 1088	.575 .782 1.024
	Ash	3.716	5.141 6.916	3.391 4.539		78.	2.533 3.433	3.756	2.603	12.525 16.678	6.649 9.065	3.496 4.775	6.747 9.424	3.745	4.075 5.855	31.184 41.914	6.090 7.819	3.086	17.371 23.615
ate, %	carbon	42.273 55.953 58.848	37.065 49.865 53.570	54.191 54.191 56.768	39.027 51.925 55.196	39.317 51.841 53.933	42.060 57.007 59.033	36.182 50.017 57.755	38.590 52.057 53.952	34.621 46.100	38.050 51.875 57.046	29.988 40.962 43.016	35.980 50.252 55.480	37.962 53.318 56.278	L/OP/C	22.197 29.834 51.362		42.669 57.708 60.221	U46
Proximate,	volatile matter	29.561 39.128 41.152	32.125 43.219 46.430	30.837 41.270 43.232	31.678 42.148 44.804	33.582 44.280 46.067	29.188 39.560 40.967	32.402 44.792 47.245	32.937 44.431 46.048	37.222	28.651 39.060 954	4.26 6.98 6.98	28.872 40.324 44.520	29.492 41.422 43.722	27.308 39.236 41.676	21.019 28.252 48.638	2.7	28.185 38.118 39.779	644 644
	Moisture	24.450	25.670	25.280	ب ب	24.160	26.220	27.660	25.870	24.900	26.650	26.790	28.400	28.800	30.400	25.600	22.120	26.060	26.440
Form of	analysis 1/	CBA	₹¤∪	∀ B∪	ABO.	⊄ ¤∪-	K MO	≪m∪	OBA	₹¤€	OMP	⋖a∪	V BD	OBA	K a0	CBA	⊄ m∪	Y¤O.	CBA
Coal	ped	Wall	Wall							Brewster- Arnold			Canyon				Canyon		
Lab	number	170	179	180	181	182	183	184	185	266	267	268	123	124	125	126	127	128	129
Depth	sampled	123 to 128 ft.	84 to 94 ft.	94 to 103 ft.	103 to 108 ft.	108 to 115 ft.	115 to 124 ft.	124 to 132 ft.	132 to 136 ft.	102 to	110 to 118 ft.	118 to 122 ft.	55 to 60 ft.	60 to 70 ft.	70 to 80 ft.	80 to 90 ft.	48 to 58 ft.	58 to 68 ft.	68 to 78 ft.
Drill hole	and location	SH-707 7S 41E S33 CCDC	SH-7013 7S 41E S21 CACC							SH-7057 5S 42E S28 DCDC			SH-47 6S 40E S3 ACBA				SH-48 6S 40E S16 AAAA		

 $^{1}/\mathrm{A}$, as received; B, moisture free; C, moisture and ash free.

Table 18.-Major ash constituents, Canyon Creek coal deposit.

Drill hole	Depth	Lab.	Coal						Constituent, %	ıt. %				
and location	sampled	sample	peq	Al_2O_3	CaO	Fe ₂ O ₃	K20	MgO	Na ₂ O	P205	SiO2	SO3	TiO ₂	Total
SH-42 7S 42E S9 ABDA	35 to 46 ft.	68	Wali	15.3	11.9	4.4	1.2	8.8	3.0	'n	40.2	10.6	οć	1.96
SH-45 6S 41E S21 CDDA	57 to 104 ft.	112-116	Wall	16.6	9.2	10.9	o :	3.4	2.0	ú	43.4	9.6	∞i	97.1
SH-46 6S 41E S16 CABC	40 to 89 ft.	118-122	Wall	12.3	16.1	4.6	ωį	4.3	5.7	7	40.5	12.2	1.0	97.2
SH-49 6S 40E S24 CCCA	40 to 79 ft.	103-107	Wall	15.0	18.0	4.0	ωį	10.0	1.3	κi	33.5	10.1	∞i	93.5
SH-50 7S 40E S1 BDDD	200 to 260 ft.	91-97	Wail	17.6	14.0	3.7	4.	2.2	12.7	ε.	32.8	12.7	∞.	97.2
SH-110 SS 41E S33 CBBB	150 to 163 ft.	147-148	Wall	13.7	18.4	6.9	5	9.9	2.1	9.	37.0	13.6	formed formed	98.2
SH-121 6S 40E S12 AADD	130 to 173 ft.	154-157	Wall	13.8	10.8	8.9	۲.	6.1	1.0	-:	44.1	13.6	∞i	97.8
SH-707 7S 41E S33 CCDC	73 to 128 ft.	165-170	Wall	15.2	15.8	4.4	ιί	6.1	3.4	9.	38.5	13.4	1.1	98.8
SH-7013 7S 41E S21 CACC	84 to 136 ft.	179-185	Wall	15.9	15.1	4.5	λi	2.1	12.6	9.	35.3	13.0	6;	100.5
SH-7057 5S 42E S28 DCDC	102 to 122 ft.	266-268	Brewster- Arnold	24.9	7.4	2.9	4.	2.0	5.9	∞.	44.0	6.7	1.0	0.96
SH-47 6S 40E S3 ACBA	55 to 90 ft.	123-126	Canyon	12.3	18.5	4.6	λί	5.2	6.9	9:	29.1	14.0	οó	92.5
SH-48 6S 40E S16 AAAA	48 to 78 ft.	127-129	Canyon	12.8	18.6	3.9	,Ċ	5.9	3.0	terrori e ferrori	33.9	16.0	9.	96.3

GEOLOGIC STRUCTURE

The strata dip gently to the southeast 40 to 80 feet per mile. Numerous reversals are associated with faulting in the southern part of T. 6 S., R. 41 E., and the northern part of T. 7 S., R. 41 E., where dips are as much as three degrees next to the fault traces. These faults are easily discernible on aerial photos in the areas where they are shown on Plate 6 as solid lines.

COAL BEDS

The principal coal beds in the Canyon Creek coal deposits are the Canyon, Wall, and Brewster-Arnold beds. The Canyon bed is 200 to 250 feet above the Wall bed where drilled near Prairie Dog Creek and the north fork of Canyon Creek. Drill hole SH-47, sec. 3, and SH-48, sec. 16, T. 6 S., R. 40 E., penetrated thicknesses of 28 and 29 feet, respectively. Strippable reserves are not shown for the Canyon bed, however, because it could be strip mined only in the narrow valley bottom along Prairie Dog Creek and some of the forks of Canyon Creek. The steep slopes along the sides of the narrow valleys restrict the strippable areas because of the excessive overburden.

The Wall coal bed has been drilled throughout the area. Its thickness ranges from 32 feet in drill hole SH-110, sec. 33, T. 5 S., R. 41 E., in the northern part of the area to 60 feet in drill holes SH-50, sec. 1, T. 7 S., R. 40 E., and SH-49, sec. 24, T. 6 S., R. 40 E. Even though the Wall coal bed is thinnest in the northern part of the area, strippable coal is outlined along Cook Creek in T. 5 S., R. 41 and 42 E.

The Brewster-Arnold coal bed is 18 feet thick and forms two benches, which are separated by a parting 2 feet thick, as shown in drill hole SH-7057, sec. 28, T. 5 S., R. 42 E. This corresponds well with the measured thicknesses of the Brewster-Arnold coal bed in the Birney coal field (Pl. 7).

COAL QUALITY

Core samples were obtained from the Canyon, Wall, and Brewster-Arnold coal beds. Analytical results on these core samples are shown in Tables 17 and 18.

COAL RESERVES

Strippable reserves in the Wall and Brewster-Arnold coal beds total 1,950,110,000 tons. The Wall bed accounts for 1,884,250,000 tons and the Brewster-Arnold bed for 65,860,000 tons (Table 16).

BIRNEY COAL DEPOSIT

LOCATION

The Birney coal deposit (Pl. 7) is in T. 6 and 7 S., R. 41 and 42 E., Rosebud County. The deposit occupies the valleys of Tongue River and its tributaries. Its western part is overlapped by the Canyon Creek deposit (Pl. 6).

FIELD WORK AND MAP PREPARATION

The drilling program in the Birney area was completed in 1969. In 1972 the area was mapped on 7½-minute topographic maps and black-and-white aerial photos.

PREVIOUS GEOLOGIC WORK

This deposit was described in the U.S. Geological Survey report on the northern extension of the Sheridan coal field (Baker, 1929). Ayler, Smith, and Deutman (1969) included it in their report on the strippable coal in Montana.

LAND OWNERSHIP

Most of the surface in the Birney coal field is privately owned with the exception of sec. 16 and 36 in each town-

Table 19.- Reserves, overburden, overburden ratio, acres, and tons/acre, Birney coal deposit.

BREWSTER-ARNOLD BED

Thickness of overburden, ft.		dicated reserves, million tons		verburden, ion cu. yd.		ourden ra c yards/t	,	Acres		Tons/acre
0 to 50		50.52		105.63		2.09		1,977.6		25,546.1
50 to 100		58.41		289.63		4.95		2,387.2		24,467.9
100 to 150		71.62		525.33		7.33		2,604.8		27,495.4
	Total	180.55	Total	920.59	Average	5.09	Total	6,969.6	Average	25,905.4

Table 20.-Proximate analysis, forms of suffur, and heating value, Birney coal deposit.

						Proximate, %	ite. %			Form of suffur. %	suffur. %		
Drill hole	Depth	Lab.	Coar	Form of		Volatile	Fixed						Heating
and location	sampled	number	peq	analysis 1/	Moisture	matter	carbon	Ash	Sulfur	Sulfate	Pyritic	Organic	value (Btu)
;													
NH43	į		Brewster-	∢	24.980	29.494	40.938	4.588	.241	.034	.112	.095	8786
65 42E 532	54 to	ļ	Arnold	æ		39.315	54.569	6.115	.321	.046	.149	.126	11711
ABBD	64 II.	<u>6</u> 5		o O		41.876	58.124		.342	.049	.159	.134	12474
SH-44	;		Brewster-	. ♥	24.400	29.574	41.492	4.534	.347	.025	.033	.289	9191
65 42E 531	70 to	1	Arnold	A		39.120	54.883	5.997	.459	.033	0.44	382	12158
DECE	75 ft.	110		ပ		41.615	58.385		48 8	.035	.046	.407	12933
	į			∀	23.600	33.550	39.722	3.128	.708	.034	.067	.607	9389
	25 60			æ		43.913	51.992	4.094	.927	.044	.088	795	12289
	83 ff.	_		ပ	٠	45.788	54.212		196	.046	.092	.829	12814
SH-114 ² /			Brewster-	*	19.500	31.676	40.558	8 266	367	810	Ç.	200	
6S 43E S20	90 to		Arnold	ജ		39.350	50.382	10.268	456	023	137	707	341/
BDAB	94 ft.	149		ပ		43.853	56.147		509	.025	153	331	13036
				4	21.150	29.757	44.191	4.902	.236	.027	.072	136	7987
	94 to	1		m		37.738	56.045	6.217	.299	.034	.092	.172	10130
	99 II.	120		บ		40.240	29.760		.319	.037	860.	.184	10801
SH-116	;		Brewster-	₩	18.290	31.328	43.697	6.684	.292	.028	.075	189	9346
6S 42E S27	60 to		Arnold	В		38.341	53.479	8.180	.358	.035	.092	.231	11438
CBCA	66 11.	151		Ü		41.757	58.243		390	.038	.101	.251	12457
				¥	22.760	30.726	42.545	3.969	.725	.071	141	.513	9274
	56 to	1		щ		39.780	55.081	5.138	.938	.092	.183	.664	12007
	74 ft.	152		Ç		41.935	58.065		686	.097	.193	.700	12658

 $^{1}/A$, as received; B, moisture free; C, moisture and ash free.

 $^{^2/}$ Not shown on map.

Table 21.-Major ash constituents, Birney coal deposit.

Drill hole	Denth	I ah	Coal					ರ	Constituent, %	%				
and location	sampled	sample	peq	Al ₂ O ₃ CaO	CaO	Fe ₂ O ₃ K ₂ O	K20	MgO	Na ₂ O	P205	SiO ₂	SO ₃ TiO ₂	TiO_2	Total
SH43 6S 42E S32 ABBD	54 to 64 ft.	66	Brewster- Arnold	20.6	11.0	5.5	9.	4.6	7.3	1.0	35.8	formi formi	۲.	97.0
SH44 6S 42E S31 DBCB	70 to 83 ft.	110-111	Brewster- Arnold	16.4	16.4	5.5	ιċ	10.9	4.5	9.	28.3	18.9	۲.	102.5
SH-114 6S 43E S20 BDAB	90 to 99 ft.	149-150	Brewster- Arnold	18.6		3.3	£.	3.3	10.9	4.	33.7	7.9	ڼ	92.1
SH-116 6S 42E S27 CBCA	60 to 74 ft.	151-152	Brewster- Arnold	17.9	13.8	4.0	ιί	8. 4.	2.5	∞.	33.2	5.3	1.0	97.2

ship, which are owned by the State of Montana. The Federal Government owns some of the surface a short distance west of the main valley of the Tongue River. Some coal in the valley bottom along Tongue River and its tributaries is privately owned, and the State of Montana has the coal rights on its land, but the Federal Government owns the rest, which is the largest share of the coal.

SURFACE FEATURES AND LAND USE

The Tongue River flows through the area in a northeasterly direction and has cut a deep valley bordered by clinker-topped ridges and knobs. Steep and rugged valley sides border a narrow flood plain. The northwest-trending tributaries east of the Tongue River are relatively short and steep; the southeast-trending tributaries west of the river are longer. Ponderosa pine trees grow on the steep sides of the tributary valleys and on large clinkered areas.

The principal land use in the area is livestock grazing. Hay is raised in meadows along the flood plain of the Tongue River.

GEOLOGIC STRUCTURE

The strata dip gently to the southeast. In drill hole SH-33, sec. 12, T. 6 S., R. 41 E., the Brewster-Arnold coal bed is 105 feet higher than in drill hole SH-43, sec. 32, T. 6 S., R. 42 E.

COAL BEDS

The Brewster-Arnold coal bed contains strippable reserves in the Birney area. Where the bed is exposed above river level, it has burned along its outcrop in the northern

part of the area. The Wall coal bed, which is about 275 feet higher, has burned along the Tongue River and its clinker caps the buttes and ridges. The Brewster-Arnold coal bed is 20 feet thick in drill hole SH-43, sec. 32, T. 6 S., R. 42 E. The bed thins westward and develops a parting, which thickens westward. A gamma log in SE¼ sec. 24, T. 6 S., R. 41 E., shows that the Brewster-Arnold coal bed there forms two benches; the upper 10 feet thick and the lower 6 feet thick, separated by a 2-foot parting. This parting thickens westward and is 10 feet thick in the NW¼ sec. 21, T. 6 S., R. 41 E., as shown by a gamma log of an oil well. On this log, the upper bench is 11 feet thick and the lower, 6 feet.

COAL QUALITY

An earlier U.S. Bureau of Mines analysis of a sample from the abandoned Brewster-Arnold mine, sec. 23, T. 6 S., R. 42 E., agrees closely with our later analysis, which reports moisture on the "as received" basis as 27.3%, volatile matter 28.9%, fixed carbon 39.2%, ash 4.6%, sulfur 0.6%, and heating value 8,850 Btu.

Seven core samples obtained from the Brewster-Arnold coal bed during the current project were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, sulfur forms, and calorific value are shown in Table 20, and major ash constituents are shown in Table 21.

COAL RESERVES

Strippable coal reserves in the Brewster-Arnold coal bed total 180,550,000 tons (Table 19).

Table 22.-Reserves, overburden, overburden ratio, acres, and tons/acre, Poker Jim Lookout coal deposit.

ANDERSON and DIETZ BEDS

Thickness of overburden, ft.		licated reserves, million tons	å	erburden and nterburden, illion cu. yd.		ourden rat c yards/to	•	Acres		Tons/acre
0 to 50		175.73		237.71		1.35		4,166.4		42,177.9
50 to 100		462.21		1,485,94		3.21		11,744.0		39,357.1
100 to 150		144.93		528.91		3.65		2,419.2		59,908.2
150 to 200		89.78		377.29		4.20		1,280.0		70,140.6
	Total	872.65	Total	2,629.85	Average	3.01	Total	19,609.6	Average	44,501.2

POKER JIM LOOKOUT COAL DEPOSIT

LOCATION

The Poker Jim Lookout coal deposit (Pl. 8) in T. 6 and 7 S., R. 44 and 45 E., in Powder River and Rosebud Counties, is on a high divide between Otter Creek to the east and Hanging Woman Creek to the west. The area is within the boundary of the Custer National Forest and adjoins the Hanging Woman Creek coal deposit (Pl. 9A and B) to the south.

FIELD WORK AND MAP PREPARATION

Field work in the Poker Jim Lookout area, begun in 1969, included the drilling of four holes. One hole, drilled in 1970, penetrated lower coal beds in sec. 9, T. 7 S., R. 44 E. The geology was mapped with the help of color aerial photos borrowed from the Custer National Forest Service; overburden maps were prepared on 7½-minute topographic maps.

PREVIOUS GEOLOGIC WORK

The northern part of the Poker Jim Lookout coal deposit was included in the U.S. Geological Survey report on the Birney-Broadus coal field (Warren, 1959). The southern part was included in a U.S. Geological Survey open-file report on the Moorhead coal field (Bryson and Bass, 1966).

LAND OWNERSHIP

The Poker Jim Lookout coal deposit lies within the Custer National Forest.

SURFACE FEATURES AND LAND USE

The Poker Jim Lookout deposit is on the divide between Otter Creek and the East Fork of Hanging Woman Creek, an intermittent tributary of the Tongue River. The top of the divide is smooth, rolling, and covered with native grasses, but the edges are steep and rugged where thick clinker occurs. The clinkered areas and the valley sides support lush growths of ponderosa pine and other trees.

The principal land use is livestock grazing. Many nearby ranchers have grazing permits on Forest Service land.

GEOLOGIC STRUCTURE

The strata in the Poker Jim Lookout coal deposit dip to the south at 40 feet per mile.

COAL BEDS

Beds of economic importance in the Poker Jim Lookout deposit are the Anderson and Dietz coal beds, which converge in T. 6 S., R. 44 E., to form a coal bed 58 feet thick, as shown in drill hole SH-8, in sec. 9, T. 6 S., R. 44 E. In drill hole SH-7, in sec. 24, the two beds are separated by a parting of 17 feet and have a combined thickness of 59 feet. The parting thickens southward, and in sec. 36 it is 40 feet thick according to a gamma log. In SH-7, the Dietz coal bed is 25 feet thick, but it thins southward to 14 feet, as shown in the gamma log. Thickness of the Anderson bed is almost uniform, being 34 feet in SH-7 and 31 feet in SH-5 and SH-6.

COAL QUALITY

Eleven core samples obtained during the field evaluation were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, sulfur forms, and heating value are shown in Table 23. Major ash constituents are shown in Table 24.

COAL RESERVES

Reserves in the Anderson and Dietz coal beds total 872,650,000 tons (Table 22).

Table 23.-Proximate analysis, forms of sulfur, and heating value, Poker Jim Lookout coal deposit.

	_			INDIV	DUAL D	EPUSIT	S-PU.	KER J	IM LOO	KOUT		
	Heating value (Btu)	8203 11321 12000	8374 11533 12225	7826 10721 12210	7770 11193 11924	7637	8007 8007 11672	7715	12040 7874 11131 11970	7862	8801 8801 12675	13400 7939 11487 12177
	Organic	.134	.261 .359 .381	.459 .629 .716	.063 .091 .097	.533	.323 .323 .44	.138 .202 .202	207 292 315	395	060. 086. 086.	.203 .294 .312
Form of sulfur, %	Pyritic	000	.017 .023 .025	.332 .454 .517	.016 .023 .024	.206 .302 341	.054 .078 .083	.069 .101 .101	.056 .079 .085	.250 .358 400	.082 .119	.070 .102 .108
Form of	Sulfate	.050 .069 .074	0.00 0.00 0.00	.085 .116 .133	.008 .011 .012	.023 .034 038	.023 .033 .033	.023 .034	.024 .034 .036	.015 .022 024	.022 .032 .032	.016 .023 .024
	Sulfur	.184 .254 .270	.278 .383 .406	.876 1.200 1.366	.087 .126 .134	761	.298 .435 463	337	.405 .436	.660 .943	.165 .237 .237	.444 .444
	Ash	4.103 5.663	4.109 5.659	8.902 12.194	4.253 6.127	7.773	4.160 6.065	3.957 5.816	4.958 7.009	7.332	3.761 5.416	3.912 5.660
ate, %	carbon	36.770 50.745 53.791	37.046 51.020 54.081	31.246 42.802 48.747	36.337 52.343 55.760	32.767 48.095 54.289	35.264 51.405 54.723	35.534 52.233 55.459	35.708 50.478 54.283	32.146 45.923 51.296	35.428 51.020 53.941	37.575 54.369 57.631
Proximate, %	Volatile matter	31.587 43.592 46.209	31.455 43.321 45.919	32.853 45.003 51.253	28.830 41.529 44.240	27.590 40.496 45.711	29.176 42.531 45.277	28.539 41.951 44.541	30.074 42.513 45.717	30.522 43.602 48.704	30.251 43.565 46.059	27.624 39.971 42.369
	Moisture	27.540	27.390	27.000	30.580	31.870	31.400	31.970	29.260	30.000	30.560	30.890
	analysis 1/	₹ æひ-	⊄m∪	CBA	CBA	CBA	V BD	∀ ₩∪	CBA	V BD	CBA	CBA
i eo	ped	Anderson		Anderson	Anderson	Anderson				Canyon		
- 48	number	16	17	18	59	09	61	62	63	213	214	215
Denth	sampled	94 to 104 ft.	104 to 109 ft.	163 to 172 ft.	186 to 196 ft.	105 to 115 ft.	115 to 123 ft.	123 to 131 ft.	131 to 141 ft.	33 to 43 ft.	43 to 53 ft.	53 to 63 ft.
Drill hole	and location	SH-5 7S R44E S13 ADBA		SH-6 7S R44E S11 ABBB	SH-7 6S R44E S24 BDCB	SH-8 6S R44E S9 ACCC				SH-7038 7S R44E S9 DCBC		

 $^{1}/\mathrm{A}$, as received; B, moisture free; C, moisture and ash free.

Table 24.-Major ask constituents, Poker Jim Lookout coal deposit.

	Total	99.1	6.96	91.7	97.4	98.8
	TiO ₂	1.0	9.	<i>r</i> .	1.0	r.
	SO ₃	10.8	16.4	4.8	17.2	14.6
	SiO ₂	24.1	35.3	28.3	28.0	31.7
nt, %	P2O5	Λί	4,	5	œί	ω.
Constituent, %	Na ₂ O	11.9	6.7	12.0	3.6	2.6
	MgO	6.7	3.4	4 4.	6.9	10.0
	K20	κi	1.3	αċ	9.	۲.
	Fe ₂ O ₃	4.5	9.0	5.4	4.2	5.8
	CaO	26.2	9.6	18.7	19.5	18.5
	Al ₂ O ₃	13.1	14.2	12.8	15.6	13.9
100	bed.	Anderson	Anderson	Anderson	Anderson	Canyon
1	Sample number	16-17	18	29	60-63	213-215
5	Deptn sampled	94 to 109 ft.	163 to 172 ft.	186 to 196 ft.	105 to 141 ft.	33 to 63 ft.
•	Drill hole and location	SH-5 7S 44E S13 ADBA	SH-6 7S 44E S11 ABBB	SH-7 6S 44E S24 BDCB	SH-8 6S 44E S9 ACCC	SH-7038 7S 44E S9 DCBC

Table 25.-Reserves, overburden, overburden ratio, acres, and tons/acre, Hanging Woman Creek coal deposit.

ANDERSON and DIETZ BEDS

Thickness of overburden, ft		ndicated reserves, million tons		Overburden, illion cu. yd.		urden rat yards/to		Acres		Tons/acre
0 to 50 50 to 100 100 to 150	Total	599.87 1,420.92 <u>683.46</u> 2,704.25	Total	370.81 5,260.47 <u>2,672.48</u> 8,303.76	Average	0.61 3.70 <u>3.91</u> 3.07	Total	17,593.6 43,404.8 <u>13,203.2</u> 74,201.6	Average	34,095.9 32,736.5 51,764.7 36,444.6
				ANDE	RSON BED					
0 to 50 50 to 100 100 to 150	Total	296.95 602.88 683.46 1,583.29	Total	313.82 1,395.47 2,672.48 4,381.77	Average	1.05 2.31 <u>3.91</u> 2.76	Total	5,849.6 11,494.4 13,203.2 30,547.2	Average	50,764.2 52,451.7 51,765.5 51,830.9
				DII	ETZ BED					
0 to 50 50 to 100	Total	302.92 <u>818.04</u> 1,120.96	Total	56.99 <u>3,865.00</u> <u>3,921.99</u>	Average	0.18 4.72 3.49	Total	11,744.0 31,910.4 43,654.4	Average	25,793.6 25,635.9 25,678.1

HANGING WOMAN CREEK COAL DEPOSIT

LCCATION

The Hanging Woman Creek coal deposit (Pl. 9), in T. 7, 8, and 9 S., R. 42, 43, 44, and 45 E., is bounded on the west by the high ridge between Hanging Woman Creek and the Tongue River valley, where increasing thickness of overburden makes strip mining impractical. On the south also it is bounded by excessive overburden. On the east, it abuts the West Moorhead coal deposit (Pl. 10A, B, and C). On the north, rugged topography and the outcrop of the coal beds limit the deposit. In T. 7 S., R. 44 E., the deposit joins the Poker Jim Lookout coal deposit (Pl. 8), which has reserves in the same coal beds.

FIELD WORK AND MAP PREPARATION

Drilling in the Hanging Woman Creek area, begun in 1969, was completed in 1970. Outcrops of coal beds and limits of clinker were mapped in 1969; this work was supplemented by geologic interpretation of color photos borrowed from the U.S. Forest Service and of infrared color transparencies borrowed from the U.S. Bureau of Land Management, Billings. Oil well logs in the area gave ex-

cellent information, because gamma logs were run to the surface. Drill logs of water wells in part of the area were obtained from the Kendrick Land and Cattle Company.

PREVIOUS GEOLOGIC WORK

Portions of the Hanging Woman Creek area were mapped and described in a U.S. Geological Survey report (Baker, 1929) and in an open-file report on the Moorhead coal field (Bryson and Bass, 1966). Ayler, Smith, and Deutman (1969) in describing the strippable coal in Montana, included a deposit in the Dietz No. 1 coal bed along the valley of Hanging Woman Creek.

LAND OWNERSHIP

The State of Montana owns a large part of T. 8 S., R. 43 E., but in the other townships the state owns only sec. 16 and 36. The Federal Government owns scattered surface tracts throughout the area and the rest of the surface is privately owned.

Although the Federal Government conveyed the surface to private individuals, it retained ownership of the coal in most of the area. The State of Montana owns the

Table 26.-Proximate analysis, forms of sulfur, and heating value, Hanging Woman Creek coal deposit.

					8	TRIE	PABI	LE COA	AL, SC	OUTH	EAST	ER	N MO	NTAI	ΝA					
1	Heating value (Btu)	9259	8718 11531	12201	8440 11603 12218	8151 11349 12032	8281 11318 12078	7865 10775 11273	8544 11769	12511 8706 12160	13351 8184 11234	12304	8056 11382	8174 11270 11873	8583 11656 12212	8403 11622	6751 6751 8750 11495	11794	12600 8418	11601 12326
	Organic	.191	254 254 254	607.	.2135 .2233 .2253	.3314 333 333	3452 3452 368	.723 .757	.119	171. 174. 44. 44.	.124 .171	.187	.131		120 162 170	1.13	.673 .873 1.147	.203	.177	.243 .258
Form of sulfur. %	Pyritic	0.00 490 0.00 0.00	0.00 440 448	190.	.003 034 035 035	900.0 400.0 400.0	.057 .078 .083	28 88 88 88 88 88 88	.058	0.00.00 2.00.00 2.00.00 2.00.00	.054 .057	.062	999	9999 9999	6666 6666	.033 045 885		.068 .091	.097 .092	.127
Form	Sulfate	.027	0000 0000 00000 00000 00000	/60.	0.00.00. 0.34 0.35	0.00 0.05 0.50 0.50	.056 056 059	156	.042 .058	0.00 0.252 0.355 0.355	0.00 86.00 86.00 86.00	.050	.016 023 024	1000 1000 1000 1000 1000 1000 1000 10	0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.03 0.03 0.45 0.45	1.097 1.441	0.05 0.05 0.05 0.05		.058 .062
	Sulfur	282 3355 355	252 262 246 246	000.	2525 281 402 296 41	2459 487 787	.350 .478 .510	$\frac{.780}{1.068}$	204	222 222 322 34 34 54 54	199 199 199 199	.299	208	1155 2124 2124 2124	174	.197 .272 .285	2.132 2.764 3.631	6443 0864 1443	;e;	.429 .455
	Ash	4.923 6.201	4.187 5.538		5 60. 1		4.606 6.294	3.225	4.306 5.931	6.388	6.337		3.968	3.685 5.081	3.356 4.557	3.375	18.422 23.878	4.761 6.396	4.270	5.884
ate %	rixed carbon	41.534	39.514 52.267	25:332	58.008 52.252 55.021	36.510 50.835 53.891	37.667 51.479 54.937	39.855 54.596 57.120	38.542 53.088	26.436 34.929 48.783	37.150 37.150 50.995	55.853	44.925 63.472 67.241	53.760 53.440 30.000 30.000 30.000 30.0000	34.574 46.950 49.192	~99	28.686 37.182 48.846	38.151		
Proximate,	Volatile matter	32.943 41.490	31.899 42.195	4.000	31.072 42.716 44.979	31.238 43.494 46.109	30.897 42.226 45.063	29.920 40.986 42.880	- 60	30.283 42.294 9.294	000	₹	21.887 30.923 37.759	30.085 41.479 43.700	35.710 48.493 50.808	444	30.042 38.939 51.154	31.537	30.586	42.152 44.788
	Moisture	20.600	24.400	c c	_ (78.180	26.830	27.000	27.400	28.400	27.150		29.220	27.470	26.360	27.700	22.850	25.550	27.440	
ŗ	Form of analysis 1/	₹ ¤() Am(- ر	∢ ¤Ο·	⊄ ¤∪	⊄ ¤∪	CBA	ΦØ	U ∢ ¤() K M	ပ	₹¤C	o∢a∪	CBA	₹¤∪	OBP(₹¤€	ن≯ر	a)
	Coal	Anderson			Anderson				Anderson				Anderson			Anderson		Anderson		
;; ;-	Lab. number	·	۷ ،	•	9	7	∞	6	•	0 :	;	12	7	£ 7	15	19	20	5	17	22
á	Depth sampled	100 to	108 to	110 11.	83 to 93 ft.	93 to 103 ft.	103 to 111 ft.	111 to 112 ft.	88 50 50 50 50 50 50 50 50 50 50 50 50 50	98 to	108 to	116 ft.	94 to	104 to	112 to 120 ft.	113 to	123 to 131 ft.	130 to	11011:	140 to 149 ft.
	Drul hole and location	SH-1 8S R45E S7	Ave.	6 110	SH-2 8S R44E S12 BCCC				SH-3 8S R44E S3	DCCA			SH-4 7S R44E S26 DBAA			SH-9 7S R44E S33 BDCA		SH-10 7S R44E S31	700	

8266 11529	8266 11529 17357	8379 11795 17352	8896 11949	12467 8506 11902 12493	8595 11862 12468	8615 11850	12450 8788 11937	12570 8597 11217 12514	8726 11877	12521 8290 11050	8835 11890	12651 8777 11802	12407 7863 10391 12584	8258 11556 12360
.179 .250 .250	250 250 250 250 250	.147 .206 .216	202.	136 142	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.098	133 181 181 181		170	1.402 535 102 103 103 103 103 103 103 103 103 103 103	.160 .215	0.084 4.00 4.00 4.00 7.00 7.00 7.00 7.00 7.0	12:25 27:00 37:80 37:80	111. 159 170
.073	102	0.00.0 44.00.0	000		0000 0000 0000	000	.001. .0233	0.00. 0.00. 100. 100.	.058	0001 12007 3007	0.03 4.53 5.64	; ; ; ; ; ;	.933 133 130	.065 .091 .097
.057 .080 .085	0.057 0.080 0.080 0.850	000.00 44.00 36.00	.008 110.	1000 1000 1000	000 000 000	.008 011	0025 034 260	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.042 0.057	0.00.00 0.00.00 0.00.00 0.00.00 0.00.00 0.00.0	800.00		2011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	.041 .057 .061
.310 .432 .432	.310 .432 .463	.196 .275 .288	211 283 283	1936 1936 1936	0.000 0.000 0.000 0.000	106	1174 475 475	371 5484 540	225 306 373	isir:8i 146.8 190.24	202	1057 1253 1253	1.034 1.366 1.655	.328 .328
4.806	4.806 6.702	3.202 4.507	3.092 4.153	3.382	3.524 4.863	3.502	3.706	7.942 10.362	3.778	9.139 12.182	4.469 6.013	3.627 4.876	13.187	4.650
36.017 50.233 53.841	36.017 50.233 53.841	37.398 52.644 55.129	38.548 51.777 54.021	38.588 53.992 56.674	43.016 59.366 62.401	38.752 53.303 56.001	54.571 54.571	38.415 50.124 55.918	39.972 54.406 57.356	33.982 45.297 51.580	36.697 49.384 52.544	54.445 57.237	32.771 43.308 52.448	36.249 50.727 54.257
30.878 43.065 46.159	30.878 43.065 46.159	30.440 42.849 44.871	32.810 44.070 45.979	29.500 41.276 43.326	25.919 35.771 37.599	30.446 41.880 43.999	29.739 40.395	30.283 39.514 44.082	29.719 40.451 42.644	31.900 42.522 48.420	33.144 44.603 47.456	30.252 40.678 42.763	29.712 39.265 47.522	30.561 42.766 45.743
28.300	20.320	28.960	25.550	28.530	27.540	27.300	26.380	23.360	26.530	24.980	25.690	25.630	24.330	28.540
₹ ₩Û	CBA	CBA	CBA	CBA	CBA	∢ æ∪	o⊄ac	CBA	QMD	CBA	V BD	⊄ æ∪	-KMO	CBA
Anderson		Anderson	Anderson		Anderson	Anderson			Anderson		Anderson			Anderson
23	24	25	26	27	28	29	30	31	32	33	35	36	37	38
149 to 157 ft.	157 to 158 ft.	134 to 144 ft.	88 to 96 ft.	96 to 102 ft.	160 to 167 ft.	104 to 113 ft.	113 to 123 ft.	123 to 128 ft.	63 to 70 ft.	70 to 79 ft.	180 to 188 ft.	188 to 197 ft.	197 to 200 ft.	63 to 72 ft.
SH-10 7S R44E S31 ACCD		SH-11 8S R43E S10 CACC	SH-13 8S R44E S19 DBAC		SH-14 8S R44E S30 BCCB	SH-15 9S R43E S2 BBAA			SH-16 9S R44E S7 BACC		SH-17 9S R44E S8 CBBA			SH-18 9S R44E S22 CCAD

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 26 (Continued).

;	Heating value (Btu)	8245 11393 12068	8438 11594	12252	12032	8390 11063 11976	8802 11555	\sim	11322	8893 11993	7573	9643 12108 8840	11831	8901 12050	$12630 \\ 8135$	11008 12059 8445	11650 12495	8521 11544 12316	8685 11510 12182	7877 10325 12270	8744 11895 17491
	Organic	.181	202 204 204	216 444 446	.599 .692	135	.164	.100	136	191	216	345 245 245	200	080	.083	.238 .090	125	.102 .109	.162 .215 .227	.536 .703 .835	.124 .169
Form of sulfur, %	Pyritic	.025 .034	0.00 0.03 0.03 0.03	.048 .033	.044 .051	0.03 0.045 0.45 0.45	.095 124	.132	.091 .095	000	.000 0026 0026	0.00 6.43 6.43	000	.017	.024	163 163 008	011	9 9 9 9 9 9 9	.017 .023 .024	.199 .261 .310	.056 056 059
Form o	Sulfate	.041 .057	0.050 0.050 0.050	.072 .000	000 000 000	.034 450 045	0.026 034	.036 .025	.034 .036	000	30; 30;	999 999	999 999	034	.048 .160	.217 .238 .025	.034 .036	9 9 9 9 9 9 9	.017 .023 .024	.052 .068 .081	995 885
	Sulfur	247 147 147	373	.336	.643 .743	225	325 73 73 85 85 85 85 85 85 85 85 85 85 85 85 85	.395 .191	260	191	242 242	308 787 87	200	.109	430	.582 6382 5382	170	.075 .102 .109	.196 260 275	.787 1.031 1.225	.166 .226 .337
	Ash	4.046	5.373	9.987	13.465	5.784	4.244 5.572	4	4.686	3.034 4.092	15.991	36	4.356	3.390	6.437	7.1	6.756	4.625 6.266	4.162 5.515	12.094 15.853	3.507
ate. %	Fixed carbon	34.956	38.941 53.504	04	യന	39.151 51.623	53.040 53.040	56.170 40.425	\$5.105 \$7.815	41.647	30.531	38.874 48.812 41.653	55.746 58.284	40.778	38.709	52.380 57.379 39.417	54.375 58.315	40.146 54.391 58.027	41.474 54.962 58.170	36.014 47.207 56.100	41.456 56.395 59.221
Proxima	Volatile matter	33.369	29.929 41.122	43.457 29.854	40.251 46.514	30.905 40.750	31.525	43.830	40.208 42.185	39.742	41.438	51.188	39.899 41.716	29.702	42.143 28.753	38.909 42.621 76.176	38.869 41.685	29.039 39.343 41.973	29.824 39.523 41.830	28.182 36.941 43.900	28.547 38.834 40.779
	Moisture	27.630	27.220	25.830		24.160	23.830	26 640	0.04	25.850	21.460	75 700	007:67	26.130	26 100	27.510	j	26.190	24.540	23.710	26.490
	Form of 1, analysis	₹ ¤() e	aO∢	: @ U	₹¤(۳⊳ر	O	(AC	BA	∪ ∢	മഠ<	⊄ m∪	Ψ	೨೦⊲	:mU<	(A)	CBA	CBA	CRA	∢ ¤€
	Coal bed	Anderson		Dietz		Anderson				Anderson				Anderson				Anderson	Anderson	Smith	Anderson
	Lab. number	;	36	40	41	Ç	74	43	44		45	46	47		48	49	50	5.	54	55	6.4
	Depth sampled	72 to	80 ff.	83 ff.	151 to 156 ff.	74 to	84 II. 84 to	92 ft.	92 to 100 ft.	110 to	119 ft.	119 to 124 ft.	124 to 129 ft.	3 63	73 ft.	73 to 80 ft.	80 to 85 ft.	93 to 98 ft.	130 to 140 ft.	95 to 101 ft.	114 to
	Drill hole and location	SH-18 9S R44E \$22	CCAD			SH-19 9S R44E S19	DDDC			SH-20 9S R43E S24	AACA			SH-21	95 R43E 311 DCAC			SH-22 9S R43E S4 DBDD	SH-23 9S R43E S22 DBDD	SH-24 9S R43E S35 BCAC	SH-26 9S R43E S6

8700 11690 12305 8733 11909	11665 124074 124074 11662 13162 12002 12002	8235 11119 11639	116583 12349 12349 1000	12275 11596 12135	8108 10632 11958	വവവ	8707 11440 12089 7972	11698 8657 11880	12403 9012 11894 17564	9081	7657 10812 1245	12376 12376
2000 - 10	i ciriaridide 04844016 04844016 089974048	4450 10		300F	1,44.2. 1,64.2. 1,64.2.	.165	2022 2722 2788 2557 888	377 203 203	7757 7657 7657 7657 7657 7657	1.25 1.25 1.25 1.33 1.34	1564.2 164.2 164.2 164.2	.134 .209
0.000 800 848 848 848 848 848 848 848 848	00000000000000000000000000000000000000	010.022	0.00000 0.00000 0.00000000000000000000	000.00 000.00 000.00 000.00	2220 2220 247 777	090 090 460	0.00000 0.00000 0.00000000000000000000	0.000 0.000 0.000 0.000	9 9 9 9 9 9 9 8 9 8 8 8 8	101.	7500 7500 3583 2830 3583	.163 .240 .256
0.000000 24,80000 34,80000	909999999	0000	0000000 000000000000000000000000000000	9000 9000 9000	.067 .098 .099 .450		000000 00000 00000 00000 00000	0.000 42 0000 4 0000	0000 0300 034 0000	.022	0.00 0.03 8.03 8.03 8.03	.007 .011 .012
64442166 6146166 6186166 6186166	Lininiga 6000000000000000000000000000000000000	130	iiiiiiii 400000 400000	ici44 7224 7788	612 802 902 912	306	525.64 8525.4 822.7 7.4	.436 203 203	2054 2044 2085 2085	3358 3368 448	. 162 162 879	304 446 76
3.718 4.997 3.996 5.449	4.643 6.234 8.492 11.194 3.259 4.346	0.4.	3.466 4.609	3.323	.08 .08 .08	4.845	5.365 3.681 5.124	3.073	4.036	3.952	9.392	4.278 6.272
39.585 53.191 39.492 53.855 56.959	083.089.056	39 52.837 55.337	48844888	40.953 54.735 57.279	36.546 47.923 53.899 40.950		40.822 56.6735 20.630 20.630 20.630	<u>- こす</u> な	55.490 58.613	42.111 54.746 57.711	4000	35.463 51.998 55.478
31.117 441.812 29.842 40.696 43.041	229 229 230 24 200 24 200 200 200 200 200 200 200	31.622 42.697 44.693	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	30.544 40.824 42.721	31.258 40.989 46.101 30.778	40.830 42.909	31.205 440.000 31.519 43.880	40.230 40.370 42.147	29.688 39.182 41.387	30.858 40.116 42.289	3338	28.459 41.729 44.522
25.580	25.520 24.140 25.010	25.940	24.810	25.180	23.740		23.890	27.130	24.230	23.080	29.180	31.800
CMPOMP	4m04m04m0	∢ ₩0 <	ぺぺくさい	4¤0	4m04	യാ	ABOAB) 4 mU	⊄ ¤∪	√a⊃.	CMA	⊄ m∪
Anderson	Anderson	Anderson	Anteison		Canyon		Dietz	Anderson		Canyon		Dietz
65	<i>79</i>	70	71	73	56	57	4 v	52	53	217	218	219
124 to 132 ft. 132 to 135 ft.	137 to 145 ft. 145 to 155 ft. 155 to 162 ft.	93 to 102 ft.	89 to 97 ft. 106 ft.	106 to 115 ft.	110 to	118 to 126 ft.	53 to 62 ft. 62 to 65 th	110 to 119 ft.	119 to 127 ft.	46 to 60 ft.	60 to 70 ft.	63 to 67 ft.
SH-26 9S 43E S6 CCDB	SH-27 8S 43E S31 CABB	SH-28 8S 42E S24 DBAA SH-29	85 42E S12 CBDD	\$ \(\text{\text{\$\}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	SH-5/ 7S 44E S28 BACC	01110	SH-118 8S 44E S2 DBCA	SH-119 9S 43E S15 CBCA		SH-7039 7S 44E \$19 CCAB		SH-7040 7S 44E S27 BBAA

 $^{1}/A$, as received; B, moisture free; C, moisture and ash free.

Table 27.--Major ash constituents, Hanging Woman Creek coal deposit.

		,						ర	Constituent,	%	-			
Drill hole and location	Depth sampled	Lab. sample	Coar	Al ₂ O ₃	CaO	Fe2.03	K20	MgO	Na ₂ O	P20s	SiO3	SO3	Ti02	Total
SH-1 8S 45E S7 CAAD	100 to	2-3	Anderson	14.8	26.9	4.7	ui.	7.7	13.8	λi	20.0	12.0	1.0	101.7
SH-2 8S 44E S12 BCCC	83 to	6.9	Anderson	14.9	27.8	5.8 8.	ωi	9.2	7.3	oʻ	# · · ·	16.4	r:	100.7
SH-3 8S 44E S3 DCCA	88 to 116 ft.	10-12	Anderson	14.7	21.9	4.7	αċ	6.5	16.0	.7	31.9	10.3	hand hand	108.6
SH4 7S 44E S26 DBAA	94 to	13-15	Anderson	14.6	27.4	5.5	œ	7.2	15.8	λi	19.7	10.1	φ!	102.5
SH-9 7S 44E S33 BDCA	113 to 131 ft.	19-20	Anderson	13.3	13.3	12.1	<i>r</i> :	8.	3.5	. .	21.9	24.1	<u> </u>	95.1
SH-10 7S 44E S31 ACCD	130 to 158 ft.	21-24	Anderson	14.1	20.1	5.5	eđ	0.9	13.9	ð.	24.3	15.3	£.	101.4
SH-11 8S 43E S10 CACC	134 to 144 ft.	25	Anderson		22.5		4.	4.9	12.2			13.9		
SH-13 8S 44E S19 DBAC	88 to 102 ft.	26-27	Anderson	18.5	23.6	5.7	ui	6.4	12.5	ব.	17.6	10.1	77	96.3
SH-14 8S 44E S30 BCCB	160 to 167 ft.	28	Anderson	17.9	9.8	5.8	.7	5.6	<i>1.</i> 6	ů	27.5	0.6	6.1	98.2
SH-15 9S 43E S2 BBAA	104 to 128 ft.	29-31	Anderson	18.3	12.0	5.4	=	3.5	9.9	o ^j	41.8	7.6	4.	100.7
SH-16 9S 44E S7 BACC	63 to 83 ft.	32-34	Anderson	17.9	7.6	10.4		2.6	5:0	₫.	41.7	12.0	1.0	7.66
SH-17 9S 44E S8 CBBA	180 to 200 ft.	35-37	Anderson	19.6	17.5	8.3	ωį	4.2	7.3	٥:	22.0	22.2	ωʻ	103.2
SH-18 9S 44E S22 CCAD	63 to 83 ft.	38-40	Anderson	14.4	21.6	9.9	2	8.4	4.0	1.2	23.6	15.8	5.	97.3
SH-19 9S 44E S19 DDDC	74 to 100 ft.	42-44	Anderson	14.6	21.2	5.0	4	4.	6.7		25.6	15.2	1.6	98.6

95.1	0.96	85.4	93.6	8.06	92.1	(C)	100.7	5.06	98.8	9.96	94.0	8.66
1.2	1.5	ن,	2.4	4.	£.	.3	Among Among	1.0	7:	∞i	<i>L</i> :	9.
14.2	12.9	7.7	10.3	9.1	13.9	8.6	13.7	12.9	8.4	14.0	15.0	11.6
19.3	21.1	19.4	21.2	37.1	23.4	25.1	24.1	20.4	27.7	20.4	18.0	42.1
1.0	Ameni Accord	ω	ć.	∞.	T:	9.	9:	٠ċ	o;	1.0		1:
10.3	10.3	7.	8.3	2.6	5.9	10.8		transf C.	14.1	12.9	9.5	1.6
4.9	5.3	5.7	6.7	7.2	6.2	2.5	5.4	5.0	4.5	6.1	4.9	7.7
ui	4.	.2	ιċ	1.6	ω	.2	4.	4.	'n	ω	2.	8.
9.0	8.8	15.9	5.1	2,5	5.0	4.9	5.7	4.6	3.6	5.1	7.9	4.8
20.3	19.2	17.5	23.4	7.1	19.8	19.6	21.9	19.7	16.9	23.2	20.2	15.6
14.6	15.4	Access Access	15.6	12.8	15.6	14.3	16.4	14.7	15.1	12.8	16.9	13.9
Anderson	Anderson	Anderson	Anderson	Smith	Anderson	Anderson	Anderson	Anderson	Canyon	Dietz	Anderson	Canyon
45-47	48-50	51	54	55	64-66	62-69	70	71-73	56-57	4-5	52-53	217-218
110 to 129 ft.	63 to 85 ft.	93 to 98 ft.	130 to 140 ft.	95 to 101 ft.	114 to	137 to 162 ft.	93 to 102 ft.	89 to 115 ft.	110 to 126 ft.	53 to 65 ft.	110 to 127 ft.	46 to 70 ft.
SH-20 9S 43E S24 AACA	SH-21 9S 43E S11 DCAC	SH-22 9S 43E S4 DBDD	SH-23 9S 43E S22 DBDD	SH-24 9S 43E S35 BCAC	SH-26 9S 43E S6 CCDB	SH-27 8S 43E S31 CABB	SH-28 8S 42E S24 DBAA	SH-29 8S 42E S12 CBDD	SH-57 7S 44E S28 BACC	SH-118 8S 44E S2 DBCA	SH-119 9S 43E S15 CBCA	SH-7039 7S 44E S19 CCAB

coal on its school-grant lands; a small amount of coal in the area is privately owned.

SURFACE FEATURES AND LAND USE

The most prominent surface features in the Hanging Woman Creek coal deposit are the creek and its tributaries. Hanging Woman Creek is an intermittent stream, which contains water in pools throughout the year, but the tributaries are dry except during periods of heavy precipitation and spring runoff. The rolling uplands are deeply dissected by the tributaries of Hanging Woman Creek, and the terrain is especially rugged in T. 7 and 8 S., R. 43 E. Stands of ponderosa pine are sparse along the steep sides of the valleys; native grasses cover the ridges.

The principal land use is livestock grazing, but some hay is raised in meadows along the flood plain of Hanging Woman Creek and a few of its tributaries.

GEOLOGIC STRUCTURE

The Anderson coal bed dips to the south, and minor reversals seem to have affected the topography. Slight synclinal flexures along Hanging Woman Creek and the divide to the east plunge gently southward.

Displacement on two northeast-trending faults down-thrown to the southeast seemingly is less than 100 feet. The faults may extend farther than shown, particularly between drill hole SH-23 in sec. 26, T. 9 S., R. 43 E., and drill hole SH-24 in sec. 35 of that township. An east-trending fault is along PK Creek, in T. 8 S., R. 42 and 43 E., downthrown on the north.

COAL BEDS

The names applied to the coal beds in the Hanging Woman Creek coal field are those used by Baker (1929). They include the Roland, Smith, Anderson, Dietz, and the Canyon beds. Several other coal beds lie below the Canyon bed. A complete stratigraphic section (Pl. 33, Section D-M) is shown on the gamma log of an oil well in NE¼ sec. 36, T. 9 S., R. 42 E. This log shows the Roland bed as 9 feet thick and 291 feet above the Smith bed, which is 8 feet thick. The Smith bed is 148 feet above the Anderson bed, which is 31 feet thick; the Anderson bed is 122 feet above the Dietz No. 1 bed and 145 feet above the Dietz No. 2 bed, each of which is only 4 feet thick. Three coal beds about 230 feet below the Anderson bed have thicknesses of 6 feet, 3 feet, and 8 feet, and are separated by 10-foot partings. The Canyon coal bed is 13 feet thick and is about 300 feet below the Anderson. The Wall coal bed, 140 feet below the top of the Canyon coal bed, consists of three benches. The top one is 9 feet thick, the middle one 6 feet, and the lower one 4 feet. The upper parting is 6 feet and the lower is 16 feet. This log correlates well with the gamma logs of an oil well in SW¼ sec. 17, T. 9 S., R. 44 E.

The Anderson coal bed is burned over much of the area, especially where overburden is less than 50 feet thick (P1.9). Nevertheless, it is the most important bed in the Hanging Woman Creek area because it maintains its thickness and consistent quality. Subsurface correlation of the Anderson bed is relatively easy because of its thickness and its distinctive curve on bore-hole geophysical logs. The thickness ranges from 15 feet in drill hole SH-23, sec. 22, T.9 S., R. 43 E., to 36 feet in drill hole SH-3, sec. 3, T. 8 S., R. 44 E.

The Dietz coal bed (Pl. 9) crops out along the sides of the valleys of Hanging Woman Creek and its tributaries in the northern part of the area. In places, the bed has burned and produced clinker, especially in the northern part of the area where the bed is thickest. The maximum thickness of 18 feet was penetrated in drill hole SH-10, sec. 31, T. 7 S., R. 44 E.; in drill hole SH-18 in sec. 22, T. 9 S., R. 44 E., it has a thickness of 10 feet. In the southwestern part of the area, the Dietz bed consists of two benches, each 4 feet thick, separated by as much as 30 feet of parting.

Strippable reserves in the Dietz coal bed over large areas are covered with clinker produced by burning of the overlying Anderson coal bed. The vertical distance between the Dietz and the Anderson bed (Pl. 9) is 50 to 70 feet in a large part of the area. Although it is 70 feet in a large part of T. 9 S., R. 44 E., it decreases westward to 60 feet, then increases to 100 feet in T. 9 S., R. 42 E. This is the area where the Dietz coal bed splits and thins appreciably. In most places where the Anderson bed has not burned, it is about 100 feet above the Dietz bed. For this reason, strippable reserves in the Dietz bed have been shown as far as the trace of the unburned Anderson coal bed. In certain areas, such as the East Fork and Main Fork of Trail Creek, the Dietz coal bed could be recovered economically as far back as the Anderson overburden limit of 50 feet. Information on the Dietz bed is not as plentiful as for the Anderson bed. One or more silicified layers about 2 to 4 feet thick hampered drilling between the Anderson and the Dietz coal beds. Also, very heavy white clay encountered in drill hole SH-23, sec. 22, T. 9 S., R. 43 E., tended to plug the drill pipe.

COAL QUALITY

Several core samples were obtained from the Hanging Woman Creek coal field and were analyzed. Proximate

analysis, forms of sulfur, and heating values are shown in Table 26. Where multiple core samples were obtained from a coal bed in a drill hole, they were combined prior to analysis for major ash constituents (Table 27).

COAL RESERVES

Coal reserves in the Hanging Woman Creek area have been calculated for both the Anderson and Dietz coal beds (Table 25).

Reserves in the Anderson coal bed total 1,583,290,000 tons, and in the Dietz coal bed, 1,120,960,000 tons.

WEST MOORHEAD COAL DEPOSIT

LOCATION

The West Moorhead coal field, in T. 7 S., R. 46 and 47 E., T. 8 S., R. 45, 46, and 47 E., and the north half of T. 9 S., R. 45, 46, and 47 E., Powder River County (Pl. 10A, B, and C), is limited on the east by the steep slope of the Powder River valley, on the south and west by high ridges, and on the north by clinker areas of the burned Anderson and Canyon coal beds. The area borders the Hanging Woman Creek coal field (Pl. 9) to the west and the Diamond Butte (Pl. 19), Goodspeed Butte (Pl. 20), and Fire Gulch (Pl. 21) coal fields to the north.

FIELD WORK AND MAP PREPARATION

Most of the field work for this report was done during the summer of 1968, but in 1969 and 1970 some additional holes were drilled. The field method used for evaluation of strippable coal in the West Moorhead coal field was developed for areas where adequate topographic maps were not available (Carmichael, 1967). It included the establishment of temporary benchmarks by leveling throughout the area for topographic control. These benchmarks then served as base stations for altimeter surveys by which hundreds of altimeter altitudes were measured and plotted on aerial photos concurrently with mapping of the coal outcrops, clinker, and contacts between the burned and unburned areas. Drilling was carried out on a reconnaissance basis to determine coal thickness and depth; cores were taken for analysis of coal quality.

Modifications of the method by Montana Bureau of Mines and Geology included use of a Paulin microbarograph for recording variations in atmospheric pressure, and use of a computer program to correct altimeter readings for changes in temperature and pressure.

PREVIOUS GEOLOGIC WORK

The West Moorhead coal field was described in an open-file report by the U.S. Geological Survey (Bryson and Bass, 1966), and in a Montana Bureau of Mines and Geology bulletin (Matson, 1971).

LAND OWNERSHIP

Sec. 16 and 36 of each township were granted to the State of Montana for school land, and the state has generally retained the mineral rights. In the other sections of each township, the Federal Government generally retained the coal rights and some of the other mineral rights, but most of the surface is privately owned.

SURFACE FEATURES AND LAND USE

The topography is characterized by long smooth ridge tops, sharp breaks along the slopes of the ridges, and the deeply incised valleys of tributaries of Otter Creek.

Although a small part of the area is cultivated and some hay is raised in many of the valleys, most of the area is suitable only for livestock grazing. Ponderosa pine thinly veils much of the northern part of the area, especially along the steep sides of the valleys.

GEOLOGIC STRUCTURE

The regional dip of the strata is southwestward, but reversals are numerous in shallow anticlinal and synclinal structures.

Two west-trending faults were mapped by Bryson and Bass (1966), one in the northern part of sec. 13, T. 8 S., R. 46 E., and sec. 18, T. 8 S., R. 47 E., and another in the north-central part of T. 8 S., R. 45 E. The maximum relative vertical displacement observed on the Anderson coal bed in sec. 13, T. 8 S., R. 46 E., is about 60 feet. Displacement of the Anderson coal bed by the fault in T. 8 S., R. 45 E., is about 40 feet.

The dominant structural features are shallow anticlines and synclines in the eastern two-thirds of the mapped area, where dips are about 1 degree (Pl. 10A and C). A pronounced structural high in sec. 17, 18, 20, and 21, T. 8 S., R. 47 E., is south of the west-trending faults in that township.

The structural contours on the Canyon and Anderson beds show the variation in the stratigraphic separation of these two coal beds. The vertical distance between these coal beds is at a minimum, 120 feet, in the southern part

Table 28.-Reserves, overburden, overburden ratio, acres, and tons/acre, West Moorhead coal deposit.

ANDERSON, DIETZ, and CANYON BEDS

Thickness of overburden, ft.		dicated reserves, million tons		Overburden, illion cu. yd.		urden ra yards/to	•	Acres		Tons/acre
0 to 50 50 to 100 100 to 150	Total	317.77 991.41 662.24 1,971.42	Total	725.95 3,594.12 <u>3,899.28</u> 8,219.35	Average	2.28 3.62 5.88 4.16	Total	13,632.0 29,702.4 19,289.6 62,624.0	Average	23,310.6 33,378.6 34,331.4 31,480.2
				ANDEI	RSON BED					
0 to 50 50 to 100 100 to 150	Total	65.95 466.62 <u>351.17</u> 883.74	Total	76.5 1,268.6 <u>1,571.3</u> 2,916.4	Average	1.15 2.71 4.47 3.30	Total	1,433.6 10,483.2 <u>7,744.0</u> 19,660.8	Average	46,003.1 44,512.1 45,347.4 44,949.3
				DIE	TZ BED					
0 to 50 50 to 100	Total	217.81 179.68 397.49	Total	595.61 1,116.68 1,712.29	Average	2.73 6.21 4.30	Total	11,187.2 9,228.8 20,416.0	Average	19,469.5 19,469.4 19,469.5
				CAN	YON BED					
0 to 50 50 to 100 100 to 150	Total	34.01 345.11 311.07 690.19	Total	53.84 1,208.84 2,327.98 3,590.66	Average	1.58 3.50 <u>7.48</u> 5.2	Total	1,011.2 9,990.4 11,545.6 22,547.2	Average	33,633.3 34,544.2 26,942.7 30,611.1

of T. 8 S., R. 47 E. It increases westward to the maximum of 240 feet and increases northward to about 200 feet.

COAL BEDS

Although coal beds are numerous in the mapped area, only the Canyon, Dietz, and Anderson beds offer prospects for commercial development. These beds correlate with beds of the same name in the Hanging Woman Creek area (Pl. 33, Section D-M). Other coal beds in the area include the Smith bed, which is 110 to 150 feet above the Anderson coal bed, and the Roland bed. The Smith bed is thin, and in the western part of the mapped area it contains numerous petrified tree stumps, many of which are in an upright position. The Roland coal bed, mapped just south of the study area, is about 200 feet above the Smith bed (Bryson and Bass, 1966).

The Anderson coal bed (Pl. 10A) is 40 to 81 feet above the Dietz bed except in sec. 27, T. 8 S., R. 47 E., where in drill hole SM-4C the distance from the base of the Anderson to the top of the Dietz is only 13 feet. This is also the area where the distance between the Anderson and the Canyon beds reaches its minimum of 120 feet. Thickness of the Anderson bed exceeds 24 feet except in the extreme south-central part of the mapped area (Pl. 10A). At the western edge of the area, the Anderson bed is 30 feet thick in drill hole SM-19, sec. 33, T. 8 S., R. 45 E. In the eastern part of the area, it is 29 feet thick in drill hole SM-4, sec. 27, T. 8 S., R. 47 E. The area of thinning is believed to be confined to the vicinity of sec. 16, T. 9 S., R. 46 E., where the coal is 14 feet thick in drill hole SM-15. Whereas only 1½ miles northeast in drill hole SM-11, sec. 11, T.9 S., R. 46 E., the bed is 29 feet thick.

Table 29.-Proximate analysis, forms of sulfur, and heating value, West Moorhead coal deposit.

Canyon A 26.660 C C C A 26.990
C A 26.450 B C
Canyon A 24.230 C C A 25.670 B C C 25.670 C
Cook A 30.800 C C
Dietz A 31.200 C C 30.050
Canyon A 29.860
Canyon A 29.980 B C
Dietz A 32.430 C A 31.650 B C C 32.180 C A 32.180 C A 32.180 C C A 33.450 C A

¹/A, as received; B, moisture free; C, moisture and ash free.

Table 30.-Proximate analysis, ultimate analysis, and heating value, West Moorhead coal deposit.

					SIRIP	PABLE C
	Heating value (Btu)	8150 11210 12060	7950 11130 12280	8790 11410 12060	8070 11470 12170	8920 11650 12280
	0	37.9 18.9 20.3	38.0 17.6 19.5	35.6 19.8 21.0	39.8 19.1 20.2	35.4 18.8 19.9
% %	Z	0.11 0.25 0.25	0.1.0 5.4.5		1.4.0 1.5.0	0.4.4.
Ultimate, %	ပ	49.3 67.7 72.9	47.5 66.6 73.5	52.7 68.4 72.3	48.4 73.0 7.0	53.4 69.8 73.5
	I	844 436	844 430	644 	844 200	6.1 6.9 6.9
	S	0.00 4.00 6.00	000 4:00	000 6.4.4	000 6.4.4	000
	Ash	5.1	6.7 9.4	4.8 5.4.	5.7	3.9
te.%	carbon	36.2 49.7 53.4	848 849 845 845	40.4 52.4 55.4 4.5	36.4 51.7 54.9	40.4 52.7 55.6
Proximate. %	volatile matter	31.5 443.3 6.6	29.4 41.2 45.5	32.4 422.2 3.2 3.6 3.0	29.9 42.6 45.1	644 6224 624
	Moisture	27.2	28.6	22.9	29.7	23.4
Form of	analysis 1/	CBA	CBA	4 BO	CBA	CBA
Coal	ped	Anderson	Anderson	Anderson	Canyon	Canyon
Te.	number	J-6243	J-6245	J-6246	J-6242	J-6244
Denth	sampled	86 to 115 ft.	64 to 78 ft.	52 to 83 ft.	80 to 98 ft.	84 to 103 ft.
Drill hole	and location	SM-4 8S 47E S27 BCAB	SM-15 9S 46E S16 BADC	SM-18 8S 45E S23 CDAC	SM-1A 7S 47E S16 BDC	SM-13 8S 46E S16 CDCC

Table 31.-Grindability, forms of sulfur, and fusibility of ash, West Moorhead coal deposit.

	Fluid temp.	2460	2090	2570	2500	2570
Fusibility of ash, F	Softening temp.	2410	2050	2530	2450	2520
Fusibilit	deformation temp.	2350	2010	2480	2400	2470
	Organic	86.25. 7.23	6.4.8. 47.8.	2;ε;ε; 4:1:ε;	25.4. 780	30 30 30
Form of sulfur, %	Pyritic	0.00.0	0.00.0	0.000 644	6.00 600 600	.0. .0. .0.
Form	Sulfate	0.00.0	0.00.0	0.0.0 844	0.00.	0.02 222 2
	Sulfur	4; <i>8</i> ; 96; 96;	35 55 55	390 139	.38 .40 .40	332 332 332 332 332 332
	Hardgrove grindability	43	43	45	39	43
	Form of 1, analysis	CBA	⊄ m∪	CBA	CBA	CBA
	Coal bed	Anderson	Anderson	Anderson	Canyon	Canyon
	Lab. number	J-6243	J-6245	J-6246	J-6242	J-6244
	Depth sampled	86 to 115 ft.	64 to 78 ft.	52 to 83 ft.	80 to 98 ft.	84 to 103 ft.
	Drill hole and location	SM4 8S 47E S27 BCAB	SM-15 9S 46E S16 BADC	SM-18 8S 45E S23 CDAC	SM-1A 7S 47E S16 BDC	SM-13 8S 46E S16 CDCC

1/A, as received; B, moisture free; C, moisture and ash free.

Table 32.-Major ash constituents, West Moorhead coal deposit.

					OSITS—	WEST M	OORHEA	D				
Total	96.96	99.45	99.34	99.15	100.44	95.2	99.2	98.5	97.6	92.6	96.3	102.0
CO2	<.05	.30	.60	.20	.10							
MnO	.12	.09	.09	90.	90.							
FeO	.28	.20	.08	1.6	.32						,	
H ₂ O	.55	96.	69.	.68	.30							
TiO ₂	.73	1.1	.65	.93	.72	٠ċ	9.	9:	.7	'n	4.	٠ċ
SO3	14.1	17.3	15.7	11.6	27.4	11.2	11.9	15.5	8.1	9.7	25.7	18.1
ent, % SiO ₂	17.2	18.9	16.4	35.7	14.4	39.7	40.7	20.5	28.4	14.9	13.4	27.8
Constituent, % P ₂ O ₅ SiO	77.	.62	.64	86.	1.00	ω	4:	1.9	1.3	7.	1.7	1.0
Na ₂ O	7.9	5.9	8.8	2.7	2.4	2.2	1.1	3.6	10.0	9.7	1.6	9.4
MgO	8.6	7.1	8.3	6.0	8.4	5.8	7.3	9.9	6.1	8.1	10.8	5.2
K20	99.	.28	.39	1.3	.34	1.0	1.0	ω	4.	κi	.2	∞i
Fe_2O_3	7.2	7.5	6.5	3.5	5.8	8.9	5.7	6.3	6.3	7.1	6.9	6.9
CaO	29.2	25.8	29.3	18.4	27.0	15.6	19.3	27.7	24.2	32.2	23.5	19.6
Al ₂ O ₃	12.6	13.4	11.2	15.5	12.2	12.1	11.2	12.2	12.1	12.4	12.1	12.7
Coal bed	Canyon	Anderson	Canyon	Anderson	Anderson	Canyon	Canyon	Dietz	Canyon	Canyon	Dietz	Canyon
Lab. sample	J-6242	J-6243	J-6244	J-6245	J-6246	134-136	137-138	220-221	222	223	225,228	226, 224,227
Depth sampled	80 to 98 ft.	86 to 115 ft.	84 to 103 ft.	64 to 78 ft.	52 to 83 ft.	125 to 147 ft.	78 to 89 ft.	59 to 69 ft.	198 to 208 ft.	130 to 142 ft.	43 to 55 ft.	132 to 153 ft.
Drill hole and location	SM-1A 7S 47E S16 BDC	SM-4 8S 47E S27 BCAB	SM-13 8S 46E S16 CDCC	SM-15 9S 46E S16 BADC	SM-18 8S 45E S23 CDAC	SH-61 7S 46E S33 BDAC	SH-62 8S 46E S3 BDBB	SH-7041 8S 45E S28 DAAD		SH-7042 8S 45E S15 BBDD	SH-7043 8S 45E S24 BAAA	

Thickness of the Canyon coal bed (Pl. 10C) ranges from 17 to 24 feet and averages 18 feet in the eastern two-thirds and 22 feet in the western one-third of the mapped area. A coal bed 2 to 5 feet thick lies about 5 feet above the Canyon in the eastern two-thirds of the area but is absent in the western one-third.

The Dietz coal bed (Pl. 10B), 67 to 122 feet above the Canyon bed and 40 to 81 feet below the Anderson coal bed, ranges in thickness from 5 to 11 feet, but seems to be thinner or absent in T. 7 S., R. 47 E.

COAL QUALITY

Twenty core samples were recovered during drilling programs in 1968, 1969, and 1970. Proximate, ultimate, ash fusibility, sulfur forms, and grindability analyses of five cores obtained in 1968 were performed by the U.S. Bureau of Mines, Pittsburgh Coal Research Center (Tables 30, 31). Proximate analyses of cores obtained in 1969 and 1970 were made in the Montana Bureau of Mines and Geology analytical laboratory (Table 29). Major ash constituents of the core samples obtained in 1968 were determined by the U.S. Geological Survey, Washington, D.C.; those in the cores obtained in 1969 and 1970 were determined by the Montana Bureau of Mines and Geology analytical laboratory (Table 32).

COAL RESERVES

The strippable reserves in the West Moorhead coal field total 1,971,420,000 tons. The Anderson bed contains the largest reserves, 883,740,000 tons, the Canyon contains 690,190,000 tons, and the Dietz 397,490,000 tons.

POKER JIM CREEK-O'DELL CREEK COAL DEPOSIT

LOCATION

The Poker Jim Creek-O'Dell Creek coal deposit is in T. 3 through 6 S., R. 42 through 45 E., Rosebud County (Pl. 11A and B). The north end of the area is 3 miles south of the community of Ashland, and the western boundary of the deposit is the Tongue River. The southern boundary is near Birney, where the overburden becomes excessive, and the eastern boundary is the high divide between the Tongue River and Otter Creek. The area is between the Ashland (Pl. 13A) and Otter Creek (Pl. 12) coal deposits to the north and the Birney coal deposit (Pl. 7) to the south.

FIELD WORK AND MAP PREPARATION

Field work in the Poker Jim Creek-O'Dell Creek coal deposit was begun in 1969; further drilling in 1970 ex-

panded the data base. Geologic mapping on black-and-white aerial photos fixed the boundaries of the clinker produced by burning of the Knobloch coal bed. Private company drill holes and logs of oil wells in the vicinity helped in the preparation of maps of the Knobloch coal bed. A cross section through the area is shown on Plate 34.

PREVIOUS GEOLOGIC WORK

The area was mapped and described in a U.S. Geological Survey report on the Birney-Broadus coal field (Warren, 1959). Ayler, Smith, and Deutman (1969) included the Knobloch deposits in their report on the strippable coal reserves in Montana.

LAND OWNERSHIP

The land surface in the Poker Jim Creek-O'Dell Creek coal deposit is owned by individuals, the State of Montana, and the Federal Government. The administration of the federally-owned land is divided between the U.S. Bureau of Land Management and the U.S. Forest Service. Some strippable coal in the northern part of the area lies within the Custer National Forest (Pl. 11B). The ownership of the coal is divided between the Federal Government, Burlington Northern, Inc., the State of Montana, and some individuals. The railroad owns the coal on the odd-numbered sections outside the Custer National Forest and has, in general, conveyed the surface but retained the coal.

SURFACE FEATURES AND LAND USE

The Tongue River has formed a wide valley in the area, and the strippable coal lies on the east side of the valley. The terrain slopes gently toward the Tongue River and, in the northern part of the area, toward the areas of clinker formed by the burning of the underlying Knobloch coal bed, but the clinker forms steep slopes and cliffs.

Many higher coal beds have burned to form clinker, which caps knobs and borders the high ridges to the east. In the north-central part of the area, O'Dell Creek has cut a valley approximately ½ mile wide. Other tributaries of the Tongue River are generally short and steep. Hanging Woman Creek, at the south end of the area, has also cut a prominent valley.

The principal land use in the area is livestock grazing. Hay is raised on meadows on the flood plain of the Tongue River, along O'Dell Creek, and along Hanging Woman Creek.

Table 33.-Reserves, overburden, overburden ratio, acres, and tons/acre, Poker Jim Creek-O'Dell Creek coal deposit.

KNOBLOCH BED-PLATE 11A

Thickness of overburden, ft		icated reserves, million tons	i	erburden and nterburden, illion cu. yd.	interb	ourden and ourden rati c yards/to	io,	Acres		Tons/acre
0 to 50		110.10		268.17		2.43		3,040		36,217.1
50 to 100		122.71		401.60		3.27		2,566		47,821.5
100 to 150		111.94		438.31		3.91		1,824		61,370.6
150 to 200		<u>28.54</u>		133.88		4.69		460		62,043.5
	Total	373.29	Total	1,241.96	Average	3.32	Total	7,890	Average	47,311.8

KNOBLOCH-PLATE 11B

Thickness of overburden, ft		icated reserves, million tons		verburden, llion cu. yd.		ourden ratio yards/ton	,	Acres		Tons/acre
0 to 50		8.66		5.79		0.66		108.8		79,595.6
50 to 100		60.66		92.15		1.51		761.6		79,648.1
100 to 150		194.72		509.98		2.61		2,508.8		77,614.8
150 to 200		198.79		709.66		3.55		2,528.0		78,635.3
200 to 250		101.95		464.64		4.55		1,280.0		79,648.4
	Total	564.78	Total	1,782.22	Average	3.15	Total	$\frac{7.187.2}{7.187.2}$	Average	78.581.4

GEOLOGIC STRUCTURE

The strata in the Poker Jim Creek-O'Dell Creek area are nearly horizontal, but local dips and rises are numerous. In the northern part of the area, the Knobloch coal bed is some distance above river level, and in the western part of T. 5 S., R. 43 E., it crops out at river level. The middle bench of the Knobloch is approximately 100 feet below surface at Birney.

COAL BEDS

The Knobloch is the only coal bed in the Poker Jim Creek-O'Dell Creek area that is strippable. The King bed is 40 to 200 feet above the Knobloch. Other beds in the divide between Tongue River and Otter Creek are the O'Dell, Pawnee, Wall, Cook, Dunning, Canyon, and Anderson beds, but none of these were mapped for this report. The Knobloch coal bed was named for the Knobloch ranch in sec. 17, T. 5 S., R. 43 E.

The Knobloch coal bed is a single seam along the north end of the Poker Jim Creek-O'Dell Creek area (Pl. 11B), but the center of the area and farther south the Knobloch is split into three benches. In the northern part of the area, the Knobloch is as much as 60 feet thick, as

measured in drill hole SH-7055, sec. 6, T. 4 S., R. 45 E. In drill hole SH-7059, sec. 34, T. 3 S., R. 44 E., only 14 feet of the coal was drilled, owing to lost circulation. In drill hole SH-7058, sec. 22, T. 4 S., R. 44 E., the Knobloch is 42 feet thick, but in the southern part of T. 4 S., R. 44 E., (Pl. 11B, 34), the Knobloch begins to split into three benches. In drill hole SH-100, sec. 5, T. 5 S., R. 44 E., the upper and middle benches have a combined thickness of 27 feet, and the lower bench, 50 feet below, has a thickness of 5 feet. The main bed splits again in the northern part of T. 5 S., R. 43 E., to form the upper and middle benches. The upper bench is 7½ feet thick in DH-3, sec. 16, T. 5 S., R. 43 E., and 9 feet thick in drill hole SH-101, sec. 20, T. 5 S., R. 43 E., where it is 29 feet above the middle bench, which is 18 feet thick. In an abandoned mine in the SE¼ sec. 19, T. 5 S., R. 43 E., the upper bench is almost 12 feet thick. The 14-foot parting below it consists of 6 feet of claystone and 8 feet of sandstone overlying the middle bench, which is 20 feet thick. In drill hole SH-117 in sec. 30 of the same township, the upper bench is 8 feet thick and the one below it is 20 feet thick. They are separated by a 41-foot parting. In drill hole SH-103, sec. 7, T. 6 S., R. 43 E., a carbonaceous zone about 52 feet above the main bench is presumed to correlate with the upper bench of the Knobloch. In this drill hole the middle bench is 12 feet thick, and the lower bench is 13

Table 34.-Proximate analysis, forms of sulfur, and heating value, Poker Jim Creek-O'Dell Creek coal deposit.

	Heating value (Btu)	9036 12109 12884	9005 12253 12897	8380 10813 11624	8963 11450 12384	9135 11797 12572	8558 11615 12717
	Organic	.108 .145 .154	.078 .105 .111.	.148 .191 .206	.145 .185 .200	.337 .435	.130 .176 .193
Form of sulfur, %	Pyritic	.017 .022 .024	.017 .023 .025	.035 .045 .048	.018 .023 .025	.177 .229 .244	.024 .033 .036
Form o	Sulfate	.025 .033 .036	000.	.017 .022 .024	000. 000.	.080 .103 .110	000. 000.
	Sulfur	.150 .201 .213	.095 .129 .136	.201 .259 .278	.163 .208 .225	.594 .767 .817	.154 .209 .229
	Ash	4.491 6.019	3.669	5.406	5.903	4.776	6.381
ite, %	Fixed	39.223 52.564 55.930	39.958 54.372 57.229	43.088 55.597 59.765	41.068 52.464 56.743	43.386 56.025 59.707	37.444 50.820 55.639
Proximate, %	Volatile matter	30.906 41.418 44.070	29.863 40.635 42.771	29.007 37.428 40.235	31.308 39.995 43.257	29.278 37.808 40.293	29.855 40.519 44.361
	Moisture	25.380	26.510	22.500	21.720	22.560	26.320
í	Form of analysis $^{1}/$	CBA	CBA	CBA	CBA	CBA	CBA
	Coa	Knobloch	Knobloch	Knobloch (U & M)	Knobloch (M)	Knobloch (U)	Knobloch (U & M & L)
,	Lab. number	269	270	158	142	153	265
5	Deptn sampled	193 to 202 ft.	200 to 202 ft.	125 to 134 ft.	105 to 112 ft.	60 to 66 ft.	216 to 218 ft.
- - - -	Drill note and location	SH-7058 4S R44E S22 ABCB	SH-7059 3S R44E S34 DBBD	SH-100 5S R44E S5 ABAA	SH-103 6S R43E S7 CDAD	SH-117 5S R43E S30 BACD	SH-7055 4S R45E S6 DDBA

U = Upper bench of Knobloch M = Middle bench of Knobloch L = Lower bench of Knobloch

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 35.-Major ash constituents, Poker Jim Creek-O'Dell Creek coal deposit.

	Total	7.96	97.3	2.96	97.2	93.8	95.5
	TiO ₂	ó	4:	9.	r:	۸i	∞i
	SO ₃	6.5	5.3	13.2	4.1	20.0	4.9
	SiO2	29.2	25.1	29.8	44.6	25.4	39.8
%,	P2O5	4.	. 6	ci	1.7	c i	7.
Constituent, %	Na ₂ O	9.8	12.3	10.8	7.1	7.0	6.9
J	MgO	3.7	3.9	3.3	1.5	3.2	2.5
	K20	c i	c i	c i	ωi	1.2	. 2
	Fe_2O_3	4.7	4. 4.	3.5	2.6	9.2	2.7
	CaO	20.6	21.6	15.7	8.1	12.8	15.0
	Al_2O_3	21.0	23.5	19.4	26.5	14.3	22.0
Coal	peq	Knobloch	Knobloch	Knobloch (U & M)	Knobloch (M)	Knobloch (U)	Knobloch (U & M & L)
Lab.	sample	269	270	158	142	153	265
Depth	sampled	193 to 202 ft.	200 to 202 ft.	125 to 134 ft.	105 to 112 ft.	60 to 66 ft.	216 to 218 ft.
Drill hole	and location	SH-7058 4S 44E S22 ABCB	SH-7059 3S 44E S34 DBBD	SH-100 5S 44E S5 ABAA	SH-103 6S 43E S7 CDAD	SH-117 5S 43E S30 BACD	SH-7055 4S 45E S6 DDBA

U = Upper bench of Knobloch M = Middle bench of Knobloch L = Lower bench of Knobloch

feet thick. These beds can be correlated with beds shown on a log of an oil well in the NW½ sec. 12, T. 6 S., R. 42 E. (Pl. 33 and 34).

COAL QUALITY

Six core samples of the Knobloch coal bed were analyzed in the Montana Bureau of Mines and Geology analytical laboratory for proximate analysis, forms of sulfur, and heating value (Table 34), and major ash constituents (Table 35).

COAL RESERVES

All strippable reserves in the Poker Jim Creek-O'Dell Creek coal deposit are in the Knobloch coal bed (Table 33). The reserves total 938,070,000 tons, comprising 564,780,000 tons_shown on Plate 11B and 373,290,000 tons shown on Plate 11A.

OTTER CREEK COAL DEPOSIT

LOCATION

The Otter Creek coal deposit (Pl. 12) is in T. 4 and 5 S., R. 45 and 46 E., about 12 miles south of Ashland by road. The deposit is limited on the west, south, and east by excessive overburden, and on the north it adjoins the Ashland (Pl. 13A and B) and the Poker Jim Creek-O'Dell Creek (Pl. 11A and B) coal deposits. To the southeast it borders the Diamond Butte (Pl. 19) and Goodspeed Butte (Pl. 20) coal deposits. It overlaps the Yager Butte (Pl. 23A and B) coal deposit to the east.

FIELD WORK AND MAP PREPARATION

The evaluation of strippable coal in the Otter Creek area was begun in 1967 when four holes were drilled on state-owned land (Matson, Dahl, and Blumer, 1968). In 1970 additional holes were drilled to extend the coal reserves and to gather data for structural control to accurately determine the strippable reserves. Gamma logs of several oil wells were helpful in developing the structural picture, as well as for compiling the overburden maps. The geology in the Otter Creek area was mapped during the summer of 1970 on black-and-white aerial photos and during the winter of 1972 on color aerial photos.

PREVIOUS GEOLOGIC WORK

The Otter Creek area was included in a report on the Birney-Broadus area (Warren, 1959); in a report on strippable coal (Ayler, Smith, and Deutman, 1969); and in a report on strippable coal deposits on state lands (Matson, Dahl, and Blumer, 1968).

LAND OWNERSHIP

The surface ownership in the Otter Creek area is divided between private individuals, the State of Montana, and the Federal Government. The State of Montana owns the surface in sec. 16 and 36 of each township, and the Federal Government has control of a few small tracts in the east half of T. 4 S., R. 45 E., and the land within the Custer National Forest. The rest of the surface is privately owned.

The ownership of the coal on state sections remains with the state; that on public lands with the Federal Government. The Otter Creek area is within the land grant to Burlington Northern, Inc., which owns coal on the odd-numbered sections outside the Custer National Forest. The railroad has conveyed most of the surface but has kept the coal rights from its original land grant. Some coal along the Otter Creek valley is privately owned.

SURFACE FEATURES AND LAND USE

The principal surface feature in the area, Otter Creek, is a northward-flowing tributary, which joins the Tongue River at Ashland. Except in unusually dry years, it contains water all year, but it also has periods of no flow each year. The major tributaries of Otter Creek flow only during periods of heavy precipitation and spring runoff. Tributaries entering Otter Creek from the east are long, have gentle gradients, and occupy wide valleys. They head near the top of the divide between Otter Creek and Pumpkin Creek to the east. Tributaries entering Otter Creek from the west are shorter and steeper. Otter Creek has deeply intrenched meanders; its present flood plain is about a half mile wide. Clinker formed by the burning of the underlying Knobloch coal bed borders the flood plain and forms nearly vertical clinker banks in places. A broad terrace, 100 to 150 feet above the present level of Otter Creek, has been deeply dissected in places by the tributaries of Otter Creek.

The principal land use in the area is livestock grazing, but grain and hay are raised in fields and meadows along Otter Creek and its tributaries.

GEOLOGIC STRUCTURE

Elevations obtained from drill data on the top of the Knobloch coal bed clearly show an anticline in the north half of T. 5 S., R. 45 E. At its crest, the strata have been uplifted about 80 feet above their position in the southernmost part of T. 4 S., R. 45 E., and in the northern part of T. 5 S., R. 45 E. The Knobloch bed is exposed about 30 to 40 feet above stream level near the crest of the anti-

Table 36.-Reserves, overburden, overburden ratio, acres, and tons/acre, Otter Creek coal deposit.

KNOBLOCH BED

Thickness of overburden, ft.		dicated reserves, million tons	i	erburden and nterburden, illion cu. yd.		urden rati yards/tor	,	Acres	Tons/acre
0 to 50		241.77		275.52		1.13		3,686.4	65,591.4
50 to 100		492.21		953.30		1.93		7,091.2	69,413.3
100 to 150		535.42		1,582.42		2.95		7,352.6	72,820.5
150 to 200		487.51		1,454.34		2.98		4,870.4	100,104.7
200 to 250		318.64		1,141.97		3.58		2,790.4	114,207.9
	Total	2,075.55	Total	5,407.55	Average	2.60	Total	25,791.0	Average 80,475.7

cline (Warren, 1959, p. 566). To the north in sec. 16, T. 4 S., R. 45 E., the Knobloch coal bed crops out near stream level, and to the south, in the south half of sec. 26, T. 5 S., R. 45 E., it dips below stream level. Although the information is inconclusive, because of scarcity of drill data, the changes in thickness of the Knobloch coal bed suggest that the anticline, as a structural feature, controlled to some extent the deposition of the Knobloch bed (Pl. 34, Section OC'-A'). The drill holes do show that the Knobloch bed thins and begins to split on the northern flank of the anticline, and the partings thicken on the southern flank, where the lowest bench of the Knobloch is either thin or missing.

COAL BEDS

The Knobloch coal bed contains the only strippable reserves in the Otter Creek coal deposit. Other coal beds include the King bed, which is 70 to 160 feet above the Knobloch bed in T. 5 S., R. 45 E., and several higher beds, which are exposed along the steep slopes of the ridges on both sides of Otter Creek.

The thickest coal section in the Otter Creek deposit was 66 feet as measured in drill hole SH-7054, sec. 2, T. 4 S., R. 45 E. Southward, the Knobloch bed thins gradually; in drill hole SS-6, sec. 16, T. 4 S., R. 45 E., it has a

thickness of 47 feet. The split begins to develop in the Knobloch coal bed in the southern part of T. 4 S., R. 45 E., as shown in a log of an oil well in sec. 24 (Pl. 34, Section OC'-A'), where the upper bench is 46 feet thick and the lower bench is 19 feet thick. Both benches thin southward, as shown by the isopachs (Pl. 12). In the northern part of T. 5 S., R. 45 E., the upper bench of the Knobloch splits again and a bench called the middle bench appears. In about this same place, the lower bench thins and has not been traced farther south.

COAL QUALITY

Core samples from the Otter Creek coal field were analyzed by the Montana Bureau of Mines and Geology analytical laboratory, except for one sample taken in 1967 from drill hole SS-5, which was analyzed by the U.S. Bureau of Mines, Pittsburgh Coal Research Center.

Proximate analysis, forms of sulfur, and heating value are shown in Table 37, and major ash constituents are shown in Table 38.

COAL RESERVES

Strippable reserves in the Knobloch coal bed in the Otter Creek coal field total 2,075,550,000 tons (Table 36).

Table 37.-Proximate analysis, forms of sulfur, and heating value, Otter Creek coal deposit.

D.: 11 - 1.	Drul hole and location	SH-7044 5S R46E S30 DDAD			SH-7045 5S R46E S20 CBBD				SH-7049 5S R46E S2 DCDB			SH-7051 4S R46E S33 CRBA		SH-7052 5S R45E S27 BDAC		SH-7053 4S R45E S4 AAAA
4	Deptn sampled	178 to 187 ft.	187 to 197 ft.	197 to 199 ft.	60 to 65 ft.	106 to 115 ft.	115 to 124 ft.	124 to 127 ft.	177 to 185 ft.	185 to 193 ft.	193 to 197 ft.	116 to	126 to 135 ft.	106 to	116 to 126 ft.	112 to 122 ft.
÷	Lab. number	233	234	235	238	229	230	231	246	247	248	250	251	253	254	255
	Coal	Knobloch			Knobloch				Knobloch			Knobloch		Knobloch		Knobloch
9	rorm of 1/	CBA	∢¤O.	CBA	CBA	¢¤Ω.	⊄ ∰Ό.	₹	CBA	∢m∪.	CBA	ΑŒĆ	Omb	Α¤C	CBA	CBA
	Moisture	27.690	28.470	28.940	29.390	36.400	06/.67	24.560	26.900	29.580	31.350	28.590	30.850	28.760	31.730	28.150
Proximate.	Volatile matter	29.270 40.479 43.761	30.685 42.898 46.014	28.224 39.719 41.993	26.025 36.857 43.385	25.739 40.471 43.094	28.268 40.263 43.461	30.464 40.382 42.785	35.300 48.290 52.007	29.938 42.514 45.568	30.795 44.858 47.416	28.559 39.993 43.016	26.986 39.026 41.178	31.015 43.535 46.316	36.569 53.566 56.471	28.810 40.097 42.371
ate. %	Fixed	37.616 52.021 56.239	36.001 53.986 53.986	38.987 54.864 58.007	33.961 48.097 56.615	33.990 53.443 56.906	36.774 52.378 56.539	40.739 54.002 57.215	32.576 44.563 47.993	35.761 50.783 54.432	34.151 49.747 52.584	~~~v	38.550 55.748 58.822	35.949 50.461 53.684	28.188 41.289 43.529	39.185 54.537 57.629
	Ash	5.423 7.500		3.849 5.417	10.624	3.871 6.086	5.167	4.237 5.617	5.224 7.146	6.703	3.704 5.395	5.019 7.028	3.614 5.226	4.277 6.003	3.512 5.145	3.855 5.365
	Sulfur	.157 .218 .235	.205 .307		5.320 7.534 8.869	.252 268 268	254 274 274	.388 .388	.308 .331	.198 .213	.219 .319 .338	.181 .254 .73	245 245 258	389	.338 .338 .338	.143 .199 .210
Form of sulfur,	Sulfate	0000 0000 0000	666 666	999 999	.126 .179 .210	0.00 0.03 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.6	0.00.00. 0.0333 0.036	.033 .033 .035	.018 .025 .026	0.0.0.0 0.0.0.0	6,6,6 6,6,6 6,6,6	000	9999 9999	000	9000 9000	.022 .023 .023
sulfur. %	Pyritic	.008 .011 .012	0.00. 0.012 1.02	.022 .022 .024	4.295 6.083 7.161	0.00 0.00 0.00 0.00 0.00	.046 .070 .071	.025 .033 .035	.062 .062 .066	0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00	00:00: 0440: 047	<u>6</u>	0.00.0. 0.022 0.022 0.03	.016 .022 .034	.038 .055 .055	.016 .022 .023
	Organic	.149 .206 .223	.197 .275 .295	.175 .246 .260	.898 1.272 1.498	.097 .153 .163	.108 .154 .167	.226 .300 .318	.162 .221 .238	.154 .154	.189 .275 .291	.181 .254 .254	222 232 352 542 542 542	367	.181 265 279	.111 .155 .163
	Heating value (Btu)	8515 11776 12731	8399 11742 12595	8457 11901 12583	8011 11345 13354	7458 11726 12486	7961 11340 12240	8891 11786 12487	8261 11301 12171	8002 11364 12180	7831 11407 12058	8305 11631 12510	11978 11978 12638	8258 11592 17333	11908 11554	8576 11936 12613

	8699 12171 12845 8812 12017 12521	12134 12964 8694 11912 12776 8543 11659 12698	11661 12774	8962 12028 12807	12249 12875 12875	12197 12856	8558 11615 12717	8454 11939 12717	8373 12086 12678	8740 11910 12810
	.086 .121 .127 .113 .154 .160	1174 1173 1173 1174 1275 148	.523	.117	.143 .188 .198	.173	.130 .176 .193	.120 .169 .180	.103 .148 .155	
	0.0066 0.0066 0.0020 0.0020 0.0020	0.000 0.000	.033	000.00	900.5	.022	.024 .033 .036	000.000	.034 .034 .036	
	000000000000000000000000000000000000000	99000000000000000000000000000000000000	.022 .024	.035 .036 .036	.035 .033 .035	000 000 000	0000	000.00	9000	
	220 220 129 175 183	223 223 223 260 288	.533 .584	142 191 203	233	.195	.154	.120 .169 .180	.126 .182 .191	000 000 000 000 000 000 000 000 000 00
	3.748 5.245 2.952 4.025	6.401 6.767 5.998 8.185	8.719	4.532 6.082	3.693 4.859	5.126	6.381 8.661	4.334 6.120	3.237 4.673	5.2
	36.817 51.514 54.365 40.482 55.205 57.520	52.239 55.811 37.810 51.801 55.561 38.353 57.002 37.721	51.772 56.717	39.261 52.693 56.105	59.792 52.330 55.002	51.794 54.592	37.444 50.820 55.639	37.372 52.778 56.218	36.582 52.804 55.392	38.6 52.6 56.6
	30.904 43.241 45.635 29.897 40.770 42.480 30.073	41.361 30.241 44.189 30.241 44.433 28.930 39.478 28.98 28.98	39.509 43.283	30.717 41.225 43.895	32.334 42.811 44.998 37.852	43.080 45.408	29.855 40.519 44.361	29.104 41.102 43.782	29.460 42.523 44.608	29.6 40.3 43.4
Moisture	28.530 26.670 27.290	27.010		25.490	23.960	0+1:57	26.320	29.190	30.720	26.6
	4mU4mU4r	MU4MU4MU4	യ	V M D →	∀ ₩∪ <	t m U	CBB	CBA	CBA	CBA
	Knobloch			Knobloch			Knobloch	Knobloch		Knobloch
	256	258 259 260	261	262	263	264	265	271	272	1-73319
	122 to 132 ft. 132 to 140 ft.	140 to 148 ft. 156 ft. 156 to 165 ft.	165 to 171 ft.	84 to 94 ft.	94 to 100 ft.	100 to 106 ft.	216 to 218 ft.	141 to 149 ft.	149 to 153 ft.	56 to 77 ft.
	SH-7053 4S R4SE S4 AAAA			SH-7054 4S R45E S2 DBDC			SH-7055 4S R45E S6 DDBA	SH-7060 4S R46E S6 DDAC		SS-5 4S R45E S36 DADD

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 38.-Major ash constituents, Otter Creek coal deposit.

	Total	90.5	97.3	94.9	96.4		99.5	1.96	9.96		96.3	93.9	95.5	95.9
	TiO ₂	9.	-:	r.	9.		7:	9.	œί		т.	.6	∞i	7.
	sO ₃	7.8	10.3	10.5	8.3		7.2	10.8	6.3		9.5	7.1	4.9	5.9
	SiO_2	27.9	11.0	32.2	28.6		30.3	29.0	31.0		42.2	25.7	39.8	30.2
%	P ₂ O ₅	7.	Η:	'n	7		7.	1.2	4,		7	2	۲.	Years!
Constituent,	Na ₂ O	7.5	2.7	5.3	9.5		9.4	8.9	9.4		5.9	5.3	6.9	11.0
Ú	MgO	3.5	∞.	7.7	3.7		3.7	3.1	3.9		2.6	5.3	2.5	1.9
	K20	٨	λi	ω	ω		ω	7	5		1.0	7	4	4
	Fe ₂ O ₃	5.3	61.5	4.9	5.0		5.0	4.7	3.6		3.2	3.4	2.7	3.8
	CaO	20.5	5.4	20.4	23.8		24.1	20.1	20.6		12.9	24.5	15.0	22.5
	Al ₂ O ₃	16.2	4.9	12.4	16.4		18.1	18.1	20.4		18.1	21.5	22.0	19.6
5	Coar	Knobloch	Knobloch		Knohloch		Knobloch	Knobloch	Knobloch			Knobloch	Knobloch	Knobloch
.	Lab. sample	6	233-235	238	229-231	246-248	250-251	253_254		255-259	260-261	262-264	265	271-272
:	Depth sampled	178 to	199 ff. 60 to	65 ft.	127 ft.	177 to 197 ft.	116 to 135 ft.	106 to	170 11:	112 to 156 ft.	156 to 171 ft.	84 to 106 ft.	216 to 218 ft.	141 to
	Drill hole and location	SH-7044 5S 46E S30	DDAD SH-7045	CBBD	011 7040	SE-7047 5S 46E S2 DCDB	SH-7051 4S 46E S33 CBBA	SH-7052 5S 45E S27	SH-7053	4S 45E S4 AAAA		SH-7054 4S 45E S2 DBDC	SH-7055 4S 45E S6 DDBA	SH-7060 4S 46E S6

Table 39.-Reserves, overburden, overburden ratio, acres, and tons/acre, Ashland coal deposit.

KNOBLOCH BED

Thickness of overburden, ft.		dicated reserves, million tons		Overburden, illion cu. yd.		urden rat yards/to	•	Acres		Tons/acre
0 to 50 50 to 100 100 to 150 150 to 200 200 to 250	Total	89.34 414.26 758.39 866.39 <u>567.82</u> 2,696.20	Total	51,99 535.63 1,617.23 2,579.97 2,159.68 6,944.50	Average	0.58 1.29 2.13 2.98 3.80 2.58	Total	928 4,416 8,256 7,616 6,016 27,200	Average	96,271.6 93,808.9 91,859.3 113,759.2 94,384.9 99,125.0
				A, C, and S	SAWYER B	EDS				
0 to 50 50 to 100 100 to 150	Total	146.04 111.99 <u>99.46</u> 357.49	Total	440.56 772.84 1,128.97 2,342.37	Average	3.01 6.90 11.35 6.55	Total	8,275.2 6,387.2 5,600.0 20,262.4	Average	17,647.9 17,533.5 17,760.7 17,643.0

ASHLAND COAL DEPOSIT

LOCATION

The Ashland coal deposit is in T.2 and 3 S., R. 44, 45, and 46 E., Powder River and Rosebud Counties (Pl. 13A, B). The area is bounded on the west by the Tongue River, which is also the east boundary of the Northern Cheyenne Indian Reservation. It is bounded on the east by excessively thick overburden on the divide between Pumpkin Creek and Otter Creek. To the north, the area borders the Beaver Creek-Liscom Creek coal deposit (Pl. 9), and to the south, it borders the Poker Jim Creek-O'Dell Creek coal deposit (Pl. 11B), which is south of the southeastern corner of T. 3 S., R. 44 E., and the Otter Creek coal deposit (Pl. 12), which is south of T. 3 S., R. 45 and 46 E.

FIELD WORK AND MAP PREPARATION

The field work, conducted during the summer of 1970, included drilling and surface mapping of the coal outcrops and clinker boundaries. Black-and-white aerial photos were used for field mapping; colored aerial photos borrowed from the Ashland Division of the U.S. Forest Service were used for further evaluation. Structure contour maps of the top of the Knobloch and Sawyer coal beds were prepared and 7½-minute topographic maps were used in the preparation of overburden maps.

PREVIOUS GEOLOGIC WORK

The outcrops of the major coal beds as well as the burned areas within the Ashland area were originally mapped by Bass (1932). Two small strippable coal deposits within the Ashland coal deposit were mapped by Brown and others (1954, p. 196) and described as the Home Creek and Cook Creek deposits. These two strippable areas were also included in a report on the strippable coal resources of Montana by Ayler, Smith, and Deutman (1969).

LAND OWNERSHIP

Most of the surface over the Ashland coal deposit is privately owned. The deposit lies within the land grant to Burlington Northern, Inc., and although it has conveyed the surface, the railroad has retained most minerals including coal in the odd-numbered sections outside the Custer National Forest. The State of Montana owns both surface and coal in sec. 16 and 36 of each township. Some coal along the tributaries of Otter Creek, including the East Fork of Otter Creek and Home Creek, is privately owned. The federal land outside the forest is administered by the U.S. Bureau of Land Management and that within the Custer National Forest by the U.S. Forest Service.

SURFACE FEATURES AND LAND USE

The most prominent surface feature in the Ashland area is the great mass of clinker formed by the burning of the Knobloch coal bed. In many places, the clinker is more than 100 feet thick. Along Otter Creek and its tributaries, the clinker forms high steep-sided banks and cliffs of reddish or multicolored altered rock, which supports the growth of ponderosa pine. The multicolored clinker,

Table 40.-Proximate analysis, forms of sulfur, and heating value, Ashland coal deposit.

				SIRI	FFADI	LE CO	AL, S	0011	1LAS	TERN	MUNT.	ANA					
1	Heating value (Btu)	8275 11829 12558 8576 11978	272 822 163 268	8431 11650 12458	8759 11927 12655	8591 11612 12544	8704 11930 12562	8758 11787 12796	8642 11879 12586	8643 12041 12793	8395 11903 12632	8536 11888 12684	8495 11818 12625	8242 11586 12812	8337 11680 12707	9070 12689 13552	8216 11643 12780
	Organic	181122222222222222222222222222222222222	.236 .236 .236	.099	.084 .114 .121	.205 .205 .221	.135 822 142	.088 .119 .129	.082 .113 .20	302 303 303 303 303 303 303 303 303 303	.095 .134	.103 .109	.087 .121 .130	.099 .139 .154	.109	.137 .192 .205	.373 .528 .580
Form of sulfur, %	Pyritic	0.00.00 0.00.00 0.00.00 0.00.00 0.00.00 0.00.0	0.000.0 200.0 244.0 244.0	.017 .023 .024	.023 .023 .024	0.00. 0.00. 1.00. 1.00.	.016 .022 .024	.059 .059 .064	.016 .023 .024	.027 .024 .025	.016 .022 .024	.016 .023 .024	.022 .022 .024	.025 .035 .038	.022 .022 .024	.024 .026 .026	.070 .099 .109
Form o	Sulfate	666666 666666	99999 99999	.023 .023	.023 .023 .024	6 6 6 6 6 6 6 6 6 6	.022 .022 .024	.036 .036 .039	0.00 0.023 6.24	.017 .024 .025	.008 .011 .012	.023 .023 .024	.016 .022 .024	.000 012 013	.0016 .022 .024	00.0. 0112 013	.008 .011 .012
	Sulfur	122042 12104 1269 1369	.251 .270 .294	.133 .183	.117		.131 .180 .189	.159 .214 .232	.115 .158 .168	253 253 253 254 253	.119	106 148 158	.119	.132 .185 .205	.153 .153	.163 .228 .243	.450 .638 .701
	Ash	4.057 5.801 4.192 5.855	5.872 8.303	4.695	5.757	9.4. 9.6. i	.03	8	4.083 5.613	4.220 5.879	4.069	6.278	4.596 6.394		.07		6.275 8.894
ate, %	carbon	68888888888888888888888888888888888888	2004. 2004.	37.150 51.333 54.895	37.957 51.685 54.842	39.376 53.226 57.498	40.055 54.900 57.811	38.376 51.650 56.071	38.154 52.445 55.564	38.073 53.041 56.354	38.208 54.173 57.489	38.211 53.219 56.783	37.624 52.343 55.918	36.471 51.267 56.691	37.616 52.698 57.330	38.565 53.952 57.622	37.404 53.010 58.185
Proximate.	Volatile matter	28.655 40.966 43.488 28.777 40.191	42.691 26.512 37.489 40.883	30.525 42.179 45.105	31.255 42.559 45.158	29.107 39.345 42.502	29.232 40.065 42.189	30.066 40.465 43.929	30.513 41.942 44.436	29.488 41.081 43.646	28.253 40.058 42.511	29.082 40.504 43.217	29.660 41.263 44.082	39.165 43.309	39.223 42.670	28.362 39.679 42.378	26.880 38.096 41.815
	Moisture	30.050	29.280	27.630	26.560	26.020	27.040	S	27.250	28.220			28.120	28.860	78.620	78.520	29.440
t.	rorm of 1 analysis 1/	⊄ m∪∢m(J∢¤U	CBA	daΩ-	¢¤∪∙	¢¤∪.	⊄¤∪-	CB A	∀ ₩∪	₹ ªO	daΩ-	eaΩ-	¢æ∪-	€¤O.	⊄¤O.	CBA
-	Coan ped	Knobloch		Knobloch							Knobloch						
÷	Lao. number	273	275	276	277	278	279	280	281	282	287	288	289	290	291	292	293
G.	Sampled	72 to 80 ft.	11/10 121 ft.	60 to 68 ft.	68 to 76 ft.	76 to 85 ft.	85 to 94 ft.	94 to 103 ft.	103 to 112 ft.	112 to 116 ft.	101 to 1111 ft.	111 to 119 ft.	119 to 127 ft.	127 to 136 ft.	136 to 144 ft.	144 to 153 ft.	153 to 154 ft.
D-11 t-1-	and location	SH-7061 3S R45E S14 CBAB		SH-7062 3S R45E S26 DBAC							SH-7067 3S R45E S12 AABD						

8196 12521 12521 12521 12624 12639 12609 12539 1	7965 11627 12353 7740 11306 12394 8015 11720 12579 7814 11646
0.1100110000011111101011000011111000011111	2.2.2 2.2.2 2.2.2 2.2.4 2.2.4 2.2.4 3.3 3.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3
6000000000000000000 48000000000000000000	0.002222 3.322244222 0.00000000000000000000000000000
0.000.000.000.000.000.000.000.000.000.	0.0022 0.022 0.022 0.025 0.025 0.000 0.012 0.012
EHITTICICICATION TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO THE TOTAL	5.52 5.446 5.466 11.4667 14.673 16.773 16.77
6.245 6.538 6.538 6.538 6.435 6.435 7.849 7.849 7.530 8.623 6.623 7.403 7.317	4.026 5.876 6.013 8.783 4.672 6.832 4.914
86222 86	35.506 55.062 55.062 29.396 47.073 35.601 52.061 52.056 55.873 57.718 57.718
8444244464446444644464446444644464446444	28.978 44.9397 44.9397 33.051 52.927 28.117 44.117 44.957 44.957
30.180 31.070 32.350 30.980 32.070 26.730 28.730 26.160	31.490 31.540 31.610 32.910
人名と くらく くらく くらく くらく くらく くらく くらく くらく くらく くら	女祖ひ女祖ひ 女祖ひ 女祖ひ
Knobloch	Sawyer Sawyer Sawyer
295 296 297 299 300 302 303 304	283 284 286 301
115 to 125 ft. 125 ft. 134 to 142 to 152 to 152 to 160 to 160 to 167 to 165 to 165 to	90 to 97 ft. 100 ft. 82 to 92 ft. 152 to 162 ft.
SH-7068 3S R45E S10 BDDC BDDC SH-7071 3S R45E S8 ABBC	SH-7064 3S R46E S8 CACC SH-7066 2S R45E S36 CDCD 2S R45E S21 CBDA

 $^{1}/\mathrm{A}$, as received; B, moisture free; C, moisture and ash free.

Table 41.-Major ash constituents, Ashland coal deposit.

Deill bole	Denth	1 sh	Coal						Constituent, %	ent, %				
and location	sampled	sample	peq	Al ₂ O ₃	CaO	Fe ₂ O ₃	K20	MgO	Na ₂ O	P205	SiO ₂	SO ₃	TiO2	Total
SH-7061 3S 45E S14 CBAB	72 to 80 ft.	273	Knobloch	21.2	27.1	4.3	7	3.8	8.4	9.	26.9	6.1	9.	99.2
	111 to 121 ft.	274-275		17.6	21.5	3.8	7	3.1	6.2	т:	37.9	6.5	7:	97.6
SH-7062 3S 45E S26 DBAC	60 to 116 ft.	276-282	Knobloch	18.1	23.8	3.4	~ !	6.1	3.2	- -	34.1	7.9	۲:	5.76
SH-7067 3S 45E S12 AABD	101 to 154 ft.	287-293	Knobloch	17.2	20.1	4.1	4 .	3.1	7.6	κi	36.4	8.0	7:	97.9
SH-7068 3S 45E S10 BDDC	115 to 164 ft.	295-300	Knobloch	18.7	19.0	4.1	7	2.8	8.2	κί	33.3	8.0	7.	95.5
SH-7071 3S 45E S8 ABBC	139 to 169 ft.	302-305	Knobloch	20.3	23.8	4.3	ι.	3.8	6.3	κi	31.9	5.4	∞.	97.2
SH-7064 3S 46E S8 CACC	90 to 100 ft.	283-284	Sawyer	12.4	19.7	7.3	rg.	4.2	10.2	2.3	20.5	20.0	λi	97.4
SH-7066 2S 45E S36 CDCD	82 to 92 ft.	286	Sawyer	18.0	18.8	5.5	9:	3.1	11.8	1.4	25.9	11.8	λ	97.4
SH-7070 2S 45E S21 CBDA	152 to 162 ft.	301	Sawyer	16.6	18.5	7.1	4.	3.5	10.5	1.7	22.1	14.9	۸i	95.8

the large terrace levels above the river valleys, which support thin stands of ponderosa pine, and the barren buttes in the background present picturesque scenery.

The surface in the Ashland coal field is deeply dissected along the valleys of Otter Creek, the East Fork of Otter Creek, and Home Creek. Beyond and above the clinkered areas, the surface is rolling and supports the growth of native grasses. The divide between Otter Creek and Pumpkin Creek to the east is sharp and is covered with ponderosa pine.

The flood plain of Otter Creek is about ¾ of a mile wide in the Ashland area. Flood plains of Home Creek and East Fork of Otter Creek are about ¼ of a mile wide. In T. 2 S., R. 44 and 45 E., the tributaries of the Tongue River are relatively short and steep and head in the Cook Mountains; these mountains form a high divide, which separates the East Fork of Otter Creek from Beaver Creek to the north.

The principal land use within the Ashland coal field is livestock grazing. Hay is raised as a principal crop in the meadows along the valley bottoms of Otter Creek, its tributaries, and Tongue River. Some grain is cultivated on the rolling terrain above the rugged topography developed on the clinker. Lumbering is limited to the ponderosa pine stands growing on the higher ground surrounding Ashland.

GEOLOGIC STRUCTURE

The strata in the Ashland coal field are nearly flat. Along the East Fork of Otter Creek, the dip is about 20 feet per mile to the southwest. In T. 2 S., R. 44 and 45 E., the dip is about 40 feet per mile to the south as shown by drill hole data of the Sawyer coal bed. Some reversals do occur, and one of these, near the center of T. 2 S., R. 45 E., coincides with the topographic high of the Cook Mountains.

COAL BEDS

The Knobloch and Sawyer coal beds both contain strippable reserves in the Ashland coal deposit. The Knobloch, ranging in thickness from 40 to 58 feet, is the more important. To the north, in T. 2 S., R. 44 and 45 E., it is 40 to 50 feet thick, but farther south, in T. 3 S., R. 45 and 46 E., it is 50 to 58 feet thick.

The Sawyer coal bed, about 165 feet above the Knobloch bed, is about 10 feet thick as measured in drill holes SH-7064, sec. 8, T. 3 S., R. 46 E., and SH-7070, sec. 21, T. 2 S., R. 45 E. In this latter drill hole, an upper bench

6 feet thick may be the C or D bed described by Bass (1932, p. 55). A surface mine in sec. 3, T. 3 S., R. 45 E., is producing from the Sawyer coal bed. Near the mine, in drill hole SH-7066, sec. 36, T. 2 S., R. 45 E., the Sawyer coal bed has a measured thickness of 14 feet.

Other beds that are minable in the northeastern part of the area (Pl. 13B) are the C and D coal beds, which have a combined thickness as great as 11 feet, and the A bed, which has a thickness of 9 feet. Sections of the Sawyer bed, the A bed about 80 feet below it, and the D bed about 220 feet above it, were measured by Bass (1932).

Two other beds in the area may correlate with the Flowers-Goodale and Terret beds described by Bass (1932, p. 53). Both are below the Knobloch bed; the upper bed has a thickness of 8 feet in drill hole SH-7067 in sec. 12, T. 3 S., R. 45 E. The gamma log of an oil well in the NE½ sec. 28, T. 3 S., R. 45 E., shows a coal bed at an altitude of 2,973 feet, which is very near the same as the bed below the Knobloch in drill hole SH-7067. The gamma log shows a 3-foot bench separated by an 8-foot parting from a 6-foot bench. A lower bed, at an altitude of 2,844 feet, has a thickness of 6 feet.

COAL QUALITY

Only one earlier report of analysis of coal from this area is available; that sample was obtained from the Coal Creek mine in sec. 3, T. 3 S., R. 45 E. In this analysis, the moisture content is 30%, volatile matter is 29.3%, fixed carbon is 35.8%, ash content is 4.9%, sulfur content is 0.5%, hydrogen content is 6.5%, carbon content is 48.6%, nitrogen content is 0.7%, oxygen content is 38.8%, and the heating value is 8,160 Btu.

Thirty-one core samples obtained from the Ashland coal field on this project were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, forms of sulfur, and heating value are shown in Table 40, and major ash constituents are shown in Table 41.

COAL RESERVES

The Knobloch coal bed contains large strippable reserves. The areas of greatest potential are along the East Fork of Otter Creek and along Home Creek, where the Knobloch bed is thickest and the terrain is most favorable to strip mining.

Strippable reserves in the Knobloch coal bed total 2,696,200,000 tons and in the A, C, and Sawyer coal beds 357,490,000 tons (Table 39).

Table 42.-Reserves, overburden, overburden ratio, acres, and tons/acre, Colstrip coal deposit.

ROSEBUD BED

Thickness of overburden, ft.		dicated reserves, million tons		Overburden, illion cu. yd.		urden rat yards/to	•	Acres		Tons/acre
0 to 50		523.86		646.4		1.23		12,143.7		43,137.4
50 to 100		457.43		1,281.06		2.8		10,589.3		43,198.5
100 to 150		457.97		2,146.19		4.69		10,646.1		43,017.8
	Total	1,439.26	Total	4,073.65	Average	2.83	Total	33,379.1	Average	43,118.6

COLSTRIP COAL DEPOSIT

LOCATION

The Colstrip coal deposit (Pl. 14) is in T. 1 and 2 N., R. 38, 39, 40, 41, and 42 E., and T. 1 S., R. 40 and 41 E., Rosebud and Treasure Counties. The community of Colstrip, in sec. 34, T. 2 N., R. 41 E., had a population of 304 in 1960. As a result of expanded mining operations and construction of two new 350-megawatt power plants just east of Colstrip, the population has increased dramatically. The Montana Power Company purchased the community of Colstrip, along with mining leases and mining equipment, from Burlington Northern, Inc., in 1959. Western Energy Company, a subsidiary of The Montana Power Company, operates the Rosebud mine near Colstrip and ships the coal by unit train to The Montana Power Company 180-megawatt steam generation plant at Billings and to markets in the upper Midwest.

Another strip mine a few miles south of Colstrip is the Big Sky mine, opened in 1969 and operated by Peabody Coal Company. Coal from this mine is being shipped by unit train to northern Minnesota for use in power generation.

Surface mining in the Colstrip area began in 1924, when the Northwestern Improvement Company opened the pit in the Rosebud coal bed near Colstrip to supply coal for locomotives of the parent Northern Pacific (now Burlington Northern, Inc.). The mine operated until the mid 50's but closed when coal was no longer needed for steam locomotives. Western Energy Company reopened the Colstrip mine in 1968.

FIELD WORK AND MAP PREPARATION

The field work in the Colstrip area was conducted entirely by the staff of Burlington Northern, Inc., under

the supervision of Virgil W. Carmichael in 1964, using the method developed by Burlington Northern (Carmichael, 1967). The field method involved establishing temporary benchmarks throughout the area and obtaining vertical control through the use of closely controlled altimeter surveys. Holes were drilled and cores were taken to obtain quantitative and qualitative information on the coal and to obtain structural information for preparation of overburden maps. A few of the 69 drill holes penetrated the underlying McKay coal bed.

The overburden map for the Colstrip area was completed during the winter of 1964-65 by Burlington Northern personnel.

PREVIOUS GEOLOGIC WORK

Geology in the Colstrip area was mapped and described by Dobbin (1929) and by Kepferle (1954). Ayler, Smith, and Deutman (1969) included the area in their report on the strippable coal resources in Montana.

LAND OWNERSHIP

The coal field lies within the land grant of oddnumbered sections to Burlington Northern, Inc., who obtained possession of additional land in T. 1 and 2 N., R. 39, 41, and 42 E. Burlington Northern has sold some of its surface and minerals to The Montana Power Company but has retained title to much of the surface in the Colstrip area. The Federal Government owns the coal in the even-numbered sections in the Colstrip area except for sec. 16 and 36 in each township, which are owned by the State of Montana.

SURFACE FEATURES AND LAND USE

The Colstrip coal deposit is on the divide between Rosebud Creek to the east and Armells Creek. Most of the divide is gently rolling, but near the northern and eastern edges of the mapped area, it is relatively steep and deeply dissected where the clinker forms a resistant multicolored zone. Farther west, buttes and ridges are capped by clinker from the burning of higher coal beds. Armells Creek is an intermittent stream of gentle gradient, and flows only during periods of heavy precipitation and spring runoff. In the southern part of the mapped area, the valleys are steep sided where the Sawyer coal bed, which lies above the Rosebud bed, has burned and the clinker caps the ridges between the valleys of Coal Bank Creek, Miller Creek, and Cooley Creek. To the west, the Little Wolf Mountains form a high divide between Armells Creek and Sarpy Creek.

Ponderosa pine trees grow along the valley sides throughout the area. Part of the valley of Armells Creek is utilized for dry-land farming. Hay is raised in meadows along the valley bottoms.

GEOLOGIC STRUCTURE

The strata in the coal field are almost horizontal, except where disturbed by a few faults, which have only small displacement. Generally the top of the Rosebucl coal bed is highest in T. 2 N., R. 39 E., and lowest in T. 1 N., R. 41 E.

COAL BEDS

The principal coal beds in the Colstrip area are the Rosebud and the McKay beds. Thickness of the Rosebud bed is a maximum of 29 feet in drill hole RB-43, sec. 27, T. 1 N., R. 41 E., and averages about 25 feet throughout the area. In certain parts of the coal field, the Rosebud contains a parting in the center or upper quarter of the coal bed, and in some areas, this parting attains a thickness of as much as 2 feet.

The McKay coal bed is 18 feet below the Rosebud in drill hole RB-48, sec. 13, T. 1 N., R. 41 E., and 61 feet in drill hole RB-58, sec. 5, T. 1 N., R. 41 E. Thickness of the McKay bed averages about 8 feet. Three thinner coal beds in the Tongue River Member below the Rosebud and McKay coal beds have been mapped in the area (Dobbin, 1929). The Stocker Creek coal bed (0 to 12 feet thick) is about 40 feet below the top of the McKay, the Robinson coal bed (0 to 8 feet thick) is about 140 feet below the top of the Stocker Creek bed, and the Burley coal bed (0 to 5 feet thick) is about 60 feet below the Robinson coal bed. A still lower coal bed, the Big Dirty, is about 250 feet below the Burley bed, but it is in the Lebo Shale Member of the Fort Union Formation. It crops out next to the road about 10 miles north of the community of Colstrip. Several coal beds above the Rosebud bed crop out in the Little Wolf Mountains; these include the Lee, Popham, Sawyer, Proctor, and Richard coal beds. The clinker formed as a result of the burning of the Sawyer bed, which is about 300 feet above the Rosebud, caps buttes and ridgetops throughout the area.

COAL QUALITY

Nineteen coal cores obtained on the Colstrip drilling project were analyzed by U.S. Bureau of Mines Grand Forks Coal Research Laboratory. Proximate analysis, ultimate analysis, and heating value are shown in Table 43, and forms of sulfur and ash fusibility are shown in Table 44.

All core samples are of the Rosebud coal except three samples of the McKay.

COAL RESERVES

Reserves in the Colstrip deposit total 1,439,260,000 tons (Table 42).

Table 43.-Proximate analysis, ultimate analysis, and heating value, Colstrip coal deposit.

	_		ST	RIPPABLE	COAL, SO	UTHEAST	ERN MON	TANA		
;	Heating value (Btu)	9090 11580 13010 9060	11580 12850	9050 11810 13160	8400 10700 12740	9060 11710 13190	8950 11650 13100	8920 11590 13010 8930	11820 12930	8980 11550 12830
	0	30.68 14.73 16.56	14.60 16.20	31.93 14.54 16.19	30.87 14.98 17.86	31.03 14.16 15.96	32.06 14.95 16.81	31.44 14.22 15.95 32.68	14.50 15.85	31.35 14.89 16.56
	Z	0.79	1.01 1.12	0.80 1.04 1.16	.72 .92 1.09	.81 1.04 1.17	.82 1.06 1.19	0.80 1.04 1.17 0.81	1.08	.92 1.19 1.32
Ultimate, %	O	53.12 67.67 76.08	55.07 67.83 75.29	52.62 68.69 76.55	49.42 62.95 74.96	52.45 67.75 76.32	51.85 67.46 75.86	52.36 68.06 76.40 52.50	69.48 76.03	52.83 67.93 75.49
ר	н	5.97 4.55 5.12	5.76 4.27 4.74	6.11 4.58 5.11	5.66 4.17 4.96	6.04 4.56 5.13	6.08 4.57 5.14	6.02 4.49 5.04 6.10	4.48	5.88 4.39 4.88
	S	0.77	1.87 2.39 2.65	9.68 0.89 0.99	0.75 0.95 1.13	0.97 1.26 1.42	.68 .89 1.00	0.99 1.28 1.44 1.41	1.86	1.23 1.58 1.75
	Ash	8.67	7.75 9.90	7.86	12.58 16.03	8.70	8.51	8.39 10.91 6.50	8.60	7.79 10.02
%	Fixed	40.11 51.09 57.44	42.61 54.47 60.45	40.11 52.36 58.35	36.48 46.44 55.31	39.92 51.57 58.09	38.77 50.45 56.73	40.11 52.13 58.51 41.16	54.49 59.61	41.20 52.98 58.88
Proximate %	Volatile matter	29.71 37.86 42.56	27.88 35.63 39.55	28.63 37.38 41.65	29.46 37.53 44.69	28.80 37.20 41.91	29.58 38.48 43.27	28.43 36.96 41.49	36.91	28.78 37.00 41.12
	Moisture	21.51	21.76	23.40	21.48	22.58	23.14	23.07	2	22.23
	Form of analysis $^{1}/$	C B A	C B A	CBA	C B A	CBA	C B A	Y ⊠ O ≺	CBB	CBA
	Coal bed	Rosebud	McKay	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	McKay	МсКау
	Lab. number	H.07871	H-97822	H-97823	H-97824	H-97825	H-97826	H-97827	H-97828	H-97829
	Depth sampled	54 to	8/ It. 100 to 108 ft.	145 to 170 ft.	77 to 101 ft.	27½ to 53 ft.	80 to 107% ft.	56½ to 77½ ft.	138 to 146½ ft.	71 to 81 ft.
	Drill hole and location	RB-46 1N 41E S15	CDDD	RB-54 1N 40E S27 AABA	RB-55 1N 40E S23 RDDB	RB-56 1N 41E S30 RDAD	RB-57 IN 40E S11 RARR	RB-58 1N 41E S5 CAAB		RB-59 2N 41E S31 ADAD

8990 11550 13050	9020 11560 13030	8680 11380 12920 7810 9930	8990 11610 13030	9010 11700 13110	8820 11050 12850	8840 11430 13000	8940 11740 13140	8800 11470 13060
31.04 14.53 16.40	30.93 14.60 16.46	32.78 15.31 17.37 26.63 9.76	31.18 14.33 16.09	31.53 14.42 16.16	29.79 14.80 17.22	31.82 15.07 17.15	32.43 14.71 16.47	31.36 13.96 15.89
0.81 1.04 1.18	0.78 1.00 1.13	0.79 1.03 1.17 0.71 0.91	0.79 1.03 1.15	0.78 1.02 1.14	0.79 0.99 1.15	0.82 1.06 1.21	0.79 1.04 1.16	0.77 1.00 1.14
52.25 67.15 75.82	52.48 67.26 75.82	50.82 66.65 75.62 43.63 55.45	52.70 68.08 76.45	52.47 68.11 76.34	51.81 64.95 75.53	51.10 66.09 75.20	51.75 67.99 76.10	51.54 67.13 76.43
6.01 4.56 5.15	5.93 4.48 5.05	6.03 4.45 5.05 5.41 3.87 4.89	6.04 4.56 5.12	6.11 4.62 5.18	5.76 4.40 5.11	5.97 4.48 5.10	6.17 4.63 5.18	6.04 4.50 5.13
1.00 1.29 1.45	1.07	0.53 0.70 0.79 7.20 9.15	0.82 1.06 1.19	0.81 1.05 1.18	0.68 0.85 0.99	0.91 1.18 1.34	0.74 0.97 1.09	0.95 1.24 1.41
8.89	8.81	9.05 11.86 16.42 20.86	8.47 10.94	8.30	11.17	9.38 12.12	8.12 10.66	9.34
38.92 50.02 56.48	39.53 50.67 57.13	39.03 51.20 58.09 34.74 44.15	39.56 51.10 57.38	39.06 50.70 56.82	38.38 48.12 55.96	39.24 50.76 57.75	39.01 51.25 57.37	38.66 50.35 57.33
29.99 38.55 43.52	29.68 38.04 42.87	28.16 36.94 41.91 27.53 34.99 44.21	29.38 37.96 42.62	29.68 38.52 43.18	30.21 37.87 44.04	28.71 37.12 42.25	28.99 38.09 42.63	28.77 37.48 42.67
22.20	21.98	23.76	22.59	22.96	20.24	22.67	23.88	23.23
CBA	CBB	A B D A B D	CBB	CBA	CBA	СВА	СВА	CBA
Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud
H-97830	H-97831	H-97832 H-97833	H-97834	H-97835	Н-97836	H-97837	Н-97838	H-97839
73 to 99½ ft.	72 to 97½ ft.	80 to 100½ ft. 100½ to 108 ft.	35½ to 60 ft.	115 to 142% ft.	52 to 78 ft.	86 to 112½ ft.	89 to 115 ft.	73 to 100 ft.
RB-60 2N 41E S31 BCDC	RB-61 1N 40E S3 BCCC	RB-63 2N 40E S32 ABCD	RB-64 2N 39E S34 ABCD	RB-65 2N 39E S29 CCCC	RB-66 2N 38E S13 CAAB	RB-67 1N 40E S9 CCBC	RB-68 1N 40E S4 DADA	RB-69 1N 40E S5 CBBC

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 44.-Forms of sulfur and fusibility of ash, Colstrip coal deposit.

•	Real specific gravity	1.50	1.53						1.51	1	
, H	Fluid temp.	2420	2150		2240	2230		2470	2210		2200
Fusibility of ash,	Softening temp.	2380	2120		2200	2200		2420	2150		2150
	Initial deformation temp.	2340	2080		2160	2160		2370	2100		2100
	Organic	0.40	0.57 0.27	0.35					0.39 0.50 0.56	0.27 0.36 0.40	
sulfur, %	Pyritic	0.35	0.50	1.97					0.58 0.75 0.84	1.09 1.45 1.58	
Form of sulfur, %	Sulfate	0.03	0.04	0.07					0.02 0.02 0.03	0.04 0.05 0.06	
	/ Sulfur	0.77	1.11	2.39	0.68 0.89 0.99	0.75 0.95 1.13	0.97 1.23 1.42	.68 .89 1.00	0.99 1.28 1.44	1.41 1.86 2.04	1.23 1.58 1.75
	Form of analysis $^{1}/$	∢ 4	4 O 4	CB	B	CBA	СВА	CBA	CBA	CBA	BBA
	Coal bed	Rosebud	McKav		Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	McKay	МсКау
	Lab. number		H-97821	H-97822	H-97823	H-97824	H-97825	H-97826	H-97827	H-97828	Н-97829
	Depth sampled		54 to 87 ft.	100 to 108 ft.	145 to 170 ft.	77 to 101 ft.	27½ to 53 ft.	80 to 107½ ft.	56½ to 77½ ft.	138 to 146½ ft.	71 to 81 ft.
	Drill hole and location	RB-46	1N 41E S15 CDDD		RB-54 1N 40E S27 AABA	RB-55 1N 40E S23 BDDB	RB-56 1N 41E S30 BDAD	RB-57 1N 40E S11 BABB	RB-58 1N 41E S5 CAAB		RB-59 2N 41E S31 ADAD

		1.51	1.70						
2200	2160	2320	2100	2220	2300	2520	2320	2300	2210
2150	2110	2280	2060	2180	2200	2470	2280	2230	2170
2100	2050	2240	2020	2140	2150	2420	2240	2180	2130
		0.37 0.49 0.56	1.04 1.33 1.68						
		0.13 0.17 0.20	5.86 7.45 9.42						
		0.03 0.04 0.04	0.29 0.37 0.47						
1.00 1.29 1.45	1.07 1.37 1.54	0.53 0.70 0.79	7.20 9.15 11.56	0.82 1.06 1.19	0.81 1.05 1.18	0.68 0.85 0.99	0.91 1.18 1.34	0.74 0.97 1.09	0.95 1.24 1.41
B C	CBA	CBA	CBA	CBA	CBA	B A	CBA	CBA	CBA
Rosebud	Rosebud	Rosebud		Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud
H-97830	H-97831	H-97832	Н-97833	H-97834	H-97835	Н-97836	H-97837	H-97838	H-97839
73 to 99½ ft.	72 to 97½ ft.	80 to 100½ ft.	100½ ft. 108 ft.	35½ to 60 ft.	115 to 142½ ft.	52 to 78 ft.	86 to 112% ft.	89 to 115 ft.	73 to 100 ft.
RB-60 2N 41E S31 BCDC	RB-61 1N 40E S3 BCCC	RB-63 2N 40E S32 ABCD		RB-64 2N 39E S34 ABCD	RB-65 2N 39E S29 CCCC	RB-66 2N 38E S13 CAAB	RB-67 1N 40E S9 CCBC	RB-68 1N 40E S4 DADA	RB-69 1N 40E S5 CBBC

 $^{1}/A$, as received; B, moisture free; C, moisture and ash free.

Table 45.-Reserves, overburden, overburden ratio, acres, and tons/acre, Pumpkin Creek coal deposit.

SAWYER BED

Thickness of overburden, ft.	_	licated reserves, million tons		Overburden, illion cu. yd.		urden rat c yards/te	•	Acres		Tons/acre
0 to 50		560.0		781.6		1.39		10,726.4		52,209.6
50 to 100		760.8		1,820.2		2.39		14,323.2		53,117.4
100 to 150		647.2		2,580.2		3.98		11,685.4		55,387.2
150 to 200		428.8		2,514.8		5.86		8,416.0		50,950.6
200 to 250		29.7		191.9		6.46		544.0		<u>54,595.6</u>
	Total	$2.\overline{426.5}$	Total	7,888.7	Average	3.25	Total	45,695.0	Average	53,102.1

PUMPKIN CREEK COAL DEPOSIT

LOCATION

The Pumpkin Creek coal deposit (Pl. 15) is in T. 2, 3, and 4 S., R. 48 and 49 E., Powder River County. U.S. Highway 212 traverses the northern part of T. 4 S., R. 49 E., and the southern part of T. 3 S., R. 48 E. The Pumpkin Creek coal deposit adjoins the Sonnette coal deposit (Pl. 25) to the south, the Broadus coal deposit (Pl. 18) to the east, the Little Pumpkin Creek coal deposit (Pl. 27) to the northwest, the Threemile Buttes coal deposit (Pl. 24) to the southwest, and the Foster Creek coal deposit (Pl. 16) to the north.

FIELD WORK AND MAP PREPARATION

All of the field work resulting in the present map of Pumpkin Creek coal deposit was done by the Mineral Development Division of Burlington Northern, Inc., during the summer of 1965. Evaluation of the data was completed late in 1966. The field method utilized was developed by Burlington Northern, Inc. (Carmichael, 1967) for areas where adequate topographic maps were not available. Temporary benchmarks for topographic control were established by leveling and then served as base stations for altimeter surveys. Altimeter elevations along with coal outcrops, clinker, and contacts between burned areas and unburned areas were plotted on aerial photos, as were the holes that were drilled to measure coal thickness and depth. Cores were taken for analyses of coal quality.

PREVIOUS GEOLOGIC WORK

The western part of T. 2 and 3 S., R. 48 E., of the Pumpkin Creek coal deposit was mapped by Bass (1932). The eastern part, T. 2 and 3 S., R. 49 and 50 E., was mapped by Bryson (1952). The southern part, in T. 4 S., R. 48 and

49 E., was mapped by Warren (1959). A report titled "Pumpkin Creek Lignite Deposit, Powder River County, Montana", was presented to the University of Idaho as a thesis (Carmichael, 1967). The Pumpkin Creek deposit was also included in reports on strippable coal (Brown and others, 1954, p. 186-190; Ayler, Smith, and Deutman, 1969).

LAND OWNERSHIP

The Pumpkin Creek coal deposit lies within the limits of the land grant of odd-numbered sections to Burlington Northern, Inc. The railroad has conveyed much of the surface but still owns the coal. The State of Montana owns both the surface and the coal in sec. 16 and 36 of each township. The surface of a few scattered tracts is still owned by the Federal Government as is most of the coal, but a small amount of coal along the Pumpkin Creek valley is privately owned. The western edge of the Pumpkin Creek coal deposit is bordered by the Custer National Forest and is under the administrative supervision of the U.S. Forest Service.

SURFACE FEATURES AND LAND USE

The most prominent surface feature is the Pumpkin Creek valley, which trends slightly east of north from the center of T.3 S., R. 48 E., through T.2 S., R. 48 E. In the center of T.3 S., R. 48 E., the valley is divided into a southwest and a southeast branch. The southeast branch is short and heads about 3 miles from the main valley. The numerous tributaries on the east side of Pumpkin Creek trend northwest and those on the west side trend southeast. These relatively short and steep tributaries are bordered by steep-sided ridges supported by the clinker produced by burning of the Sawyer coal bed.

Pumpkin Creek and its tributaries are intermittent streams and flow only during periods of heavy precipitation and spring runoff.

Table 46.-Proximate analysis, ultimate analysis, heating value, and fusibility of ash, Pumpkin Creek coal deposit.

	Real specific gravity	1.59	1.54	1.53	1.55	1.56	1.60	1.55	1.55
	Fluid temp.	2080	2350	2520	2320	2310	2190	2160	2270
Fusibility of ash, F	Softening temp.	2040	2300	2460	2240	2260	2140	2120	2190
Fusibilit	Initial deformation temp.	1990	2250	2410	2190	2210	2080	2080	2140
	Heating value (S (Btu)	1.18 7310 1.66 10270 1.97 12180	.30 7490 .43 10880 .48 12080	.90 7720 1.30 11110 1.42 12200	.42 7370 .62 10870 .69 12150	.31 7510 .45 10870 .49 12000	.35 7140 .51 10340 .60 12090	.45 7550 2.65 10810	.24 7570 2 .34 10970 .38 12140
ite, %	0	37.34 16.44 19.50	40.86 19.15 21.24	39.76 18.18 19.96	40.98 18.23 20.37	40.63 19.08 21.07	39.80 17.76 20.77	38.78 17.15 19.49	40.38 18.61 20.58
Ultimate, %	z	43.33 .76 60.90 1.07 72.18 1.27	44.78 .74 65.02 1.07 72.16 1.19	45.73 .85 65.81 1.23 72.27 1.35	44.14 .74 65.11 1.10 72.78 1.23	45.27 .82 65.49 1.18 72.34 1.31	42.71 .76 61.87 1.11 72.34 1.29	18 .77 68 1.i0 59 1.26	.74 1.07 1.19
	н	6.26 43 4.29 60 5.08 72	6.51 44 4.44 65 4.93 72	6.55 45 4.55 65 5.00 72	6.58 44 4.41 65 4.93 72	6.43 45 4.34 65 4.79 72	6.39 42. 4.28 61. 5.00 72.	37 45.18 32 64.68 32 73.59	19 45.51 11 65.95 18 72.97
	Ash	11.13 6 15.64 4	6.81 6 9.89 4	6.21 6.8.93 4.5.	7.14 6. 10.53 4.	6.54 6. 9.46 4.	9.99 6. 14.47 4. 5.0	8.45 6.37 12.10 4.32 4.92	6.64 6.49 9.62 4.41 4.88
te, %	Fixed carbon	31.15 43.77 51.89	33.58 48.75 54.10	33.46 48.16 52.88	32.64 48.14 1 53.81	33.89 49.03 54.15	31.60 45.78 1 53.53	33.11 47.40 12 53.93	33.97 (49.22 5
Proximate,	Volatile matter	28.88 40.59 48.11	28.48 41.36 45.90	29.81 42.91 47.12	28.01 41.33 46.19	28.69 41.51 45.85	27.44 39.75 45.47	28.29 40.50 46.07	28.40 41.16 45.54
	Moisture	28.84	31.13	30.52	32.21	30.88	30.97	30.15	30.99
	Form of analysis 1/	CBA	CBA	CBA	CBA	CBA	4 (9 0	CBA	CBA
	Coal bed & lab. number	Mackin-Walker I-21802	Sawyer I-21803	Mackin-Walker I-21804	Sawyer I-21805	Sawyer (U) 1-21806	Sawyer (L) I-21807	Sawyer I-21808	Sawyer I-21809
	Depth sampled	68 to 73 ft.	123 to 155½ ft.	19 to 22 ft.	104½ to 130½ ft.	52 to 64 tr.	112 to 124 ft.	105 to 142 ft.	89 to 121½ ft.
	Drill hole and location	PC-3 2S 49E S28 BCDD		PC-9 3S 49E S15 BDBA		FC-15 3S 49E S32 DCCC		PC-23 3S 48E S21 CDCC	PC-29 3S 48E S3 BCCC

U = Upper bench of Sawyer L = Lower bench of Sawyer

 $^{^{1}/\}mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

The low rolling divide between Pumpkin Creek and Mizpah Creek to the east trends north through the center of T. 2 and 3 S., R. 49 E. Tributaries on the west side of Mizpah Creek trend southeast as do those of Pumpkin Creek.

The principal land use in the area is livestock grazing. Hay is raised along the flood plains of Pumpkin Creek, its tributaries, and l'Aizpah Creek. Some land is cultivated; winter wheat and other grains are raised by dry-land farming methods.

GEOLOGIC STRUCTURE

The strata in the Pumpkin Creek coal field are almost horizontal, but a slight dip can be detected on the cross sections. The lowest altitude of the top of the Sawyer coal bed is measured as 3,350 feet in drill hole US-L, sec. 32, T. 3 S., R. 48 E. Data obtained from drilling of the Sawyer coal bed show that the strata dip westward 12 to 20 feet per mile, although in places steeper dips are noted. For example, the dip is southwesterly at 65 feet per mile between drill hole PC-1 in sec. 13 and US-C in sec. 22, T. 2 S., R. 49 E. (Carmichael, 1967, p. 41).

Although several faults have been mapped in sec. 3, 4, 17, 18, 32, and 33, T. 3 S., R. 49 E., none have major displacement. A longer fault system, shown in the eastern part of the mapped area, extends more than 20 miles.

COAL BEDS

All strippable reserves that have been mapped in the Pumpkin Creek coal deposit are in the two benches of the Sawyer coal bed (Pl. 15, Section A-A'). The coal bed called the A bed by Bass (1932, p. 54) has not been mapped in the Pumpkin Creek coal deposit. Carmichael (1967) explained that the A bed as defined by Bass is distinct in sec. 32, T. 1 S., R. 48 E., but combines with the Sawyer bed somewhere between that point and drill hole PC-31, sec. 21, T. 2 S., R. 48 E., where the Sawyer bed is 31 feet thick. The Sawyer bed splits in sec. 24, T. 3 S., R. 48 E., where the parting is 1 foot thick in drill hole PC-17. The parting thickens to 15 feet in drill hole PC-22 near the west line of sec. 33, T. 3 S., R. 43 E. The split is greatest in the southeastern part of the coal deposit, where it measured 48 feet in drill hole PC-15, sec. 32, T. 3 S., R. 49 E. There the outcrop of the lower bench is prominent.

Numerous sections of the Mackin-Walker coal bed were measured in the northern part of T. 3 S., R. 49 E., (Bryson, 1952), where the thickness ranges from 2 feet 3 inches to 3 feet 11 inches. Farther southwest, the bed is

less than 2 feet thick and too thin to map (Bryson, 1952, p. 85, 96). The Mackin-Walker bed was named for a mine in T.2 S., R. 49 E., where the bed is 5 feet thick (Bryson, 1952, p. 76).

COAL QUALITY

Eight cores of the Sawyer coal bed were obtained during the field program conducted by the Mineral Development Division of Burlington Northern, Inc., and were analyzed by the U.S. Bureau of Mines, Grand Forks Coal Research Laboratory. Proximate analysis, ultimate analysis, heating value, and fusibility of ash are shown in Table 46.

COAL RESERVES

Coal reserves in the Sawyer bed total 2,426,500,000 tons (Table 45).

FOSTER CREEK COAL DEPOSIT

LOCATION

The Foster Creek coal deposit (Pl. 16A, B, and C) is in T. 1 and 2 N., R. 46, 47, and 48 E., and T. 1 and 2 S., R. 46, 47, and 48 E., Custer and Powder River Counties, about 35 miles south of Miles City and directly west of Volborg. The area borders the Pumpkin Creek (Pl. 15) and Little Pumpkin Creek (Pl. 27) coal deposits to the south.

FIELD METHODS AND MAP PREPARATION

The field work on the Foster Creek area was completed during the summer of 1966 under a cooperative agreement between the Montana Bureau of Mines and Geology and Burlington Northern, Inc. The field work was under the supervision of Virgil W. Carmichael of Burlington Northern, assisted by Loren A. Williams of Burlington Northern, and by Ernest H. Gilmour of the Montana Bureau of Mines and Geology. Field methods were those developed by Burlington Northern, Inc., (Carmichael, 1967).

PREVIOUS GEOLOGIC WORK

Most of the Foster Creek coal deposit was included in the U.S. Geological Survey report on the Ashland coal field (Bass, 1932). Additional information was prepared by Brown and others (1954), Gilmour and Williams (1969), and Ayler, Smith, and Deutman (1969).

LAND OWNERSHIP

The Foster Creek coal field lies within the land grant to Burlington Northern, Inc. (then the Northern Pacific

Table 47.-Reserves, overburden, overburden ratio, acres, and tons/acre, Foster Creek coal deposit.

TERRET, FLOWERS-GOODALE, AND KNOBLOCH BEDS

Thickness o overburden,		dicated reserves, million tons		Overburden, nillion cu. yd.		ourden ra ic yards/1		Acres		Tons/acre
0 to 60 60 to 90 90 to 120	Total	681.82 379.78 <u>366.30</u> 1,427.90	Total	1,783.40 2,274.41 3,527.75 7,585.56	Average	2.61 5.98 9.63 5.31	Total	33,459.2 18,777.6 <u>17,472.0</u> 69,708.8	Average	20,377.7 20,225.1 20,964.9 20,483.7
				TERF	RET BED					
0 to 60 60 to 90 90 to 120	Total	214.08 129.57 117.22 460.87	Total	682.15 941.67 1,389.77 3,013.59		3.18 7.26 11.85 6.53	Total	12,800.0 7,776.0 6,886.4 27,462.4	Average	16,725.0 16,662.8 17,021.9 16,782.1
				FLOWERS-	-GOODALE	BED				
0 to 60 60 to 90 90 to 120	Total	119.54 75.88 63.48 258.9	Total	355.04 514.97 <u>713.63</u> 1,583.64	-	2.97 6.78 11.24 6.11	Total	6,662.4 4,249.6 3,532.8 14,444.8	Average	17,942.5 17,855.8 17,968.8 17,924.4
				KNOBL	OCH BED					
0 to 60 60 to 90 90 to 120	Total	348.2 174.33 185.6 708.13	Total	746.21 817.77 1,424.35 2,988.33	Ачетаде	2.14 4.69 <u>7.67</u> 4.22	Total	13,996.8 6,752.0 7,052.8 27,801.6	Average	24,877.1 25,819.0 26,315.8 25,470.8

Railway). Under the land grant, the railroad was given available odd-numbered sections in an area 60 miles on each side of the railroad right-of-way. Sec. 16 and 36 of each township were granted to the State of Montana for school land. The other even-numbered sections were retained by the Federal Government until either homesteaded or sold.

Burlington Northern has retained most of the mineral rights although it has conveyed the surface ownership. The State of Montana has retained all surface and mineral rights. The Federal Government, although it has sold or allowed homesteading of the surface, has retained the mineral rights.

SURFACE FEATURES AND LAND USE

Surface features in the Foster Creek coal field range from the broad, nearly level valley of the lower reach of Pumpkin Creek and its west tributaries, to the steep-sided rugged ridges between drainages. The burning of the Knobloch and Flowers-Goodale coal beds has created clinker, which forms precipitous slopes near the ridge lines. Foster Creek, which heads in the southern part of T. 1 N., R. 47 E., and flows northward, is an intermittent stream and carries water only during periods of heavy precipitation and spring runoff. Pumpkin Creek has pools of water all year but has periods of no flow. Except where dammed, the west tributaries of Pumpkin Creek are dry.

Table 48.-Proximate analysis, ultimate analysis, and heating value, Foster Creek coal deposit.

			SIRIF	FADLE	COAD, SC	0111111011	74941 414 621 414	_	
	Heating value (Btu)	7380 11040 12260	7500 10810 12290 7550	12290	7820 11240 12140	7360 10280 12380 7570	12470 12470 7860 11240 12350	7840 11140 12700	7540 11010 12320 7630 11150 12270
	0	41.47 17.95 19.93	38.97 16.96 19.28 39.68	19.32	40.17 18.83 20.34	36.74 16.01 19.28 38.17	16.16 18.57 39.08 17.66 19.40	36.28 14.16 16.16	40.26 17.84 19.96 40.45 18.04 19.85
	z	0.71 1.07 1.18	0.71 1.02 1.16 0.71	1.16	0.75 1.08 1.16	0.70 0.98 1.18 0.71	1.02 1.17 0.73 1.04 1.14	0.75	0.70 1.03 1.15 0.70 1.02
Ultimate, %	C	44.29 66.25 73.59	45.11 65.01 73.92 45.49	66.20 74.05	47.78 68.70 74.19	43.73 61.11 73.56 45.07	64.62 74.22 47.59 68.04 74.71	46.36 65.84 75.05	44.96 65.67 73.48 46.16 67.52 74.30
Þ	Ħ	6.50 4.21 4.68	6.53 4.50 5.12 6.44	4.30	5.95 3.69 3.99	6.33 4.43 5.33 6.26	4.16 4.77 6.11 3.98 4.37	6.35 4.36 4.97	6.45 4.30 4.81 6.25 4.00 4.40
	S	0.37 0.56 0.62	0.32 0.46 0.52 0.40	0.59	0.21 0.30 0.32	0.39 0.54 0.65 0.77	1.11 1.27 0.24 0.35 0.38	1.61 2.28 2.60	0.36 0.53 0.60 0.20 0.30
	Ash	96.6	8.36 12.05 7.28	10.60	5.14	12.11 16.93 9.02	12.93 6.25 8.93	8.65	7.27 10.63 6.24 9.12
8	Fixed	33.11 49.52 55.00	33.06 47.66 54.19 35.23	51.27 57.35	37.03 53.25 57.51	31.58 44.14 53.14 34.11	48.91 56.17 37.12 53.08 58.28	33.60 47.71 54.40	34.21 49.96 55.90 35.38 51.75 56.94
Proximate	Volatile matter	27.09 40.52 45.00	27.96 40.29 45.81 26.20	38.13	27.37 39.35 42.49	27.86 38.93 46.86 26.62	38.16 43.83 26.58 37.99 41.72	28.17 40.00 45.60	26.98 39.41 44.10 26.75 39.13 43.06
	Moisture	33.14	30.62		30.46	30.25	30.05	29.58	31.54
	Form of analysis 1/	₹ ₩∪	A W O A	CB	C	A M O A	CBACB	C B B	- 4 m O M M O
	Coal	Knobloch	Knobloch Flowers-	Goodale	Terret	Lay Creek	Goodale	Knobloch	Flowers- Goodale Terret
	Lab. number	1.46486	I-46487	146488	146489	1-46490	146491	146493	1-46494
	Depth sampled	48 to 59 ft.	84 to 100 ft.	212 to 220 ft.	53 to 62 ft.	37 to 38 ft.	74 to 87 ft. 197 to 208 ft.	115 to 117 ft. 118 to 121 ft.	83 to 95½ ft. 177 to 186½ ft.
	Drill hole and location	FC-6 1S 48E S29	FC-11 1S 47E S3 ACAC		FC-16 1N 48E S17 CABB	FC-28 1N 47E S21 ACBC		FC-29 1N 46E S21 BCCB	FC-32 1N 47E S25 CCCC

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 49.-Forms of sulfur and fusibility of ash, Foster Creek coal deposit.

ſτ	Fluid temp.	2350	2290	2290	2310	2500	2190	2180	2140	2270	2260
Fusibility of ash, °F	Softening temp.	2320	2260	2240	2280	2470	2100	2080	2050	2240	2150
Fusibil	Initial deformation temp.	2290	2230	2190	2250	2440	2050	2030	2000	2210	2040
	Organic	.21 .32 .35	.34 39	.30 .43	.17 .24 .26	.34 .47	.20 .29 .34	.15 .16 .18	.37 .52 .60	.28 .40 .45	.18 .27 .33
Form of sulfur, %	Pyritic	.13	.07 .10 .11	.07 .11 .12	.0. .0. .0.	.03 .04 .05	.55 .78 .90	.13	1.21 1.72 1.97	.07	.03 .03 .03
Form of	Sulfate	.03 .04 .04	.01 .02 .02	.03 .05 .05	.02 .02 .02	.02 .03 .03	.02 .03 .04	.02 .03 .04	.02 .03 .04	.0. .02 .02	6 6 6
	Sulfur	.37 .56 .62	.32 .46 .52	.40 .59 .66	.21 .30 .32	.39 .54 .65	.77 1.11 1.27	24 35 38	1.61 2.28 2.60	.36 .53	.20 .30 .33
	Form of analysis 1/	CBA	CBA	CBA	CBA	CBA	CBA	CBA	CBA	CBA	CBA
	Coal bed	Knobloch	Knobloch	Flowers- Goodale	Terret	Lay Creek	Flowers- Goodale	Terret	Knobloch	Flowers- Goodale	Terret
	Lab. number	I-46486	146487	I-46488	I-46489	I-46490	146491	146492	146493	1-46494	I-46495
	Depth sampled	48 to 59 ft.	84 to 100 ft.	212 to 220 ft.	53 to 62 ft.	37 to 38 ft.	74 to 87 ft.	197 to 208 ft.	115 to 117 ft. 118 to 121 ft.	83 to 95½ ft.	177 to 186 ½ ft.
	Drill hole and location	FC-6 1S 48E S29 AADD	FC-11 1S 47E S3 ACAC		FC-16 1N 48E S17 CABB	FC-28 1N 47E S21 ACBC			FC-29 1N 46E S21 BCCB	FC-32 1N 47E S25 CCCC	

¹/A, as received; B, moisture free; C, moisture and ash free.

Ş.

Table 50.-Major ash constituents, Foster Creek coal deposit.

		ū			•		
	Total	98.2	1.96	7.66	99.0	99.2	98.7
c	LOI @ 800 °C	λί	λί	λί	4.	w,	∞i
	TiO ₂	r.	λi	ω	ω	۸i	ω
	SO ₃	8.7	12.7	19.4	11.9	11.8	8.9
	SiO ₂	43.1	29.9	28.0	26.2	30.3	30.3
Constituent, %	P_2O_5	7.	- -	-:	9:	9.	1.2
Consti	Na ₂ O	1.0	6.2	5.5	8.8	5.4	8.8
	MgO	5.9	4.7	3.8	5.0	4.9	4.7
	K20	£.	ε.	4 .	ω	4:	ιί
	Fe ₂ O ₃	4.7	6.2	9.5	7.9	6.1	7.0
	CaO	18.3	21.3	18.7	24.8	22.6	24.9
	Al ₂ O ₃	14.3	14.3	13.5	12.8	17.2	11.9
Coal	peq	Knobloch	Flowers- Goodale	Flowers- Goodale	Тепе	Flowers- Goodale	Terret
Comple	number	GF-66- 1200	GF-66- 1202	GF-66- 1205	GF-66- 1208	GF-66- 1211	GF-66- 1213
7	sampled	84 to 100 ff.	212 to 220 ft.	74 to 87 ft.	197 to 208 ft.	83 to 95½ ft.	177 to 186½ ft.
	Drull hole and location	FC-11 1S 47E S3		FC-28 1N 47E S21		FC-32 1N 47E S25	

The principal land uses in this area are livestock grazing and dry-land farming. Many areas provide large gently sloping fields for raising winter wheat and other grains. Hay is grown on meadows along the principal valleys throughout the area.

GEOLOGIC STRUCTURE

The regional dip in the Foster Creek area is southwest, as the Terret bed declines from an altitude of 3,150 feet in the northern part to 3,070 feet in the part south of Little Pumpkin Creek. Small anticlinal and synclinal undulations have vertical relief as great as 60 feet (Gilmour and Williams, 1969, p. 3).

COAL BEDS

The three major coal beds in the Foster Creek area are, from lowest to highest, the Terret, Flowers-Goodale, and the Knobloch. The Terret bed is the principal coal bed in the northern part of the area, where the thickness averages about 9 feet over a large area and is a maximum of 11 feet. In the southern half of the mapped area, both the Flowers-Goodale and the Knobloch beds are minable. The Flowers-Goodale is 2 to 14 feet thick, and the Knobloch is 5 to 18 feet thick. In the southern part of the area, the vertical distance between the Flowers-Goodale and the Knobloch, as determined by drilling, is 89 to 119 feet (Gilmour and Williams, 1969, p. 3).

COAL QUALITY

Ten core samples were recovered during the field investigations and were sent to the Grand Forks Coal Research Laboratory, U.S. Bureau of Mines, for analyses. Proximate analysis, ultimate analysis, and heating value are shown in Table 48. Forms of sulfur and fusibility of ash are shown in Table 49, and major ash constituents in Table 50.

COAL RESERVES

The coal reserves in the Foster Creek area total 1,427,900,000 tons. The Knobloch coal bed contains 708,130,000 tons, the Flowers-Goodale bed 258,900,000 tons, and the Terret bed 460,870,000 tons (Table 47).

BROADUS COAL DEPOSIT

LOCATION

The Broadus coal deposit (Pl. 17) is in T. 2, 3, and 4 S., R. 49 and 50 E., Powder River County, about 5 miles northwest of Broadus. The area is bordered on its eastern

side by U.S. Highway 312, which connects Broadus with Miles City. U.S. Highway 212 cuts across the southern part of the mapped area. The Broadus coal deposit overlaps the Pumpkin Creek coal deposit (Pl. 15) to the west and borders the Foster Creek coal deposit (Pl. 16). The Sand Creek coal deposit (Pl. 28) is a few miles to the north.

FIELD WORK AND MAP PREPARATION

The field work in the Broadus coal deposit was done in the summer of 1967 as part of a cooperative project between Burlington Northern, Inc., and the Montana Bureau of Mines and Geology to develop information on strippable coal in eastern Montana. Both the railroad and the Bureau supplied a field crew and shared in the drilling expenses. Loren A. Williams of Burlington Northern, Inc., prepared the map from field data during the following winter.

The field method was developed by Burlington Northern, Inc., to evaluate strippable coal in areas where good topographic maps were lacking. This method included establishing a series of temporary bench marks of the area as well as altimeter base stations, and obtaining hundreds of altimeter points for topographic control. Information on the quantity and quality of the coal was obtained by drilling (Carmichael, 1967).

PREVIOUS GEOLOGIC WORK

The northern part of the Broadus coal deposit was mapped by Bryson (1952), and the southern part by Warren (1959). The part that is overlapped by the Pumpkin Creek coal deposit was mapped and described in a thesis by Carmichael (1967). Strippable coal in the Broadus coal bed was included in a report by Ayler, Smith, and Deutman (1969, p. 23), but that report included an area farther south in T. 5 and 6 S., R. 49 and 50 E., which was excluded from the present report because the topography there is rugged and deeply dissected. Some small areas, however, as along Rough Creek and Cache Creek, would provide some strippable coal. The Cache Creek strippable coal deposit in the Broadus coal bed has been described by Matson, Dahl, and Blumer (1968).

LAND OWNERSHIP

As T. 2 and 3 S., R. 49 and 50 E., are within the land grant to Burlington Northern, Inc., the railroad owns the coal in the odd-numbered sections, although it has conveyed most of the surface. In T. 4 S., R. 49 and 50 E., south of the land grant, most of the coal is owned by the

Table 51.-Reserves, overburden, overburden ratio, acres, and tons/acre, Broadus coal deposit.

BROADUS BED

Thickness of overburden, ft.		icated reserves, million tons		Overburden, illion cu. yd.		urden ra yards/to	•	Acres		Tons/acre
0 to 50		165.92		224.14		1.35		3,737.2		44,396.87
50 to 100		226.83		701.31		3.09		5,796.0		39,135.61
100 to 150		347.07		1,793.59		5.17		8,896.6		39,011.53
	Total	739.82	Total	2,719.04	Average	3.68	Total	18,429.8	Average	40,142.15

Federal Government, although the surface has been conveyed except for a few small tracts. The state owns sec. 16 and 36 in each township in T. 2 and 3 S., but only a fraction of those sections in T. 4 S.

SURFACE FEATURES AND LAND USE

The Broadus coal field on the west side of the broad alluviated Mizpah valley, is drained by Mizpah Creek and its tributaries. The area has moderate to low relief, and the terrain is gently sloping except for a few steep-sided ridges, small mesas, and buttes. The Broadus bed has burned in large areas where it was under a minimal overburden and the burning has formed thick multicolored clinker along the eastern edge of the coal deposit. Locally the clinker is deeply dissected. Mizpah Creek, an intermittent stream flowing most of the year, has periods of no flow in the late summer and autumn. Its tributaries are dry, and water is retained only by earthen dams.

The principal land uses are livestock grazing and dryland farming. The gently sloping terrain above the clinkered areas provides large fields suitable for raising winter wheat and other grains. Hay is raised in sub-irrigated fields along the main valley of Mizpah Creek and its tributaries.

GEOLOGIC STRUCTURE

The strata in the Broadus coal deposit dip generally westward. Minor structural undulations roughly parallel the land surface; the tributaries west of Mizpah Creek are structurally low and the ridges between are structurally high. A fault has been mapped in sec. 10 and 15, T. 4 S., R. 50 E. (Warren, 1959).

COAL BEDS

The Broadus bed is the only bed in the Broadus coal deposit that has strippable reserves. Farther west the Sawyer coal bed, which overlies the Broadus, has been mapped and included in the Pumpkin Creek coal deposit (Pl. 15). In the Broadus coal field the Broadus bed is 100 feet above the base of the Tongue River Member (Warren,

1959; Matson, Dahl, and Blumer, 1968), but farther north, in the Coalwood field, it is 135 feet above the base (Bryson, 1952). The thickness of the Broadus coal bed is 26 feet in drill hole BR-1C, sec. 5, T. 4 S., R. 50 E., and at the abandoned Peerless mine, sec. 23, T. 4 S., R. 50 E. The bed splits and thins northward, as shown in drill hole BR-7C, sec. 16, T. 2 S., R. 50 E., and in drill hole BR-10, sec. 13, T. 2 S., R. 49 E. In drill hole BR-8, sec. 4, T. 2 S., R. 50 E., in the northern end of the deposit, the bed consists of two 5-foot benches. The Broadus coal bed also thins to the south and is 12 feet thick in drill hole SS-2, sec. 36, T. 5 S., R. 49 E. (Matson, Dahl, and Blumer, 1968, p. 41).

A local bed between the Broadus and the Sawyer coal beds is as much as 5 feet thick, as shown in drill hole BR-9 in sec. 36, T. 2 S., R. 49 E.

COAL QUALITY

Small wagon mines, including the Peerless in the south-central part of sec. 23, T. 4 S., R. 50 E., the Victor Stabio in sec. 24, T. 4 S., R. 50 E., the Black Diamond in sec. 11, T. 5 S., R. 50 E., and the Superior in sec. 14, T. 5 S., R. 50 E., were actively supplying the needs of the Broadus community in earlier years. Analytical reports of samples from these mines show a heating value ranging from 6,390 to 7,380 Btu, moisture 29.0 to 33.9%, volatile matter 26.6 to 31.6%, fixed carbon 31.3 to 33.1%, ash 6.0 to 8.1%, and sulfur 0.2 to 0.4% on the "as received" basis (Warren, 1959).

Four core samples were obtained from the Broadus coal bed, and these were analyzed by the U.S. Bureau of Mines, Grand Forks Coal Research Laboratory. Proximate analysis, ultimate analysis, and heating value are shown in Table 52, and major ash constituents and fusibility of ash are shown in Table 53.

COAL RESERVES

Reserves in the Broadus coal deposit total 739,820,000 tons (Table 51).

Table 52.-Proximate analysis, ultimate analysis, and heating value, Broadus coal deposit.

	Heating value (Btu)	7580 10840 11930	7550 10630 11780	7120 10310 11860	7500 10680 11780
	0	40.69 19.96 21.96	40.11 20.22 22.39	40.59 19.03 21.90	41.01 20.65 22.79
	Z	.67 .96 1.05	.67 .94 1.04	.70 1.02 1.17	.68 .97 1.06
Ultimate, %	C	45.69 65.34 71.89	45.82 64.50 71.44	42.79 61.89 71.24	45.19 64.39 71.00
_	Н	6.39 4.36 4.80	6.26 4.29 4.76	6.39 4.28 4.93	6.38 4.38 4.83
	s	.19 27 30	22. 34. 13.	.46 .66 .76	32
	Ash	6.37	6.90	9.07 13.12	6.54 9.32
ate, %	Fixed carbon	34.89 49.89 54.89	35.29 49.67 55.01	32.48 46.98 54.08	34.83 49.63 54.73
Proxim	Volatile matter	28.67 41.00 45.11	28.86 40.62 44.99	27.58 39.90 45.92	28.81 41.05 45.27
	Moisture	30.07	28.95	30.87	29.82
	Form of 1, analysis 1/	CBA	CBA	CBA	CBA
	Coal bed	Broadus	Broadus	Broadus	Broadus
	Lab. number	I-73087	I-73088	I-73089	1-73090
	Depth sampled	68 to 94 ft.	92 to 117 ft.	89 to 104 ft.	67 to 91½ ft.
	Drill hole and location	BR-1C 4S 50E S5 BCCD	BR-6C 3S 50E S7 AAAB	BR-7C 2S 50E S16 CCCC	BR-12C 3S 50E S5 AABB

 $^{^{1}/\}mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 53.-Major ash constituents and fusibility of ash, Broadus coal deposit.

	Fluid	temp.	2450	2350	2140	2390
Fusibility of ash, F	Softening	temp.	2400	2300	2100	2350
Fusibilit	Initial deformation	temp.	2350	2250	2060	2310
		Total	94.9	95.1	97.4	95.3
		SiO ₂ SO ₃ TiO ₂ Total	8.8 .66 94.9	.62	.58	.62
		SO3	8.8	10.0	8.4	6.2
		SiO ₂	24.2	34.9	27.5	26.0
	ent, %	Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O P ₂ O ₅	.94	.59	98.	1.03
	Constituent, %	Na ₂ O	3.6	1.2	1.9	3.0
		MgO	5.5 3.6	4.7	6.3	4.8
		K20	.20	.09	.46	.28
		Fe ₂ O ₃	5.8	5.6	4.5	5.4
		CaO	29.0	19.6	28.2	31.2
		Al ₂ O ₃	16.2	17.3	17.8	16.8
	Coal	peq	Broadus	Broadus	Broadus	Broadus
	Lab.	sample	I-73087	I-73088	I-73089	I-73090
	Depth	sampled	68 to 94 ft.	92 to 117 ft.	89 to 104 ft.	67 to 91% ft.
	Drill hole	and location	BR-1C 4S 50E SS BCCD	BR-6C 3S 50E S7 AAAB	BR-7C 2S 50E S16 CCCC	BR-12C 3S 50E S5 AABB

Table 54.-Reserves, overburden, overburden ratio, acres, and tons/acre, East Moorhead coal deposit.

T BED

Thickness of overburden, ft.		licated reserves, million tons		Overburden, illion cu. yd.		ourden rat e yards/te	,	Acres		Tons/acre
0 to 50		116.21		188.13		1.62		3,533.7		32,883.4
50 to 100		176.58		611.63		3.46		5,054.8		34,931.8
100 to 150		232.42		1,215.70		5.23		6,970.9		33,341.0
	Total	525.21	Total	2,015.46	Average	3.84	Total	15.559.4	Average	33,756.0

EAST MOORHEAD COAL DEPOSIT

LOCATION

The East Moorhead coal deposit (Pl. 18) is in T. 7, 8, and 9 S., R. 50 and 51 E., Powder River County. The area is bounded on the east by exposure and by clinker above the T coal bed, on the south by the Wyoming border, and on the west by increasingly thicker overburden.

FIELD WORK AND MAP PREPARATION

The field work in the East Moorhead coal deposit was done during the summer of 1971; numerous exploration holes were drilled and the surface was mapped on 7½-minute topographic quadrangle maps. Mapping was completed the following winter, when the overburden map was prepared.

PREVIOUS GEOLOGIC WORK

The East Moorhead coal deposit was described in a U.S. Geological Survey open-file report on the Moorhead coal field (Bryson and Bass, 1966).

LAND OWNERSHIP

The Federal Government owns most of the coal rights in the deposit, as the area is south of the land grant to Burlington Northern, Inc., but it has conveyed most of the surface to individuals except in T. 8 S. The State of Montana owns the surface and coal in sec. 16 and 36 in each township.

SURFACE FEATURES AND LAND USE

The East Moorhead coal deposit occupies the highest part of the divide between Little Powder River to the east and Powder River to the west. All the tributaries of Powder River and Little Powder River are intermittent streams, which flow only during periods of heavy precipitation and the spring runoff. Because the drainage pattern has a very strong northwest to north orientation on both sides of the divide, it seems to be structurally

controlled. The divide area is grass-covered and gently rolling above the clinker areas. The steep valley sides are formed by resistant clinker produced by burning of the T coal bed. The valley bottoms are relatively flat and the main ones are as much as a mile wide. Buttes are numerous in the area and are capped by clinker. Ponderosa pine trees grow on the clinker along the sides of the valleys.

The principal land uses in the area are livestock grazing and dry-land farming. Various grains are grown on summer fallowed fields, and some hay is raised, especially along the valley bottoms.

GEOLOGIC STRUCTURE

Drill hole data from the T coal bed show a dip to the west. Minor undulation of the surface is apparent in the area.

COAL BEDS

The T coal bed, the only one in the East Moorhead coal deposit that contains economically recoverable coal, has been correlated (Bryson and Bass, 1966) with the Cache coal bed. It is named for Cache Creek west of Powder River (Warren, 1959). The T coal bed is 26 feet thick in drill hole SH-713 in sec. 6, T. 8 S., R. 51 E., in the north-central part of the mapped area, but thins southward and is only 10 feet thick in drill hole SH-718 in sec. 24, T. 9 S., R. 50 E.

COAL QUALITY

Thirteen core samples were obtained from the T coal bed for analyses by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, forms of sulfur, and heating value are shown in Table 55, and major ash constituents of composite samples are shown in Table 56.

COAL RESERVES

Reserves in the T coal bed total 525,210,000 tons (Table 54).

Table 55.-Proximate analysis, forms of sulfur, and heating value, East Moorhead coal deposit.

Drill hole	Depth	Lab.	Coal	Form of 1		Proximate, Volatile	e.% Fixed			Form of	Form of sulfur. %		Heating
and location	sampled	number	peq	analysis 1/	Moisture	matter	carbon	Ash	Sultur	Sulfate	Pyritic	Organic	value (Btu)
SH-711 8S R51E S4	90 to	,	H	ΦΦ	37.870	27.453	29.620	5.057 8.140	1.086	0.028 0.046 0.046	.071 -114 	.575 .926	6994 11258
BADC	98 11.	343		∢ر	36.820	48.10 <i>2</i> 29.516	28.640	5.024	367	.020	.007 700.	.337	7059
	98 to 104 ft.	344		മഠ		46.717 50.753	45.331 49.247	7.952	.581 .631	.036 .039	.012 .013	.533 .579	11172
SH-712 8S R51E S9	150 to	,	H	ВЪ	37.650	27.567	29.478	5.304 8.508	1.081	015	111.	.879 .879	7014
БСАВ	158 II.	345) 4 6	37.070	27.449	30.776	4.705	434 434	.015 015 025	107	312	7112
	138 to 161 ft.	346		<u>م</u> ن.	t	47.143	52.857	1 4 7	745	0.026		, 53. 53. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50	12214
	161 to 168 ft.	347		⊄ ¤∪	37.270	42.524 45.608	31.813 50.714 54.392	4.24 <i>2</i> 6.762	.500 .537	.024 .026	.098 .105	.378 .406	11373 12198
SH-713 8S R51E S6	103 to		Т	В	36.690	27.647	31.063	4.601	741	015	.015 .023	1.125	7208
DDAD	112 ft.	348		OA	36.630	47.091 26.937	52.909	4.796	1.263	.025 .022	.025 .007	1.213 .291	12278
	112 to 122 ft.	349		tmO		42.507 45.521	50.872 54.479	6.621	543	038	.012 .013	459	12078
SH-714 8S R51E S30	21 to	6	(-	Υæ	38.360	26.334	30.635	4.671	.476 .772	.021 .035	.199 .322	.415	6943
DBBA	30 It.	320		> <	36.310	46.223 27.614	29.410	999.9	.833 .762	.030 .030	.536 536	.196	7051
	30 to 36 ft.	351		CB		43.357 48.425	46.178 51.575	10.466	1.197	.047 .053	.842 .940	.308 .344	12366
SH-716 8S R50E S36 BADC	50 to	352	Н	∢ ¤0	33.940	29.111 44.068 47.844	31.735 48.040 52.156	5.213	.360 .545 .592	.017 .026 .028	.117	.266 .402 .437	7592 11493 12477
SH-718 9S R50E S24 BRCA	90 to	353	H	√ ∀ mU	33.730	27.239 41.103 49.785	27.474 41.458 50.215	11.557 17.440	.580 .875 1.059	.017 .025 .031	.134 203 246	.428 .646 .783	6867 10362 12551
SH-719 9S R50E S19	160 to		T	PΑ	34.640	27.474 42.035	32.215 49.289	5.671 8.676	.546 .835	.017	.162	.367	7494 11465
ABAD	170 ft.	354		O	31 840	46.029	53.971	13 151	1 181	.029	362	614 801	12554 6947
	170 to 175 ft.	355		:m0		29.081 36.033	51.625	19.294	1.732 2.146	.025 .031	.531 853 8	1.176	10192 12629

 $^{1}/\mathrm{A}$, as received; B, moisture free; C, moisture and ash free,

Table 56.—Major ash constituents of composite samples, East Moorhead coal deposit.

	Total	95.0	95.4	95.5	87.3	95.5	97.8	97.6
	TiO2	£;	4.	κi	4.	4.	1.0	9.
	SO ₃	21.3	16.6	21.0	21.5	14.0	5.8	15.8
	SiO ₂	13.8	17.7	12.0	17.7	16.5	42.8	32.1
%	P205	7:	- i	1.8	1.1	2.0	6.	1.1
Constituent, %	Na ₂ O	2.3	1.6	4.5	1:1	1.0	1.3	1.6
රි	MgO	6.1	6.4	6.3	5.0	6.0	2.7	3.1
	K20	-:	Τ.		т.	т.	1.0	٠Ċ
	Fe ₂ O ₃	9.9	6.3	5.6	10.5	6.8	5.5	8.9
	CaO	34.3	34.1	31.9	20.5	33.8	12.4	16.5
	Al ₂ O ₃	9.5	12.1	12.0	4 °	14.9	24.4	17.4
Coal	peq	Н	H	⊣	H	H	H	Н
Lab.	sample	343-344	345-347	348-349	350-351	352	353	354-355
Depth	sampled	90 to 104 ft.	150 to 168 ft.	103 to 122 ft.	21 to 36 ft.	50 to 60 ft.	90 to 96 ft.	160 to 175 ft.
Drill hole	and location	SH-711 8S 51E S4 BADC	SH-712 8S 51E S9 BCAB	SH-713 8S 51E S6 DDAD	SH-714 8S 51E S30 DBBA	SH-716 8S 50E S36 BADC	SH-718 9S 50E S24 BBCA	SH-719 9S 50E S19 ABAD

Table 57.-Reserves, overburden, overburden ratio, acres, and tons/acre, Diamond Butte, Goodspeed Butte, and Fire Gulch coal deposits.

CANYON BED

Thickness of overburden, ft.	Indicated reserves, million tons	Overburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 50 50 to 100 100 to 150	139.21 178.78 100.03 Total 418.02	417.74 1,116.38 <u>864.26</u> Total 2,398.38	3.00 6.24 8.64 Average 5.74 Total	7,848.2 9,228.2 4,287.2 21,363.6	17,737.8 19,373.2 23,332.2 Average 19,566.6
		COC	OK BED		
Thickness of overburden, ft.	Indicated reserves, million tons	Interburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 50 50 to 100 100 to 150	128.11 225.67 275.17 Total 628.95	288.3 848.69 1,492.08 Total 2,629.07	2.25 3.76 5.42 Average 4.18 Total	2,688.0 4,710.4 6,047.8 13,446.2	47,659.9 47,908.9 45,499.2 Average 46,775.9
		PAWNEE as	nd COOK BEDS		
Thickness of overburden, ft.	Indicated reserves, million tons	Overburden and interburden, million cu. yd.	Overburden and interburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 50 50 to 100 100 to 150	73.28 152.03 <u>111.38</u>	200.89 529.71 749.6	2.74 3.48 <u>6.73</u>	2,035.2 3,699.2 2,752.0	36,006.3 41,098.1 40,472.4

4.39

Total

Average

DIAMOND BUTTE, GOODSPEED BUTTE, AND FIRE GULCH COAL DEPOSIT

336.69

Total

Total

LOCATION

The Diamond Butte (Pl. 19), Goodspeed Butte (Pl. 20), and Fire Gulch (Pl. 21) coal deposits are in T. 6 and 7 S., R. 46, 47, and 48 E., Powder River County. These deposits are bordered on the south by the West Moorhead (Pl. 10A, B, and C), on the north by the Threemile Buttes (Pl. 24) and Sonnette (Pl. 25A and B), and on the northwest corner by the Otter Creek (Pl. 12) coal deposits. Parts of the Fire Gulch and Diamond Butte deposits are outside the boundary, but most of the coal in these three deposits is in the Custer National Forest.

FIELD WORK AND MAP PREPARATION

8.486.4

39,674.1

Average

The Diamond Butte, Goodspeed Butte, and Fire Gulch areas were drilled during the 1971 field season. The geology was mapped from colored photos borrowed from the U.S. Forest Service, supplemented by reference to the report by Warren (1959).

PREVIOUS GEOLOGIC WORK

Except for T. 7 S., R. 46 and 47 E., the area included in the Diamond Butte, Goodspeed Butte, and Fire Gulch deposits was mapped by Warren (1959). That part of the area that is in T. 7 S., R. 45 and 46 E., was described by Bryson and Bass (1966), and by Matson (1970), and the

Table 58.-Proximate analysis, forms of sulfur, and heating value, Diamond Butte coal deposit.

	Heating value (Btu)	7138 11336 12127	7100 11164 12274 7240 10981	7455 11369 12055	7897 11660 12257	7187 11345 11968	7296 11269 12245
	Organic va	.207 .329 .352	.416 .654 .719 .720 .823	.234 .356 .378	.230 .340 .357	.161 .255 .269	.387 .597 .649
lfur, %	Pyritic (.059 .094 .101	.077 .121 .133 .528 .800	.023 .034 .037	.016 .023 .025	.044 .069 .073	.122 .188 .204
Form of sulfur, %	Sulfate	.007 .012 .013	.000 .000 .000 .015 .023	.008 .011 .012	.016 .023 .025	.007 .012 .012	.014 .022 .024
	Sulfur	.435 .465	.493 .775 .852 1.017 1.543	.264 .402 .427	.262 .387 .407	.213 .336 .354	.523 .808 .878
Proximate, %	Ash	4.109	5.754 9.047 8.259 12.527	3.730 5.689	3.296 4.866	3.299 5.207	5.157
	Fixed	31.352 49.788 53.264	32.305 50.793 55.846 30.068 45.605 52.136	33.301 50.787 53.851	35.100 51.823 54.474	33.757 53.286 56.213	31.654 48.894 53.126
	Volatile matter	27.510 43.687 46.736	25.542 40.160 44.154 27.603 41.868 47.864	28.539 43.524 46.149	29.335 43.311 45.526	26.294 41.507 43.787	27.929 43.140 46.874
	Moisture	37.030	36.400	34.430	32.270	36.650	35.260
	Form of analysis 1/	CBA	C m A C m A	СВА	ВВС	СВВ	ВВ
	Coal bed	Canyon	Local	Canyon	Canyon	Canyon	Canyon
	Lab. number	376	377	379	380	383	384
	Depth sampled	90 to 96 ft.	88 to 90 ft. 174 to 178 ft.	192 to 201 ft.	56 to 63 ft.	112 to 122 ft.	54 to 64 ft.
	Drill hole and location	SH-7121 6S R48E S16 BCAA	SH-7122 6S R47E S34 CCCD	SH-7123 6S R47E S29 DACC	SH-7124 6S R47E S30 BCBB	SH-7128 6S R47E S36 ACAC	SH-7134 6S R48E S29 BBAA

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 59.-Major ash constituents, Diamond Butte coal deposit.

	Total	0.96	97.8	96.5	95.4	94.2	93.2	99.1
	TiO ₂	Γ.	2.2	o:	9.	κi	λί	9:
	SO ₃	12.6	14.0	15.9	14.1	14.9	12.6	18.7
	SiO ₂	21.6	27.2	34.2	10.8	6.6	9.4	19.3
t, %	$P_{2}O_{5}$	∞į	1.5	1.6	<u>-</u>	4.	1.1	7:
Constituent, %	Na ₂ O	oʻ	6.1	3.4	<i>1.</i> 6	1.0	8 .	9.9
	MgO	9.1	4.7	3.4	7.4	12.1	8.8	7.1
	K20	4.	٨	κί	<i>c</i> i	<i>4</i>	w	2
	Fe ₂ O ₃	7.4	6.4	11.9	10.0	8.8	7.8	8.9
	CaO	31.6	18.4	12.2	31.0	36.3	33.2	26.9
	Al ₂ O ₃	10.9	18.9	12.5	10.5	10.3	11.1	10.1
Coal	peq	Canyon	Local		Canyon	Canyon	Canyon	Canyon
Lab.	sample	376	377	378	379	380	383	384
Depth	sampled	90 to 96 ft.	88 to 90 ft.	174 to 178 ft.	192 to 201 ft.	56 to 63 ft.	112 to 122 ft.	54 to 64 ft.
Drill hole	and location	SH-7121 6S 48E S16 BCAA	SH-7122 6S 47E S34 CCCD		SH-7123 6S 47E S29 DACC	SH-7124 6S 47E S30 BCBB	SH-7128 6S 47E S36 ACAC	SH-7134 6S 48E S29 BBAA

Table 60.-Proximate analysis; forms of sulfur, and heating value, Goodspeed Butte coal deposit.

			STRIPPABLE	COAL, SOUTH	IEASTERN M
	Heating value (Btu)	6861 10285 11861 6682	10081		
	Organic	1.159 1.738 2.004	1.301		
Form of sulfur, %	Pyritic	.840 1.259 1.453	.716		
Form o	Sulfate	.054 .082 .094	.068		
	Sulfur	2.054 3.079 3.551 1.220	2.266		
	Ash	8.869 13.294 12.443	18.771		coal deposi
ate, %	Fixed carbon	32.550 48.793 56.274 30.776	46.427 57.155		dspeed Butte
Proximate, %	Volatile matter	25.291 37.913 43.726 23.071	34.803 42.845		tituents, Goo
	Moisture	33.290			ajor ash consi
ŗ	Form of analysis 1/	УСВЪ	C B		Table 61.—Major ash constituents, Goodspeed Butte coal deposit.
Ţ	Coal	Cook			
+	Lao. number	381	382		
7	sampled	88 to 91 ft.	94 to 97 ft.		
Deill bolo	and location	SH-7126 6S 46E S28 BABA			

	Total	91.1	94.8
	TiO ₂	λί	∞i
Constituent, %	SO3	18.4	9.2 .8
	Na ₂ O P ₂ O ₅ SiO ₂ SO ₃ TiO ₂ Total	32.0 18.4 .5	46.8
	P205	r.	9.
	Na ₂ O	4.	4.
	MgO	4.9	2.8
	K20	11.8 1.1 4.9	1.2
	A1 ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO	11.8	7.9 1.2
	CaO	7.7	8.9
·	A1203	14.2	18.3 6.8
Coal	peq	Cook	
Lab.	sample	381	382
Depth	sampled	88 to 91 ff.	94 to 97 ft.
Drill hole	and location	SH-7126 6S 46E S28 BABA	

Table 62.-Proximate analysis, forms of sulfur, and heating value, Fire Gulch coal deposit.

1	Heating value (Btu)	7530 11343 12215 8198 11540 12131 7491 11556	
	Organic	.179 .270 .291 .307 .433 .455 .286 .441	
ulfur, %	Pyritic	.057 .087 .061 .087 .091 .049)
Form of sulfur, %	Sulfate	.022 .032 .035 .015 .023 .014	2
	Sulfur	258 389 419 384 541 569 349 538	?
	Ash	4.738 7.138 3.458 4.868 3.485 5.377	
te, %	Fixed carbon	34.217 51.547 55.509 36.857 51.882 54.537 33.417 51.554) ; ;
Proximate, %	Volatile matter	27.425 41.315 44.491 30.725 43.250 45.463 27.917 43.069	43.317
	Moisture	33.620 28.960 35.180	
	Form of analysis 1/	4 m U 4 m U 4 m C	ر
	Coal bed	Cook	
	Lab number	386	387
	Depth sampled	115 to 125 ft. 125 to 137 to	142 ft.
	Drill hole and location	SH-7135 6S 48E S29 ADAC	

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 63.-Major ash constituents, Fire Gulch coal deposit.

ĺ	Ta Ta	2.7	95.2
	Total	96.7	6,
	TiO ₂	ıλ	٨i
	SO3	13.3	17.9
	SiO ₂	20.4 13.3 .5	.1 15.1 17.9 .5
1%	P ₂ O ₅	7.	н.
nstituent,	Na ₂ O P ₂ O ₅ SiO ₂ SO ₃ TiO ₂	1.4	5.7
ග	MgO	10.7 1.4	8.0
	K20		7
	41203 CaO Fe ₂ O ₃ K ₂ O MgO	5.2 .2	5.1 .2
	CaO	30.8	32.4
	A1203	13.5 30.8	10.2 32.4
Coal	peq	Cook	
Lab.	sample	385-386	387
Depth	sampled	115 to	137 to 142 ft.
Drill hole	and location	SH-7135 6S 48E S29 ADAC	

Pawnee coal bed as shown on the Fire Gulch map (Pl. 21) was included in the report by Ayler, Smith, and Deutman (1969).

LAND OWNERSHIP

Except for approximately three-quarters of T. 6 S., R. 48 E., all the surface and the coal in the Diamond Butte, Goodspeed Butte, and Fire Gulch area are owned by the Federal Government and administered by the U.S. Forest Service, Custer National Forest. The State of Montana owns the surface and coal in sec. 16 and 36 in T. 6 S., R. 48 E. The Federal Government also has a few isolated 40-acre tracts within this township, which are administered by the U.S. Bureau of Land Management. The rest of the surface in this township is privately owned, but very little if any land in the other townships is privately owned.

SURFACE FEATURES AND LAND USE

The most prominent feature within the area is the high grass-covered divide between Powder River to the east and Otter Creek to the west. The barren tops of Diamond Butte, Goodspeed Butte, and other high points contrast sharply with the relatively flat ridges at lower levels, which have been dissected by the steep tributaries of Powder River and Otter Creek. These deeply incised valleys are separated by long ridges extending both northwest and southeast from the divide. These very steep sides of ridges are lined with lush growth of ponderosa pine trees, which are supported by clinker. The ridges are accessible from the top of the divide by trails that extend from the divide to the ends of the ridges. The valleys have a very definite northwest lineation, especially on the Powder River side of the divide.

The principal land use in the area is livestock grazing, as ranchers in the vicinity have grazing permits on Forest Service land.

GEOLOGIC STRUCTURE

Strata in the Diamond Butte, Goodspeed Butte, and Fire Gulch coal deposits dip generally southwest, except for local reversals. An anticlinal structure occurs in the southwest corner of T. 6 S., R. 47 E.

COAL BEDS

The coal beds of economic interest in the Diamond Butte, Goodspeed Butte, and Fire Gulch coal deposits are, from top to bottom, the Canyon, Cook, and Pawnee coal beds. Strippable reserves in the Canyon coal bed are shown in the Diamond Butte area (Pl. 19), strippable re-

serves in the Cook bed are shown in the Goodspeed Butte area (Pl. 20), and strippable reserves in the Cook and Pawnee beds are shown in the Fire Gulch coal deposit (Pl. 21). The Canyon bed is about 200 feet above the Cook bed in the Diamond Butte coal deposit (Pl. 19), sec. 30, T. 6 S., R. 47 E., as shown in drill hole SH-7124, and in drill hole SH-7134, sec. 29, T. 6 S., R. 48 E.

The Cook coal bed consists of two benches throughout the area. In drill hole SH-7124 the upper bench is 14 feet thick, the lower bench is 12 feet thick, and the parting is 34 feet. In SH-7134, however, the upper bench is 22 feet thick, the lower bench is 14 feet thick, and the parting is only 3 feet thick. Thicknesses measured in SH-7135 in sec. 29, T. 6 S., R. 48 E., are very similar to these. In drill hole SH-7121, in sec. 16, T. 6 S., R. 48 E., the Canyon bed is 211 feet above the Cook bed, and the upper bench of the Cook bed is 22 feet thick, the lower bench 12 feet, and the parting 12 feet. The parting between the two benches of the Cook seems to increase locally (Pl. 20) as shown in drill hole SH-7131, sec. 6, T. 6 S., R. 47 E. In this drill hole, the upper bench, 13 feet thick, and the lower bench, 12 feet thick, are separated by a parting of 45 feet. In drill hole SH-7133 of the same township, the upper bench, 20 feet thick, and the lower bench, 14 feet thick, are separated by a 34-foot parting.

In the Diamond Butte coal deposit, thickness of the Canyon bed ranges from 7 feet in the northern part, as measured in drill hole SH-7130 in sec. 15, T. 6 S., R. 47 E., and drill hole SH-7121 in sec. 16, T. 6 S., R. 48 E., to 16 feet in drill hole SH-7122 in sec. 34, T. 6 S., R. 47 E. The Canyon bed is easily recognizable because a coal bed 2 to 4 feet thick lies about 15 feet above it. This marker bed is noted in the mechanical logs of all the drill holes in the Diamond Butte coal deposit. The thin coal bed corresponds with a similar bed above the Canyon in the West Moorhead coal deposit farther south (Matson, 1970, p. 6).

The Pawnee coal bed and its clinker crop out at numerous localities in T. 6 S., R. 49 E. (Pl. 21). A thickness of about 20 feet was measured in sec. 5 and also in sec. 25 (Warren, 1959). Strippable reserves in the Pawnee coal bed have previously been outlined along Pinto Creek and Fire Gulch in sec. 36, T. 6 S., R. 48 E., and sec. 19, 20, 30, and 31, T. 6 S., R. 49 E. (Ayler, Smith, and Deutman, 1969). Other strippable reserves of the Pawnee have been outlined along Cache Creek in sec. 1, T. 6 S., R. 48 E., and sec. 6 and 7, T. 6 S., R. 49 E. (Matson, Dahl, and Blumer, 1968).

COAL QUALITY

Twelve core samples were obtained during the current project and were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, forms of sulfur, and heating value for the Diamond Butte coal deposit are shown in Table 58, for Goodspeed Butte in Table 60, and for Fire Gulch in Table 62. Analytical results of composite samples showing ash constituents are shown in Tables 59, 61, and 63.

Although no cores were obtained from the Pawnee coal bed in the Fire Gulch coal deposit on this project, a core taken previously was reported by Matson, Dahl, and Blumer (1968). This core sample was obtained in sec. 36, T. 5 S., R. 48 E., and on the "as received" basis, shows a moisture content of 32.0%, volatile matter 29.5%, fixed carbon 32.5%, ash 6%, sulfur 0.2%, hydrogen 6.7%, carbon 45.4%, nitrogen 0.8%, oxygen 40.9%, heating value 7,650 Btu.

COAL RESERVES

The Goodspeed Butte coal deposit has reserves in the Cook coal bed totaling 628,950,000 tons, the Diamond Butte coal deposit has reserves in the Canyon coal bed totaling 418,020,000 tons, and the Fire Gulch coal deposit has reserves of 336,690,000 tons in the Cook and Pawnee coal beds (Table 57).

SWEENEY CREEK-SNYDER CREEK COAL DEPOSIT

LOCATION

The Sweeney Creek-Snyder Creek coal deposit (Pl. 22) is in T. 2 and 3 N., R. 43 and 44 E., Rosebud County. The deposit is on the divide between Rosebud Creek on the west and Tongue River on the east, and is about 20 miles south of the Yellowstone River.

FIELD WORK AND MAP PREPARATION

The field work in the Sweeney Creek-Snyder Creek area was completed in the summer of 1968 under a cooperative agreement between the Montana Bureau of Mines and Geology and Burlington Northern, Inc. The purpose was to gain new information on the quality and quantity of coal resources in strippable coal fields in southeastern Montana. The Bureau and the railroad each provided part of the evaluation cost.

The field work was conducted under the supervision of Loren Williams assisted by Peter Mattson of Burlington Northern, Inc., and Gardar G. Dahl, Montana Bureau of Mines and Geology. The field method utilized was developed by Burlington Northern, Inc. (Carmichael, 1967).

PREVIOUS GEOLOGIC WORK

The geology of the Sweeney Creek-Snyder Creek coal deposit was described in a U.S. Geological Survey report on the Rosebud coal field (Pierce, 1936). The strippable coal was also outlined and discussed in the report by Ayler, Smith, and Deutman (1969).

LAND OWNERSHIP

The Sweeney Creek-Snyder Creek coal deposit lies within the land grant to Burlington Northern, Inc. The railroad has retained ownership of mineral rights in the odd-numbered sections but has conveyed the surface. The Federal Government retained the coal rights when it conveyed the even-numbered sections. The State of Montana owns the surface and minerals in sec. 16 and 36 of each township.

SURFACE FEATURES AND LAND USE

The divide between Tongue River and Rosebud Creek has a fairly flat top and is bordered by clinker formed by burning of the Terret coal bed. The rugged slopes of the sharp and deep valleys on both sides of the divide are covered with ponderosa pine. The principal land use in the area is livestock grazing.

Table 64.-Reserves, overburden, overburden ratio, acres, and tons/acre, Sweeney Creek-Snyder Creek coal deposit.

TERRET BED

Thickness of overburden, ft.		licated reserves, million tons		erburden, lion cu. yd.		urden rat yards/to	,	Acres		Tons/acre
0 to 50		169.35		298.96		1.77		5,614.5		30,162.4
50 to 100		147.03		599.3		4.08		4,952.7		29,686.8
100 to 150		9.95		71.32		7.17		353.9		28,106.8
	Total	326.33	Total	969.58	Average	2.97	Total	10,921.1	Average	29,880.4

Table 65.-Proximate analysis, ultimate analysis, forms of sulfur, and heating value, Sweeney Creek-Snyder Creek coal deposit.

	Organic	4.44.	.30 .37 .42	.33 49 49	.21 .29 .33
1/2	J				
sulfur, %	Pyritic	1.13		.58 .77 .88	.92 1.23 1.41
Form of	Sulfate	.00 .09	. 10 . 10 . 11.	.03 .05	.05 .07 .08
	Sulfur	2.01	1.12 1.49 1.69	.94 1.24 1.42	1.18 1.59 1.82
	Heating value (Btu)	8310 10930	8200 10870 12370	8170 10830 12350	8020 10740 12290
	0	33.12	34.15 16.25 18.49	34.16 16.38 18.67	34.27 15.76 18.03
%	z	.81 1.07	.82 1.08 1.23	.81 1.07 1.22	.80 1.07 1.23
Itimate,	ပ	49.62 65.22	48.95 64.95 73.92	49.04 64.97 74.07	48.45 64.87 74.24
٦	Ħ	5.77 4.08	5.82 4.10 4.67	5.78 4.06 4.62	5.87 4.09 4.68
	S	1.53 2.01 2.03	1.12 1.49 1.69	.94 1.24 1.42	1.18 1.59 1.82
	Ash	9.15 12.02	9.14 12.13	9.27 12.28	9.43
EI.	carbon	39.03 51.30 58.31	38.44 51.00 58.04	37.92 50.25 57.28	36.99 49.52 56.67
Proxi	Volatue matter	27.91 33.68 41.69	27.79 36.87 41.96	28.28 37.47 42.72	28.27 37.86 43.33
	Moisture	23.91	24.63	24.53	25.31
9	Form of $1/2$	∀ #∪	CBA (CBA	CBA
Č	Coan	Terret	Terret	Terret	Terret
7 · · ·	rao, and sample no.	J-11591 GF-69-36	J-11592 GF-69-37	J-11593 GF-69-38	J-11594 GF-69-39
Donath	sampled	50 to 66 ft.	74 to 92 ft.	80 to 97½ ft.	109 to 127 ft.
Deill holo	and location	SS-1C 2N 44E S29 CABC	SS-2C 2N 44E S4 CADA	SS-3C 3N 44E S27 CCBB	SS-5C 3N 44E S3 DAAA

 $^{^{1}/\}mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 66.-Major ash constituents and fusibility of ash, Sweeney Creek-Snyder Creek coal deposit.

	ja Ž	specific gravity	1.59	1.58	99	6.
			ä	ä	1.56	1.59
		Fluid temp.	1970	1980	2010	2000
usibility of ash, F		Softening temp.	1940	1940	1970	1970
	Initial	delormation temp.	1910	1900	1930	1940
		Total	6.76	97.9	0.66	100.0
		TiO ₂	αċ	4.	4.	۸i
		SiO ₂ SO ₃ TiO ₂ Total	26.7 17.4	16.2	21.5	21.4
		SiO2	26.7	30.5	27.2 21.5	27.0
	%	P205	Q.	4.	ω	ωi
	Constituent, %	Na ₂ O	1.3	2.7	1.7	4.
	Con	MgO	3.2	4.1	4.1	5.5
		K20	5.	ωi	εi	5
		CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O P ₂ O ₅	19.0	13.8	12.8	14.4
		CaO	13.0 19.0	13.3	16.9	16.6 14.4
		Al_2O_3	15.4	16.2	13.8	13.7
	Coal	peq	Terret	Terret	Terret	Terret
	Lab	sample	GF-69-36	GF-69-37	GF-69-38	GF-69-39
	Depth	sampled	50 to 66 ft.	74 to 92 ft.	80 to 97½ ft.	109 to 127 ft.
	Drill hole	and location	SS-1C 2N 44E S29 CABC	SS-2C 2N 44E S4 CADA	SS-3C 3N 44E S27 CCBB	SS-5C 3N 44E S3 DAAA

GEOLOGIC STRUCTURE

The strata in the Sweeney Creek-Snyder Creek coal deposit, although nearly horizontal, show a gentle southerly dip.

A fault, mapped in sec. 1, T. 3 N., R. 44 E., has a strike of N. 30° W. and a maximum throw of 60 feet. The southwest side of the fault is downdropped (Pierce, 1936, pl. 1).

COAL BEDS

The Terret coal bed is the only one that contains strippable reserves in the Sweeney Creek-Snyder Creek coal deposit. The Burley bed, below the Terret bed, is generally thin throughout the area (Pierce, 1936), and it is 4 feet thick in drill hole SS-1C in sec. 29, T. 2 N., R. 44 E. The Terret coal bed, 17 to 18 feet thick throughout the area, has burned along the sides of the ridge.

COAL QUALITY

Four core samples of the Terret coal bed were obtained and analyzed by the U.S. Bureau of Mines Coal Research Laboratory at Grand Forks. Proximate analysis, ultimate analysis, heating value, and forms of sulfur are shown in Table 65. Major ash constituents, fusibility of ash, and specific gravity are shown in Table 66.

COAL RESERVES

Reserves in the Terret coal bed total 326,330,000 tons (Table 64).

Table 67.-Reserves, overburden, overburden ratio, acres, and tons/acre, Yager Butte coal deposit.

ELK and DUNNING BEDS

Thickness of overburden, ft.		licated reserves, million tons	i	erburden and nterburden, illion cu. yd.	interb	ourden an urden rat c yards/to	io,	Acres		Tons/acre
0 to 50		442.35		836.6		1.89		11,116.4		39,793.9
50 to 100		417.60		1,567.35		3.75		9,689.2		43,100.4
100 to 150		315.91		1,361.27		4.30		6,118.4		51,632.8
	Total	1.175.86	Total	3,765.22	Average	3.20	Total	26,924.0	Average	43,673.3

COOK BED

Thickness of overburden, ft.	Indicated reserves, million tons	Overburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 50	53.19	156.71	2.95	2,943.4	18,070.94
50 to 100	112.72	688.75	6.11	5,692.0	19,803.23
100 to 150	146.11	1,182.31	8.09	5,872.1	24,882.07
Т	otal 312.02	Total $2.027.77$		Total 14.507.5	Average 21.507.50

YAGER BUTTE COAL DEPOSIT

LOCATION

The Yager Butte coal deposit (Pl. 23A and B) is in T. 3, 4, and 5 S., R. 46 and 47 E., Powder River County. The area is bordered on the south by the Diamond Butte (Pl. 19), the Goodspeed Butte (Pl. 20), and the Fire Gulch (Pl. 21) coal fields. The area is overlapped on the east by the Threemile Buttes (Pl. 24) and by the Sonnette (Pl.

25A and B) coal fields. On the north it adjoins the Ashland coal field (Pl. 13) and on the west the Otter Creek coal field (Pl. 12). The area is on the west side of the high divide between Pumpkin Creek to the east and Otter Creek to the west.

FIELD METHODS AND MAP PREPARATION

Field work in the Yager Butte area, done in 1970 and 1971, included drilling numerous exploration holes and

Table 68.-Proximate analysis, forms of sulfur, and heating value, Yager Butte coal deposit.

	Heating value (Btu)	7412 11501 12298 7359 11386 12104 5881 8324	7496 11093 12302 7541 11182 11835	7125 11130 12005	7703 11484 12181 7386 11230	7687 11572 12254 7852 11505	7702 11518 12209
	Organic	253 393 342 234 363 386 586 586 1.113	.319 .523 .523 .465 .690	.234 .365 .394	262 391 .414 .377 .573	.310 .466 .242 .354 .374	.165 .247 .262
Form of sulfur, %	Pyritic	.159 .247 .264 .014 .022 .023 .1135 .135 .231	.319 .472 .523 .000 .000	.092 .144 .155	.051 .076 .081 .149 .227	.000 .000 .007 .011	.014 .021 .023
Form	Sulfate	.029 .045 .014 .014 .022 .023 .108 .152	.034 .057 .000 .000	.014 .022 .024	.007 .011 .012 .014 .022	.033 .033 .032 .032 .032	.029 .043 .046
	Sulfur	.442 .783 .263 .407 .432 1.767 3.501	.672 .995 1.104 .465 .690	.340 .532 .573	.320 .477 .506 .540 .821	.331 .499 .528 .271 .397	.208 .312 .330
	Ash	4.177 6.482 3.830 5.926 20.697 29.295	6.638 9.824 3.724 5.522	4.666	3.835 5.718 4.109 6.247	3.701 5.571 3.538 5.184	3.788
Proximate, %	Fixed	33.130 51.404 54.967 32.805 50.759 53.956 22.1121 31.311	26.561 39.308 43.591 32.785 48.614 51.455	31.304 48.898 52.742	34.474 51.400 54.517 34.093 51.837 55.292	36.282 54.617 57.840 35.890 52.586 55.461	35.562 53.181 56.375
Proxim	Volatile matter	27.143 42.114 45.033 27.995 43.316 46.044 27.832 39.394 55.716	34.371 50.868 56.409 30.931 45.865 48.545	28.050 43.814 47.258	28.761 42.882 45.483 27.568 41.915 44.708	26.447 39.811 42.160 28.822 42.230 44.539	27.520 41.154 43.625
	Moisture	35.550 35.370 29.350	32.430	35.980	32.930	33.570	33.130
ŗ	rorm of 1/	4 mU4mU4mU	CBACBA	CBA	CBACBA	CBACBA	CBA
-	Coal	Cook	Cook	EIK	Cook	EIK	EIK
	Lab. number	240 241 242	243	249	388	395 396	397
1	sampled	141 to 151 ft. 151 to 156 ft. 156 to 158 ft.	62 to 72 ft. 72 to 76 ft.	86 to 94 ft.	50 to 60 ft. 115 to 118 ft.	92 to 98 ft. 98 to 102 ft.	38 to 43 ft.
Parill Leals	and location	SH-7047 SS R47E S29 CAAA	SH-7048 5S R46E S25 CDDC	SH-7050 SS R47E S4 AADD	SH-7137 5S R47E S22 ADCC	SH-7144 5S R46E S15 BDCA	SH-7145 4S R46E S19 DDAA

H-7145			Elk	¥	30.610	27.907	34.004	7.478	.535	.037	.119	.379	7575
4S R46E S19 DDAA	43 to 48 ft.	398		CB:		40.218 45.076	49.005 54.924	10.777	.864	.054	.171	.546 .612	10916 12235
SH-7146 4S R46E S20 CABC	30 to 35 ft.	399	EIK	GBA	31.120	27.753 40.291 44.455	34.676 50.343 55.545	6.452 9.366	.435 .632 .697	.044 .064 .071	.096 .139 .154	.295 .428 .472	7515 10910 12037
	35 to 40 ft.	400		∀ #U←	30.880	29.031 42.000 44.905	35.618 51.531 55.095	4.471 6.468	322: 322: 321: 343:	.032 .032 .034 .034	.023 .023 .023	.185 .268 .286	11492 112286 12286
	100 to 106 ft.	401	Dunning	¢¤∪<	30.000	41.560 45.325	50.134 50.134 54.675 36.255	8.306	.322 .322 .351	.021 .023 .023	8000	.327 .327	11177 12189 7991
	106 to 110 ft.	402		da O	071.00	41.844 44.627	51.919 55.373	6.238	.300 .320	.023 .023	0000	.297 .297	11444
SH-7148 4S R46E S23 DBCB	51 to 54 ft.	403	Local	CB	32.260	28.593 42.210 45.335	34.478 50.898 54.665	4.669 6.892	.760 1.122 1.205	.043 .064 .069	.123 .182 .195	.594 .876 .941	7722 11400 12244
SH-7149 4S R46E S14 CADC	43 to 52 ft.	404	Dunning	CBA	28.590	30.188 42.274 45.369	36.350 50.904 54.631	4.872 6.823	.229 .321 .344	000.	.053 .075 .080	.176 .246 .264	8005 11209 12030
	52 to 54 ft.	405		CBA	33.810	28.190 42.589 45.771	33.398 50.459 54.229	4.602 6.952	.395 .597 .642	.014 .021 .023	.120 .181 .195	.395 .424	7445 11248 12088
SH-7150 4S R47E S7 CBBD	31 to	708	Elk	∀ ¤(33.760	28.172 42.531 46.039	33.020 49.850 53.961	5.047 7.620	.284 .429 465	.021 .032 035	.028 .043 .046	.235 .354 383	7297 11016 11925
O G	33 to 41 ft.	407		CBAC	33.170	28.568 42.747 46.279	33.162 49.621 53.721	5.100	374 374 374	.029 .043 .046	.036 .053 .058	.185 .278 .300	7371 11030 11941

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 69.-Major ash constituents, Yager Butte coal deposit.

Drill hole	Depth	Lab.	Coal	00000				Constituent, %	ent, %					
and location	sampled	sample	peq	Al_2O_3	CaO	Fe ₂ O ₃	K20	MgO	Na ₂ O	P205	SiO2	SO3	TiO ₂	Total
SH-7047 5S 47E S29 CAAA	141 to 158 ft.	240-242	Cook	18.2	7.8	9.3	2.9	4.0	4.	c i	45.9	10.6	λi	8.66
SH-7048 5S 46E S25 CDDC	62 to 76 ft.	243-244	Cook	13.3	22.3	8.7	<i>c</i> i	6.7	2.9	4.	23.6	19.1	λί	7.76
SH-7050 5S 47E S4 AADD	86 to 94 ft.	249	EIK	12.5	33.9	6.2	6	8.5	2.9	3.1	9.6	17.3	4.	94.6
SH-7137 5S 47E S22 ADCC	50 to 60 ft.	388	Cook	8.0	32.6	5.3	rand.	6.6	9.	4	19.7	14.8	4.	91.6
	115 to 118 ft.	389		=======================================	28.1	9.3	2.	6.4	6.2		6.6	23.7	ιċ	96.3
SH-7144 5S 46E S15 BDCA	92 to 102 ft.	395-396	Elk	10.6	24.9	6.3	yeard	13.2	L.	7.	21.7	15.1	9.	93.9
SH-7145 4S 46E S19 DDAA	38 to 48 ft.	397-398	Elk	13.1	17.8	5.5	∞.	4.7	8.7	4.	31.2	13.7	9.	96.5
SH-7146 4S 46E S20 CABC	30 to 40 ft.	399-400	Elk	12.7	19.9	5.1	7.	9.9	4.5	4.	35.4	8.8	∞.	94.9
	100 to 110 ft.	401-402	Dunning	18.4	19.2	4.7	c i	6.5	4.6	9.	31.6	9.0	1.1	95.9
SH-7148 4S 46E S23 DBCB	51 to 54 ft.	403	Local	4.5	15.7	8.	'n	9.1	2.0	horain.	21.5	21.7	٨	93.3
SH-7149 4S 46E S14 CADC	43 to 54 ft.	404-405	Dunning	18.0	23.6	4.4	6	9.9	4.6	2.	25.6	8.9	<i>e</i> :	93.0
SH-7150 4S 47E S7 CBBD	31 to 41 ft.	406-407	EIK	15.2	20.1	8.8	5	6.6	1.3	4,	33.7	9.5	1.2	96.3

mapping the surface on black-and-white aerial photos or on 7½-minute topographic quadrangle maps. Color photos of the Custer National Forest obtained from the U.S. Forest Service were used to complete the mapping of coal outcrop and burn lines.

PREVIOUS GEOLOGIC WORK

The Yager Butte coal deposit is included in the report on the Birney-Broadus coal field (Warren, 1959).

LAND OWNERSHIP

Most of the Yager Butte coal deposit is within the boundaries of the Custer National Forest, which is administered by the U.S. Forest Service, but a small portion in T. 5 S., R. 47 E., lies outside the forest boundary. The Federal Government has retained ownership of all the coal, however.

SURFACE FEATURES AND LAND USE

The surface features in the Yager Butte coal deposit consist of a broad rolling upland area that forms the divide between Pumpkin Creek to the east and Otter Creek to the west and breaks into precipitous slopes along the valleys of Elk Creek, Fifteenmile Creek, Tenmile Creek, and Threemile Creek. The burning of coal beds in the area has created thick masses of multicolored clinker that form resistant capping along the ridge sides. The ridges between the tributaries of Otter Creek are relatively flat and grass covered, and the sides support lush growths of ponderosa pine and other vegetation. These tributaries contain water in pools the year round but they flow only during periods of heavy precipitation or spring runoff.

The principal land use in the area is livestock grazing. Many nearby ranchers have grazing permits in the National Forest.

GEOLOGIC STRUCTURE

The strata in the Yager Butte coal deposit seem to be nearly horizontal but show a very slight southwesterly dip.

COAL BEDS

Coal beds in the Yager Butte coal deposit that contain economically strippable reserves are, from top to bottom, the Cook, Elk, and Dunning beds. Strippable reserves in the Elk and Dunning coal beds are shown on Plate 23A and those in the Cook bed on Plate 23B. The Wall coal bed has been identified in the northern part of the area (Pl. 34).

The Cook coal bed in the Yager Butte coal deposit is in two benches 30 to 66 feet apart. In drill hole SH-7136, sec. 33, T. 5 S., R. 47 E., the upper bench of the Cook is 19 feet thick, the lower bed is 11 feet thick, and the two benches are 30 feet apart. In that same drill hole, a higher coal bed 6 feet thick is identified as the Canyon coal bed. To the north and northwest, the Cook beds thin. In drill hole SH-7138, sec. 17, T. 5 S., R. 47 E., the upper bench is 6 feet thick, the lower bench is 9 feet, and the parting is 66 feet. In drill hole SH-7139, sec. 15 of the same township, the upper bench of the Cook is 5 feet thick, the lower bench is 8 feet, and the parting is 30 feet. The upper bench of the Cook is missing farther north.

The Wall coal bed, 11 feet thick, is 72 to 130 feet below the Cook bed in the mapped area. The Elk and Dunning coal beds, shown on Plate 23A, have large reserves within the mapped area. The Elk bed is 23 feet above the Dunning bed in drill hole SH-7144, sec. 15, T. 5 S., R. 46 E., and 39 feet above it in an oil well in sec. 28, T. 4 S., R. 47 E. The Elk bed is 10 feet thick in an oil well in sec. 28 (cross section, Pl. 34) and is 21 feet thick in drill hole SH-7145 in sec. 19, T. 4 S., R. 46 E. Thickness of the Dunning bed ranges from 14 feet in drill holes SH-7145 and SH-7146 to 20 feet in the oil well in sec. 28.

COAL QUALITY

Twenty-one core samples were obtained during the field evaluation and were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, forms of sulfur, and heating values are shown in Table 68, and major ash constituents are shown in Table 69.

COAL RESERVES

The indicated coal reserves in the Elk and Dunning coal beds are 1,175,860,000 tons, and in the Cook bed they are 312,020,000 tons. Total reserves in the Yager Butte coal deposit are 1,487,880,000 tons (Table 67).

SONNETTE AND THREEMILE BUTTES COAL DEPOSITS

LOCATION

The Sonnette area is in T. 3, 4, 5, and 6 S., R. 47, 48, and 49 E., Powder River County. The maps outlining the strippable coal in the Sonnette area include the Threemile Buttes (Pl. 24) and the Sonnette (Pl. 25A and B) coal deposits, which are discussed together because of the large amount of overlap in the two deposits. The area is joined on the north by the Pumpkin Creek coal deposit (Pl. 15),

on the northwest it borders the Home Creek Butte coal deposit (Pl. 26), and on the south it borders the Diamond Butte (Pl. 19), Goodspeed Butte (Pl. 20), and Fire Gulch (Pl. 21) coal deposits. In the northwest corner of T. 4 S., R. 47 E., the area borders the Ashland coal deposit (Pl. 13A and B).

FIELD WORK AND MAP PREPARATION

Reconnaissance field work in the area in 1967 included the drilling of one hole in sec. 16, T. 5 S., R. 48 E. Additional holes were drilled during the 1971 field season to explore the Cook, Canyon, and Ferry coal beds, and part of the area was mapped on black-and-white aerial photos. During the winter of 1972, the mapping was refined by use of colored aerial photos borrowed from the U.S. Forest Service. Field data were plotted on U.S. Geological Survey 7½-minute topographic quadrangle maps.

PREVIOUS GEOLOGIC WORK

The Sonnette area was included in the U.S. Geological Survey report on the Birney-Broadus coal field (Warren, 1959). Strippable coal in the Pawnee bed was outlined in Montana Bureau of Mines and Geology Bulletin 69 (Matson, Dahl, and Blumer, 1968).

LAND OWNERSHIP

The Sonnette area borders the Custer National Forest, and the Threemile Buttes coal deposit (Pl. 24) overlaps onto the forest. East of the forest boundary, the ownership is mixed; the State of Montana owns sec. 16 and 36 in each township, and the rest of the surface is privately owned. The area is within the land grant to Burlington Northern, Inc., and in T. 4 S., R. 48 E., and the eastern part of T. 4 S., R. 47 E., the railroad owns the coal in odd-numbered sections, but T. 5 S. is south of the railroad land grant, and most of the coal there is federally owned.

SURFACE FEATURES AND LAND USE

The most prominent surface feature in the Sonnette area is the Pumpkin Creek valley. Near Sonnette the creek turns abruptly from east to north and flows northward to join the Tongue River in T. 6 N., R. 48 E. The burning of the Cook coal bed has formed resistant clinker that supports flat-topped benches and ridges and steep valley sides.

The valley sides are covered by ponderosa pine, but the ridgetops are barren except for native grasses. Pumpkin Creek is an intermittent stream, which flows only during periods of heavy precipitation or spring runoff, although ponds persist throughout the year. The valley is ½ to 1 mile wide throughout most of its length in the area. Most of its tributaries are short and steep except in the southern part of the area. Numerous roads traverse the eastern and southern part of the area. Sonnette Post Office is in sec. 8, T. 5 S., R. 48 E.

Although the principal land use in the area is livestock grazing, numerous fields are cultivated along the bottom of Pumpkin Creek valley. In other parts of the area where topographic conditions permit, winter wheat and other grains are raised on summer fallowed tracts. Grazing permits on the National Forest are allotted to nearby ranchers.

GEOLOGIC STRUCTURE

All the streams within the Sonnette area seem to be structurally controlled. The most prominent streams and ridge lines show definite northwest-southeast trends.

Drill data of the Pawnee coal bed show that the strata dip gently to the southwest but reversals are numerous. A structural depression in sec. 7, 8, and 17, T. 4 S., R. 48 E., trends northwest. A structurally high area is mapped in the northeast corner of T. 5 S., R. 48 E.

COAL BEDS

Coal beds of economic importance in the Sonnette area include, from lowest to highest, the Pawnee, Cook, Ferry, and Canyon beds, all of which have adequate thickness and quality for economical stripping. The Pawnee coal bed crops out along the sides of the Pumpkin Creek valley in the western half of T. 4 S., R. 48 E., but passes beneath alluvium in sec. 33. The greatest thickness of the Pawnee is 22 feet, measured in drill hole SS-4, sec. 16, T. 5 S., R. 48 E. In drill hole SH-7114, sec. 20, T. 4 S., R. 48 E., a 2-foot parting splits the bed into an upper bench 12 feet thick and a lower bench 10 feet thick. To the east and south, the Pawnee bed maintains a thickness of 20 feet as far as the Fire Gulch coal deposit (Pl. 21) as it is that thick in drill hole SS-3, sec. 36, T. 5 S., R. 48 E. Inferred reserves in the Pawnee coal bed are shown on the east side of the mapped area, which is beyond the area shown on adequate topographic maps. These reserves extend south into Cache Creek in the northwest corner of T. 6 S., R. 49 E. Indicated reserves in the Pawnee coal bed are mapped along the sides and bottom of Pumpkin Creek valley and back of the outcrop along the east side of the divide extending to sec. 36, T. 4 S., R. 48 E.

Strippable reserves in the Cook coal bed (Pl. 25B), which lies about 170 to 200 feet above the Pawnee bed, cover a large area in the vicinity of Sonnette. Clinker

Table 70.-Reserves, overburden, overburden ratio, acres, and tons/acre, Sonnette and Threemile Buttes coal deposits.

COOK BED

Thickness of overburden, ft.	Indicated reserves, million tons	Overburden and interburden, million cu. yd.	Overburden and interburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 50 50 to 100 100 to 150 150 to 200	84.23 125.73 100.09 52.93 Total 362.98	223.88 591.60 616.40 399.15 Total 1,836.03	2.72 4.71 6.16 7.54 Average 5.06 Total	3,027.2 3,795.2 2,464.0 10,470.4	27,826.2 33,130.4 40,620.9 44,704.4 Average 34,668.6
		PAWN	EE BED		
0 to 50 50 to 100 100 to 150	92.46 125.11 102.68 Total 320.25	126.41 388.75 531.51 Total 1,046.74	1.36 3.10 5.17 Average 3.26 Total	2,374.4 3,212.8 2,636.8 8,224.0	38,940.4 38,941.1 38,941.1 38,940.9
Thickness of overburden, ft.	Inferred reserves, million tons	Overburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
100 to 150	183.06	1,042.74	5.69	5,171	35,401.3
Thickness of overburden, ft.	Total reserves, million tons	Overburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 50 50 to 100 100 to 150	92.46 125.11 285.74 Total 503.31	126.41 388.75 1,574.28 Total 2,089.44	1.36 3.10 <u>5.50</u> Average 4.15 Total	2,374.4 3,212.8 7,807.8 13,395.0	38,940.4 38,941.1 36,596.7 37,574.5
		CANYON ar	nd FERRY BEDS		
Thickness of overburden, ft.	Indicated reserves, million tons	Overburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 50 50 to 100 100 to 150	107.99 96.48 20.93 Total 225.40	360.43 733.87 204.12 Total 1,298.42	3.33 7.60 9.75 Average 5.76 Total	6,764.8 6,060.8 1,011.2 13,836.8	15,963.5 15,918.7 20,698.2 Average 16,289.7

Table 71.-Proximate analysis, forms of sulfur, and heating value, Sonnette coal deposit.

	_			3	IRIPPA	BLE C	JAL, SC	OUTHEA	ASTERN	1 MON	CANA		
	Heating value (Btu)	7364	6624 9904	12206 6936 10878 12029	7228	12078 7138 10492 12233	7902	13935 5556 7824 12157	7186	12283 7000 10668	6904 10951	12162 6818 11119 12224	6547 9881 12374
	Organic	.133	.740 1.106		.145	.008 .012 .013	.730	1.288 1.275 1.795 2.789	.523	.893 .966 1.472	698 1.108	1.230 .639 1.043	.990 1.494 1.871
Form of sulfur, %	Pyritic	000.000	286 286 286 286 286	.022 .035 .039	.023	.026 .035 .040	1.006	1.128 1.432 2.017 3.134	.190 .292	.323 .659 1.004 1.163	235	.181 .294 .324	.967 1.460 1.828
Form	Sulfate	.016 .024	.016 .024 .024	.007 .012 .013	.023 .036	337 496 578	.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.037	.041 .047 .054	.022 .035	.037 .037 .040	.037 .057 .071
	Sulfur	.149	1.558	.306 .481 .532	.300	.368 .542 .631	1.400	2.731 3.845 5.975	1.133	1.655 2.523 2.922	.955 1.516 1.683	.842 1.374 1.510	1.995 3.010 3.770
	Ash	4.421 6.741	12.617 18.865	6.099 9.566	3.877 6.085	9.682 14.231	6.925 10.884	25.315 35.645	6.500	8.967 13.665	6.277 9.957	5.544 9.041	13.348 20.145
Proximate %	carbon	34.343 52.360 56.145	29.299 43.809 53.995	32.007 50.199 55.509	33.275 52.220 55.604	30.793 45.264 52.774	30.343 47.687 53.511	22.577 31.789 49.397	32.714 50.329 55 921	29.997 45.714 52.949	30.054 47.674 52.946	30.111 49.105 53.985	26.224 39.577 49.561
Proxir	woraune	26.826 40.899 43.855	24.964 37.326 46.005	25.653 40.234 44.491	26.568 41.695 44.396	27.555 40.505 47.226	26.361 41.429 46.489	23.128 32.565 50.603	25.786 39.671 44.079	26.656 40.621 47.051	26.709 42.369 47.054	25.665 41.855 46.015	26.688 40.278 50.439
	Moisture	34.410	33.120	36.240	36.280	31.970	36.370	28.980	35.000	34.380	36.960	38.680	33.740
Form of	analysis 1/	V MO	4 M O	CBA	CBA	CBA	CBA	CBA	V BV	∢ a∪	CBA	CBA	CBA
Coal	peq	Pawnee			Pawnee		Pawnee		Cook		Canyon	Cook	Cook
Lab	number	362	363	364	365	366	367	372	368	369	370	371	375
Depth	sampled	70 to 80 ft.	80 to 90 ft.	90 to 95 ft.	40 to 50 ft.	50 to 56 ft.	30 to 37 ft.	190 to 192 ft.	72 to 82 ft.	114 to 119 ft.	38 to 41 ft.	78 to 86 ft.	70 to 72 ft.
Drill hole	and location	SH-7114 4S 48E S20 ABAB			SH-7115 4S 48E S34 DABD		SH-7116 4S 48E S29 (CAD		SH-7117 5S 48E S7 BCAA		SH-7118 5S 48E S22 DCDA		SH-7120 4S 48E S36 CCCC

 $^{1}/\mathrm{A}$, as received; B, moisture free; C, moisture and ash free.

Table 72.-Major ash constituents, Sonnette coal deposit.

	Total	98.2	97.1	91.0	93.9	95.3	94.4	95.1	9.96	94.6
	TiO2	7.	6;	ιż	7.	4.	4:	4.	ιi	o;
	SO ₃	10.6	7.9	27.4	5.2	21.4	22.2	22.3	23.5	5.9
	SiO2	33.7	34.8	16.5	50.3	18.7	22.7	19.2	18.7	45.3
%	P205	4.	4.	c i	L :	-:	4	1.3	∞.	4.
Constituent, %	Na ₂ O	6.3	o;	r.	∞.	7.2	4.0	2.5	2.4	.2
Ö	MgO	4.2	7.4	2.3	2.3	5.5	3.7	5.7	6.9	3.4
	K20	9.	7	7	3.0	4.	٠ċ	4.	4.	9.
	Fe ₂ O ₃	8.4	4.2	10.8	10.4	8.2	11.8	9.6	7.9	12.4
	CaO	14.1	21.3	22.5	3.4	21.7	15.4	22.0	24.2	8.2
	Al ₂ O ₃	22.8	19.1	10.1	17.7	11.7	13.5	11.7	11.5	17.3
Coal	peq	Pawnee	Pawnee	Pawnee	Pawnee	Cook	Cook	Canyon	Cook	Cook
Lab.	sample	362-364	365-366	367	372	368	369	370	371	375
Depth	sampled	70 to 95 ft.	40 to 56 ft.	30 to 37 ft.	190 to 192 ft.	72 to 82 ft.	114 to 119 ft.	38 to 41 ft.	78 to 86 ft.	70 to 72 ft.
Drill hole	and location	SH-7114 4S 48E S20 ABAB	SH-7115 4S 48E S34 DABD	SH-7116 4S 48E S29 CCAD		SH-7117 5S 48E S7 BCAA		SH-7118 5S 48E S22 DCDA		SH-7120 4S 48E S36 CCCC

Table 73.-Proximate analysis, forms of sulfur, and heating value, Threemile Buttes coal deposit.

					STR	IPP	ΑI	BLE	COA	L,	so	UTH	ΕA	ST	ΈF	RN	M	NC	TA	.NA			
	Heating		6904	10951	12162	7080	11206	12022	6904	11153	11894	6716	10559	12230	8899	10828	11918	6646	10838	11943	7133	11179	12061
	Organic		869.	1.108	1.230	.362	.573	.615	.288	.466	.497	.943	1.482	1.717	929.	1.095	1.205	.495	.807	688.	.352	.552	.596
Form of sulfur, %	Pvritic		.235	.373	.414	.061	.097	.104	.067	.108	.116	1.520	2.389	2.767	.291	.471	.518	.108	.177	.195	.230	.361	.389
Form o	Sulfate		.022	.035	.039	.027	.043	.046	.034	.054	.058	.084	.133	.154	.020	.033	.036	.054	880.	.097	.022	.034	.036
	Sulfur		.955	1.516	1.683	.451	.714	991.	.389	.628	029.	2.547	4.004	4.637	886.	1.599	1.760	.658	1.072	1.182	.604	.947	1.021
	Ash		6.277	9.957		4.290	6.790		3.856	6.230		8.695	13.670		5.649	9.145		5.674	9.253		4.667	7.314	
ate, %	Fixed		30.054	47.674	52.946	31.204	49.389	52.987	31.527	50.932	54.315	29.716	46.715	54.112	29.894	48.396	53.267	29.962	48.861	53.843	32.516	50.958	54.979
Proximate, %	Volatile matter		26.709	42.369	47.054	27.686	43.821	47.013	26.517	42.839	45.685	25.199	39.615	45.888	26.227	42.460	46.733	25.684	41.886	46.157	26.627	41.729	45.021
	Moisture		36.960			36.820			38.100			36.390			38.230			38.680			36.190		
	Form of analysis 1/	,	٧	В	ပ	V	В	ပ	Ą	В	ပ	А	æ	Ü	A	В	ပ	A	В	C	Ą	В	C
	Coal bed		Canyon			Canyon			Canyon			Canyon									Canyon		
	Lab. number				370			392			393			408			409			410			411
	Depth sampled	•		38 to	41 ff.		45 to	52 ft.		42 to	50 ft.		90 to	91 ft.		91 to	93 ft.		93 to	100 ft.		54 to	57 ft.
	Drill hole and location		SH-7118	5S R48E S22	DCDA	SH-7141	4S R47E S35	CBBA	SH-7142	4S R47E S23	CBBA	SH-7151	4S R47E S4	CADD							SH-7152	3S R47E S33	CBAB

 $^{1}/\mathrm{A}$, as received; B, moisture free; C, moisture and ash free.

Table 74.-Major ash constituents, Threemile Buttes coal deposit.

	2 Total	95.1	97.2	95.5	6.68	96.5
	TiO ₂	4	4	4 .	εċ	4.
	SO3	22.3	19.1	19.3	27.8	24.0
	SiO2	19.2	17.1	14.6	11.2	15.4
ent, %	P ₂ O ₅	1.3	1.5	1.0	2.2	1.
Constituent, %	Na ₂ O	2.5	1.0	2.0	2.4	<i>L</i> :
	MgO	5.7	9.0	12.9	6.5	15.0
	K20	4.	.2	<i>c</i> i		7:
	Fe ₂ O ₃	9.6	8.5	7.5	8.6	8.6
	CaO	22.0	34.2	28.7	20.1	23.8
	Al ₂ O ₃	11.7	8.9	6.8	9.5	7.1
Coal	peq	Canyon	Canyon	Canyon	Canyon	Canyon
Lab.	sample	370	392	393	408-410	411
Depth	sampled	38 to 41 ft.	45 to 52 ft.	42 to 50 ft.	90 to 100 ft.	54 to 57 ft.
Drill hole	and location	SH-7118 5S 48E S22 DCDA	SH-7141 4S 47E S35 CBBA	SH-7142 4S 47E S23 CBBA	SH-7151 4S 47E S4 CADD	SH-7152 3S 47E S33 CBAB

formed where it burned produces very steep ridges on the sides of Pumpkin Creek valley. The coal bed consists of two benches 22 feet apart at the north and about 40 feet at the southeast side of the mapped area. The upper bench is 10 feet thick as measured in drill hole SH-7117 and 16 feet in SH-7119 in sec. 12, T. 5 S., R. 48 E. The lower bench is 6 feet thick in SH-7119 and 10 feet in drill hole SH-7117.

About 50 feet above the Cook beds is the Ferry coal bed, and 50 to 100 feet higher is the Canyon coal bed, which consists of two benches in T. 5 S., R. 47 and 48 E., shown on the Threemile Buttes coal deposit (Pl. 24). In drill hole SH-7121, sec. 16, T. 6 S., R. 48 E., in the Diamond Butte coal deposit (Pl. 19), the Canyon is a single bed 7 feet thick, and in SH-7136 in sec. 33, T. 5 S., R. 47 E., it is 6 feet thick. One bench of the Canyon bed thickens northward and in SH-7141 in sec. 35, T. 4 S., R. 47 E., it is 13 feet thick. In drill hole SH-7143, sec. 15, the upper bench is 4 feet thick and the lower bench 13 feet.

The Ferry coal bed is thin and discontinuous in the southern part of the area, but in the northern part it is 17 feet thick in drill hole SH-7152, sec. 33, T. 3 S., R. 47 E., and 13 feet thick in drill hole SH-7151, sec. 4, T. 4 S.,

R. 47 E. In drill hole SH-7142, sec. 23, T. 4 S., R. 47 E., it is 6 feet thick.

COAL QUALITY

Nineteen core samples were obtained on this project and were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, forms of sulfur, and heating value are shown for the Sonnette coal deposit in Table 71 and for the Threemile Buttes coal deposit in Table 73. Major ash constituents in the Sonnette coal deposit are shown in Table 72 and in the Threemile Buttes coal deposit in Table 74.

COAL RESERVES

The indicated reserves in the Pawnee coal bed are 320,250,000 tons, and inferred reserves are 183,060,000 tons, a total of 503,310,000 tons. The two benches of the Cook coal bed have indicated reserves of 362,980,000 tons, and total reserves in the Sonnette coal deposit are 866,290,000 tons (Table 70).

The Canyon coal bed and the Ferry coal bed in the Threemile Buttes deposit contain indicated reserves of 225,400,000 tons (Table 74).

Table 75.—Reserves, overburden, overburden ratio, acres, and tons/acre, Home Creek Butte coal deposit.

CANYON and FERRY BEDS

Thickness of overburden, ft.		licated reserves, million tons	ir	rburden and iterburden, llion cu. yd.	interb	ourden an ourden rat c yards/to	io,	Acres		Tons/acre
0 to 50		36.59		46.34		1.26		870.4		42,038.1
50 to 100		93.71		269.49		2.87		2,227.2		42,075.3
100 to 150		86.91		363.47		4.18		1,753.6		49,560.9
	Total	$2\overline{17.21}$	Total	679.30	Average	3.12	Total	4,851.2	Average	44,774.5

HOME CREEK BUTTE COAL DEPOSIT

LOCATION

The Home Creek Butte coal deposit (Pl. 26) is in T. 2 and 3 S., R. 47 E., and a very small portion of the deposit laps over into sec. 24 and 25, T. 2 S., R. 46 E., Powder River County. U.S. Highway 212 crosses the southern boundary of the mapped area. On the west, the area borders the Ashland coal deposit (Pl. 13), and on the south, it nearly adjoins the Threemile Buttes coal deposit (Pl. 24). To the east, the area nearly adjoins the Pumpkin

Creek coal deposit (Pl. 15), and it is overlapped on the north by the Little Pumpkin Creek coal deposit (Pl. 27).

FIELD WORK AND MAP PREPARATION

The field work was completed in 1971 and included the drilling of two holes, SH-7153 and SH-7154, sec. 10, T. 3 S., R. 47 E. Data from an additional hole in sec. 33, T. 2 S., R. 47 E., were obtained from a private company. Clinker and burn lines were mapped in the winter of 1972 with the aid of colored aerial photos borrowed from the U.S. Forest Service.

PREVIOUS GEOLOGIC WORK

The Home Creek Butte coal deposit area was mapped by Bass (1932).

LAND OWNERSHIP

The Home Creek Butte coal deposit lies within the Custer National Forest. The Federal Government owns the surface and coal.

SURFACE FEATURES AND LAND USE

The Home Creek Butte coal deposit is on the high divide separating Little Pumpkin Creek from the East Fork of Otter Creek and Home Creek, both of which are tributaries of Otter Creek. Beaver Creek drains the northwestern part of the area.

The principal land use in the area is livestock, grazing, but some land is cultivated by dry-land farming to produce wheat and other grain. Some timber is cut in the area and hauled to nearby Ashland for saw lumber.

GEOLOGIC STRUCTURE

Very little structural information is available in this area, but the information that is available indicates that

the Ferry coal bed is nearly horizontal. The altitude of its top in sec. 33, T. 2 S., R. 47 E., is 21 feet lower than in drill hole SH-7154, sec. 10, T. 3 S., R. 47 E.

COAL BEDS

The Ferry coal bed is 24 feet thick, and in drill hole SH-7154, it is 76 feet below the Canyon bed, which is 10 feet thick. In T. 2 S., R. 47 E., only the Ferry coal bed contains strippable reserves. Although the Canyon coal be 1 may remain unburned in some places, it has only minimal reserves. The names Ferry and Canyon have been carried north from the Birney-Broadus area (Warren, 1959), where they are correlated with the coal beds in the Three-mile Buttes coal deposit (Pl. 24) to the south.

COAL QUALITY

No analytical data were collected or available for coal in this coal deposit. It was assumed that the coal is similar to that in the Threemile Buttes coal deposit farther south.

COAL RESERVES

The indicated reserves in the Ferry and Canyon coal beds are 217,210,000 tons (Table 75).

Table 76.-Reserves, overburden, overburden ratio, acres, and tons/acre, Little Pumpkin Creek coal deposit.

BAWYER, A, C and D, X, and E BEDS

Thickness of overburden, ft		ferred reserves, million tons	i	verburden and nterburden, illion cu. yd.	interb	ourden ar ourden rat cyards/to	tio,	Acres		Tons/acre
0 to 50 50 to 100		69.06 55.74		179.70 264.71		2.6 4.7		2,205.4 2,015.2		31,314.0 27,659.8
100 to 150 0 to 100	Total	46.38 44.65 215.83	Total	457.87 <u>231.56</u> 1,133.84	Average	9.8 5.2 5.3	Total	1,433.6 2,880.0 8,534.2	Average	32,352.1 15,503.5 25,290.0

LITTLE PUMPKIN CREEK COAL DEPOSIT

LOCATION

The Little Pumpkin Creek coal deposit (Pl. 27) is in T. 1 and 2 S., R. 47 and 48 E., Powder River County. The deposit, confined to the sides and bottom of the valley of Little Pumpkin Creek, is overlapped on its north side by the Foster Creek coal deposit (Pl. 16A, B, and C). The area adjoins the Pumpkin Creek coal deposit (Pl. 15) to

the east, the Beaver Creek-Liscom Creek coal deposit (Pl. 29) to the northwest, the Ashland coal deposit (Pl. 13A and B) to the west, and the Home Creek Butte coal deposit (Pl. 26) to the southwest.

FIELD WORK AND MAP PREPARATION

The field work in the Little Pumpkin Creek coal deposit was minimal and included only brief reconnaissance mapping on 7½-minute topographic quadrangle maps.

Color aerial photos lent by the U.S. Forest Service were utilized for drawing the coal outcrops and burn lines. Some private company drill holes shown on the map (Pl. 27) as L.P.C. drill holes, provided information on coal thickness, and the report by Bass (1932) provided additional figures on coal thickness.

PREVIOUS GEOLOGIC WORK

The Little Pumpkin Creek area was included in the report on the Ashland coal field (Bass, 1932).

LAND OWNERSHIP

The Little Pumpkin Creek area lies within the land grant to Burlington Northern, Inc., which has retained the coal rights, although it has conveyed the surface. The State of Montana owns the surface and minerals in sec. 16 and 36 in T. 1 S., R. 47 and 48 E., and some additional land in T. 1 S., R. 47 E. The Federal Government owns a large part of the surface and some coal rights in T. 2 S., R. 47 and 48 E., besides that part of the area included within Custer National Forest.

SURFACE FEATURES AND LAND USE

Little Pumpkin Creek has deeply incised a broad northward-trending valley, on both sides of which the terrain rises to steep-sided, high ridges. Clinker zones are numerous. Little Pumpkin Creek and its tributaries are intermittent streams, but Little Pumpkin Creek and some of the larger tributaries contain ponds of water all year.

The principal land uses in the area are livestock grazing, the raising of hay in valley meadows, and dry-land farming on summer fallowed fields. Dense forests on the west side of Little Pumpkin Creek support logging operations.

GEOLOGIC STRUCTURE

Very little information on the structure is available, but the strata seem to be almost horizontal.

COAL BEDS

The coal beds in the Little Pumpkin Creek area that contain strippable coal are, from top to bottom, the E,

X, C and D, Sawyer, and A beds. The Knobloch bed may be counted also, because it contains strippable coal along Little Pumpkin Creek (Pl. 16A).

The E coal bed, about 7 feet thick (Bass, 1932), is 70 to 100 feet above the X bed. The X coal bed is about 8 feet thick and is about 40 to 80 feet above the C and D bed. Thickness of the clinker where the C and D coal beds have burned along Green Creek in the northern part of T. 2 S., R. 47 E., and along Stacey Creek in the southern part of T. 1 S., R. 47 E., indicates a coal thickness in excess of 10 feet.

The C and D coal beds are 80 to 100 feet above the Sawyer bed, which is 31 feet thick in drill hole PC-31, sec. 21, T. 2 S., R. 48 E. (Pl. 15). According to Carmichael (1967), the A bed splits from the Sawyer somewhere between PC-31 and sec. 32, T. 1 S., R. 48 E. The parting between the A bed and the Sawyer bed is prominent on both sides of Little Pumpkin Creek and averages about 40 feet in thickness. Farther south along Little Pumpkin Creek in the gamma log of an oil well in sec. 23, T. 2 S., R. 47 E., the Sawyer bed is 31 feet thick and seems to be combined with the A bed in this area. A coal bed 5 feet thick here lies 12 feet above the Sawyer bed.

The Sawyer and A coal beds thin on the west side of Little Pump kin Creek in the center of T. 1 S., R. 47 E., and range in thickness from 6 to 9 feet.

COAL QUALITY

No core samples have been obtained from the Little Pumpkin Creek area, but the quality is believed to be similar to that in the Pumpkin Creek, Foster Creek, and the Beaver Creek-Liscom Creek areas.

COAL RESERVES

The coal reserves in the Little Pumpkin Creek area are classified as inferred because of the lack of drill holes in the area. The inferred reserves in the E coal bed, the X coal bed, the C and D coal bed, the Sawyer coal bed, and the A coal bed total 215,830,000 tons (Table 76).

Table 77.-Reserves, overburden, overburden ratio, acres, and tons/acre, Sand Creek coal deposit.

KNOBLOCH BED

Thickness of overburden, ft.		licated reserves, million tons		Overburden, llion cu. yd.		urden ra : yards/to	,	Acres		Tons/acre
0 to 50		98.54		138.26		1.4		2,665.1		36,974.2
50 to 100		130.58		306.35		2.3		2,553.1		51,145.6
100 to 150		38.22		148.05		3.9		734.0		52,070.8
	Total	267.34	Total	592.66	Average	2.22	Total	5,952.2	Average	44,914.4

SAND CREEK COAL DEPOSIT

LOCATION

The Sand Creek coal deposit (Pl. 28) is in portions of T. 1 N. and 1 S., R. 49 and 50 E., Custer and Powder River Counties. The area is about 50 miles south of Miles City on U.S. Highway 312, which traverses the southwest corner of the area. The Sand Creek coal deposit is a few miles north of the Broadus coal deposit (Pl. 17) and a few miles east of the Foster Creek coal deposit (Pl. 16A, B, and C).

FIELD WORK AND MAP PREPARATION

Field work in the Sand Creek coal deposit, completed in 1967 under a cooperative project between Burlington Northern, Inc., and the Montana Bureau of Mines and Geology, consisted of three drill holes and an altimeter survey conducted to gather topographic information for control in preparation of an overburden map. The field procedures followed those established by Burlington Northern (Carmichael, 1967). A structure-contour and overburden map was prepared by Loren A. Williams of Burlington Northern, Inc.

PREVIOUS GEOLOGIC WORK

The southern part of the Sand Creek coal field was mapped and described in the U.S. Geological Survey report on the Coalwood coal field (Bryson, 1952). The northern part of the area is included in U.S. Geological Survey report on the Mizpah coal field (Parker and Andrews, 1939). Brown and others (1954) and Ayler, Smith, and Deutman (1969) also describes the strippable coal.

LAND OWNERSHIP

The Sand Creek coal deposit lies within the boundaries of the land grant to Burlington Northern, Inc. Although

the railroad has conveyed the surface, it has retained ownership of the coal in odd-numbered sections within the area. The State of Montana owns sec. 16 and 36 in each township including both surface and mineral rights; the rest of the surface is privately owned. Although individuals may own a small amount of coal, the Federal Government retained the coal rights on most of the even-numbered sections.

SURFACE FEATURES AND LAND USE

The Sand Creek coal deposit is in a mesa that has a rolling surface particularly well suited for strip mining. In the south end of the deposit, the sides of the mesa are very steep and dissected, but the top is flat or gently rolling.

Approximately three-quarters of the area is utilized for dry-land farming. The rest is used for livestock grazing. Thick clinker above the burned Knobloch coal bed retains adequate moisture to support stands of ponderosa pine trees along the sides of the mesa.

GEOLOGIC STRUCTURE

Although very little structural information is available, altitudes of the top of the Knobloch coal bed, as measured in drill holes, show that the strata dip to the north (Pl. 28).

COAL BEDS

The Knobloch coal bed, in the lower part of the Tongue River Member, contains the strippable coal reserves in the Sand Creek coal deposit. The Knobloch bed consists of two to four distinct benches. In drill hole SC-1, sec. 23, T. 1 N., R. 49 E., the Knobloch bed is in two benches; the upper bench is 17 feet thick, the lower is 15 feet, and the parting is only 3 feet. About 2 miles southwest, in drill hole SC-3, sec. 1, T. 1 S., R. 49 E., the Knobloch is split into four distinct benches. The upper Knobloch

Table 78.-Proximate analysis, ultimate analysis, and heating value, Sand Creek coal deposit.

	Heating	value (Btu)	7220	10480	11910	7460	11060	11960	
		Oxygen	41.20	19.66	22.35	42.62	20.28	21.92	
		Nitrogen	.63	.92	1.04	.65	96	1.04	
Ultimate. %		Carbon	43.14	62.62	71.17	44.64	66.20	71.58	
		Hydrogen	6.46	4.36	4.96	6.71	4.59	4.96	
		Sulfur	.29	.42	.48	.31	.46	.50	
		Ash	8.28	12.02		5.07	7.51		
, 0	Fixed	carbon	32.81	47.61	54.11	34.06	50.52	54.62	
Proximate, %	Volatile	matter	27.81	40.37	45.89	28.30	41.97	45.38	
		Moisture	31.10			32.57			
	Form of	analysis */	Ą	В	C	A	В	၁	
	Coal	peq	Knobloch						
	USBM	number			1-73091			I-73092	
	Depth	sampled		51 to	68 ft.		71 to	86 ft.	
	Drill hole	and location	SC-1C	IN 49E S23	CCDC				

 $^{^{1}/\}mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 79.-Major ash constituents and fusibility of ash, Sand Creek coal deposit.

Drill hole Depth Lab. Coal Coal Sampled sample bed Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O P ₂ O ₃ SiO ₂ SiO ₂ TiO ₂ Total deformation Softening and location sampled sample bed Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O P ₂ O ₃ SiO ₂ SiO ₂ TiO ₂ Total deformation Softening temp. SC-1C 51 to GF-67- Knobloch 13.2 20.2 4.6 .63 6.6 1.9 .63 45.5 6.6 .84 100.7 2120 2160 IN 49E S23 68 ft. 794 12.5 33.0 6.4 .64 7.7 .50 1.04 20.0 12.4 .45 94.6 2460 2500	- 1	temp.	2200	2540
Depth Lab. Coal Coal Sample sample sample hed Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O P ₂ O ₅ SiO ₂ SO ₃ TiO ₂ Total tem tem deform 13.2 20.2 4.6 .63 6.6 1.9 .63 45.5 6.6 .84 100.7 2121 to GF-67- 12.5 33.0 6.4 .64 7.7 .50 1.04 20.0 12.4 .45 94.6 2466	ity of ash, F	temp.	2160	2500
Depth Lab. Coal Constituent sampled sample bed Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O I 51 to GF-67- Knobloch 13.2 20.2 4.6 .63 6.6 1.9 68 ft. 794 12.5 33.0 6.4 .64 7.7 .50 1	Fusibil Initial deformation	temp.	2120	2460
Depth Lab. Coal Constituent sampled sample bed Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O I 51 to GF-67- Knobloch 13.2 20.2 4.6 .63 6.6 1.9 68 ft. 794 12.5 33.0 6.4 .64 7.7 .50 1		Total	100.7	94.6
Depth Lab. Coal Constituent sampled sample bed Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O I 51 to GF-67- Knobloch 13.2 20.2 4.6 .63 6.6 1.9 68 ft. 794 12.5 33.0 6.4 .64 7.7 .50 1		TiO2	.84	.45
Depth Lab. Coal Constituent sampled sample bed Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O I 51 to GF-67- Knobloch 13.2 20.2 4.6 .63 6.6 1.9 68 ft. 794 12.5 33.0 6.4 .64 7.7 .50 1		SO3	9.9	12.4
Depth Lab. Coal Constituent sampled sample bed Al ₂ O ₃ CaO Fe ₂ O ₃ K ₂ O MgO Na ₂ O I 51 to GF-67- Knobloch 13.2 20.2 4.6 .63 6.6 1.9 68 ft. 794 12.5 33.0 6.4 .64 7.7 .50 1		SiO2	45.5	20.0
Depth Lab. Coal sampled sample bed 51 to GF-67- Knobloch 68 ft. 794	nt, %	P ₂ O ₅	.63	1.04
Depth Lab. Coal sampled sample bed 51 to GF-67- Knobloch 68 ft. 794	Sonstitue	Na ₂ O	1.9	.50
Depth Lab. Coal sampled sample bed 51 to GF-67- Knobloch 68 ft. 794	Ü	MgO	9.9	7.7
Depth Lab. Coal sampled sample bed 51 to GF-67- Knobloch 68 ft. 794		K20	.63	.64
Depth Lab. Coal sampled sample bed 51 to GF-67- Knobloch 68 ft. 794		Fe ₂ O ₃	4.6	6.4
Depth Lab. Coal sampled sample bed 51 to GF-67- Knobloch 68 ft. 794		CaO	20.2	33.0
Depth Lab. sampled sample 51 to GF-67- 68 ft. 794 71 to GF-67-		Al_2O_3	13.2	12.5
Depth sampled 51 to 68 ft.	Coal	bed	Knobloch	
	Lab.	sample	GF-67- 794	GF-67- 795
Drill hole and location SC-1C 1N 49E S23	Depth	sampled	51 to 68 ft.	71 to 86 ft.
	Drill hole	and location	SC-1C 1N 49E S23	-

loch bench seems to have split into three benches, 7 feet, 8 feet, and 8 feet thick; the lower or fourth bench is 14 feet thick. In drill hole SC-2, in sec. 9, T. 1 S., R. 50 E., the Knobloch bed again is in two benches; the upper bench is 7 feet thick and the lower bench is 10 feet. The thickness of the parting between the upper and lower benches of the Knobloch coal bed increases markedly from north to south across the coal deposit. At the northern end, the two benches are separated by a 3-foot parting in drill hole SC-1C, but in drill hole SC-2, thickness of the parting has increased to 43 feet.

COAL QUALITY

Both benches of the Knobloch coal bed were cored in drill hole SC-1C, sec. 23, T. 1 N., R. 49 E., during the 1967 cooperative field program. The cores were analyzed by the U.S. Bureau of Mines, Grand Forks Coal Research Laboratory. Proximate analysis, ultimate analysis, and heating value are shown in Table 78; major ash constituents and fusibility of ash are shown in Table 79.

COAL RESERVES

Reserves in the Knobloch coal bed total 267,340,000 tons (Table 77).

BEAVER CREEK-LISCOM CREEK COAL DEPOSIT

LOCATION

The Beaver Creek-Liscom Creek coal deposit is in T. 1 N. and 1 S., R. 45 and 46 E. (Pl. 29), Powder River and Rosebud Counties. The northern and western boundaries of the coal deposit are the lowlands along the valley of the Tongue River where erosion has removed the coal beds, and the southern boundary is the high area of the Cook Mountains where overburden is too great for potential strip mining of the coal. To the east, the area borders the Foster Creek coal deposit (Pl. 16A, B, and C), and to the southeast it borders the Little Pumpkin Creek coal deposit (Pl. 27). To the south, the area borders the Ashland coal deposit (Pl. 13A and B).

FIELD WORK AND MAP PREPARATION

The field work in the Beaver Creek-Liscom Creek area, completed in the summer of 1970, included drilling numerous exploration holes and mapping the surface on topographic quadrangle maps and on black-and-white aerial photos. Color photos, borrowed from the U.S. Forest Service, were used in mapping the south half of T. 1 N., R. 46 E., and T. 1 S., R. 45 and 46 E.

PREVIOUS GEOLOGIC WORK

The Beaver Creek-Liscom Creek area was included in the report on the Ashland coal field (Bass, 1932). The eastern corner of the mapped area overlaps the Foster Creek coal deposit (Pl. 16A, B, and C), which was discussed in Montana Bureau of Mines and Geology Bulletin 73 (Gilmour and Williams, 1969), and two drill holes included in the Foster Creek report are shown on Plate 29.

SURFACE FEATURES AND LAND USE

The most prominent surface features in the mapped area are the wide northwest-trending valleys of Liscom Creek and Beaver Creek, both tributaries of the Tongue River. The area is characterized by gently rolling grassland and long steep-sided clinker-capped ridges. The divide between Liscom Creek and Beaver Creek is a dissected ridge bordered by steep slopes and cliffs of thick resistant clinker formed by the burning of the Knobloch coal bed.

The principal land use in the area is livestock grazing, supplemented by dry-land farming. The principal crops are hay and grains.

LAND OWNERSHIP

The Beaver Creek-Liscom Creek coal deposit lies within the land grant to Burlington Northern, Inc., and the coal on the odd-numbered sections has been retained by the railroad, although the surface has been conveyed. The State of Montana owns the surface and the minerals in sec. 16 and 36 of each township and some additional land in T. 1 S., R. 45 and 46 E. The Federal Government owns the coal in most of the rest of the area and has a fairly large amount of the surface in T. 1 N., R. 45 E., and a few isolated tracts in T. 1 N., R. 46 E., besides the part of T. 1 S., R. 46 E., that is within the Custer National Forest.

GEOLOGIC STRUCTURE

The strata in the Beaver Creek area are almost horizontal but dip slightly to the west. The Knobloch coal bed is structurally highest in drill hole SH-7083, in sec. 2, T. 1 S., R. 46 E. This structural high seems to coincide with the divide between Beaver Creek and Liscom Creek. A northeast-trending fault in the vicinity of drill hole SH-7078, sec. 36, T. 1 S., R. 45 E., has downdropped the strata on the southeast side about 40 feet.

COAL BEDS

The coal beds that have economic value in the Beaver Creek-Liscom Creek coal deposit are, from top to bottom, the Knobloch, Flowers-Goodale, and Terret beds. The

Table 80.-Reserves, overburden, overburden ratio, acres, and tons/acre, Beaver Creek-Liscom Creek coal deposit.

TERRET, FLOWERS-GOODALE, and KNOBLOCH BEDS

Thickness of overburden, ft.		d reserves, on tons	iı	erburden and nterburden, llion cu. yd.	interb	ourden and ourden rat ourds/too	io,	Acres		Tons/acre
0 to 50 50 to 100 100 to 150	29 <u>15</u>	75.80 94.89 56.80 27.49	Total	490.10 1,559.98 1,069.82 3,119.90	Average	2.78 5.29 <u>6.82</u> 4.97	Total	8,236.8 12,441.6 5,248.0 25,926.4	Average	21,343.2 23,701.1 29,878.0 24,203.1
				KNOBL	OCH BED					
0 to 50 50 to 100 100 to 150	21 <u>15</u>	21.70 13.12 56.8 91.62	Total	292.13 938.91 <u>1,069.82</u> 2,300.86	Average	2.40 4.40 <u>6.82</u> 4.68	Total	4,518.4 7,308.8 5,248.0 17,075.2	Average	26,934.3 29,159.4 29,878.0 28,791.8
				TERR	ET BED					
Thickness of overburden, ft.		ed reserves, on tons		verburden, llion cu. yd.		urden rati yards/toi		Acres		Tons/acre
0 to 50	1	10.26		51.45		5.01		966.4		10,616.7
				FLOWERS-C	GOODALE	BED				
0 to 50 50 to 100	_8_	13.84 31.77 25.61	Total	146.52 621.07 767.59	Average	3.34 7.59 6.11	Total	2,752.0 5,132.8 7,884.8	Average	15,930.2 15,930.9 15,930.7

Knobloch coal bed contains the largest amount of strippable reserves in the area and has a maximum measured thickness of 22 feet in drill hole SH-7075, sec. 32, T. 1 S., R. 45 E. It thins and splits northeastward and has a thickness of 14 feet in two benches in drill hole SH-7091, sec. 16, T. 1 N., R. 46 E. The lower bench of the Knobloch has previously been mapped as the Lay Creek coal bed in parts of the area, but drill hole SH-7075, sec. 32, T. 1 S., R. 45 E., indicates that the Lay Creek bed is a split from the Knobloch bed. Throughout T. 1 S., R. 45 and 46 E., the "Lay Creek" coal bed maintains a thickness of 5 to 6 feet, except in drill hole SH-7083, where it is only 4 feet thick. The Flowers-Goodale bed is thickest in the northeast part of the area. In drill hole SH-7083,

in sec. 2, T. 1 S., R. 46 E., it is 12 feet thick; in drill hole SH-7076, in sec. 14, T. 1 S., R. 45 E., it is 9 feet thick. The Terret coal bed is 10 feet thick in drill hole SH-7083 and 6 feet thick in drill hole SH-7076.

The thick stratigraphic section penetrated in drill hole SH-7083 shows the relationship of the coal beds. In this drill hole, the section between the Knobloch and "Lay Creek" beds is at its maximum of 88 feet, from top to top. The section between the Flowers-Goodale and Terret beds is 43 feet, about the same as in drill hole SH-7076. In SH-7083, the section between the Knobloch and Flowers-Goodale beds is 188 feet, and it decreases westward to about 100 feet in sec. 36, T. 1 N., R. 45 E.

Table 81.-Proximate analysis, forms of sulfur, and heating value, Beaver Creek-Liscom Creek coal deposit.

	Heating value (Btu)	8417 11614 12886	8052 11185 1285	8237 11627 12965	8102 11217 12642	8383 11793 12892	$\frac{8401}{12039}$	7871 11330 12479	7933	12640 7925 11499 12560	7918 10721 12710	8271 11649 12639	7362	1,5339 7771 11063 12535	7908 11230 12524	8170 11506 12523
	Organic	.1157 157 174	.325 .451 519	.141 .200 .223	.186 .257 .290	.112	.302 .325	.139 .201 .221	.227	.254 .254 .263	.282 .382 .453	.143 .202 .219	.386 .386	1345 1345 1391	.254 .361 .403	.166 .234 .255
Form of sulfur, %	Pyritic	.366 .505 .560	248 248 285	.129 144 144	.759 1.051 1.185	.456 .641	.195 .279 .301	.325 .468 .515	.104	.165 .017 .024 .026	.548 .742 .879	.127 .178 .193	.516 .713	.509 .725 .821	.008 .012 .013	.499 .703 .765
Form	Sulfate	.016 .022 .025	0.0.0 801.0 81.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.016 .022 .025	.032 .045 .049	.008 .011 .012	.008 .011 .012	.016	.025 .025 .026 .026	.026 .035 .041	.154	.017	.023 .023 .026 .026	0000 0000 0000	.025 .035 .038
	Sulfur	.496 .684 .759	.7112 8171	380 380	.961 1.331 1.500	.600 .924 .923	4.593 639 899	.472 .680 .749	.397	.315 289 315	.856 1.159 1.374	.380 .535 .580	.813 1.122	1.093 1.238	263 373 416	.691 .973 1.059
	Ash	7.154 9.871	9.336 12.968	7.308 10.316	8.144	6.063 8.529	5.071 7.267	6.394 9.203	7.501	5.821 8.446	11.557	5.560	13.816 19.074	8.249 11.744	7.276	5.767 8.121
ate, %	Fixed	36.800 50.780 56.341	34.484 47.901 55.038	38.013 53.660 59.832	35.986 49.821 56.152	36.933 51.952 56.797	37.031 53.069 57.227	36.380 52.368 57.676	35.512	25.263 27.091 40.512	32.427 43.904 52.047	36.850 51.901 56.310	44	34.571 49.218 55.767	34.659 49.217 54.889	38.322 53.967 58.737
Proximate,	Volatile matter	28.517 39.349 43.659	28.170 39.131 44.962	25.519 36.024 40.168	28.100 38.904 43.848	28.094 39.518 43.203	27.678 39.665 42.773	26.697 38.429 42.324	8.78	45.415 37.536 54.463 59.488	29.876 40.450 47.953	28.591 40.269 43.690	2010	27.421 39.038 44.233	28.485 40.450 45.111	26.921 37.912 41.263
	Moisture	27.530	28.010	29.160	27.770	28.910	30.220	30.530	29.740	31.080	26.140	29.000	27.570	29.760	29.580	28.990
ţ	Form of $1/2$	&¤O.	Q M Q	¢αΩ	CBA	CMA	CBA	CBA	ΦŒ	OMPC	OBA	CBA	∀a∪	CBA	CBA	CBA
	Coal	Knobloch			Flowers- Goodale	Knobloch		Knobloch	Knobloch		Knobloch	Flowers- Goodale	Knobloch		Knobloch	Terret
•	Lab. number	307	308	309	311	312	313	314	215	316	318	319	320	322	323	324
:	Depth sampled	100 to 106 ft.	106 to 116 ft.	116 to 120 ft.	53 to 62 ft.	92 to 100 ft.	100 to 109 ft.	42 to 52 ft.	85 to	95 to 100 ft.	103 to 105 ft.	54 to 61 ft.	67 to 77 ft.	93 to 101 ft.	52 to 60 ft.	38 to 44 ft.
- :	Drul note and location	SH-7074 1S 45E S20 BAAD			SH-7076 1S 45E S14 DDBD	SH-7077 1S 45E S34 ABBB		SH-7079 1S 46E S28 BBCC	SH-7080 1S 46E S34	CACD	SH-7083 1S 46E S2 CCCD	SH-7084 1N 45E S36 BABD	SH-7092 1N 46E S18 ADDD		SH-7093 1N 46E S30 ABCC	SH-7094 IN 45E S16 BBDA

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 82.-Major ash constituents, Beaver Creek-Liscom Creek coal deposit.

	Total	97.9	97.1	97.5	98.6	97.6	97.6	98.5	6.96	8.86	91.9
	TiO2	7.	۸i	4.	9.	o;	1.0	7.	9.	1.2	7
	SO ₃ 1	9.3	17.7	15.1	15.3	7.8	12.1	7.6	18.0	7.4	21.6
	SiO ₂	44.6	30.2	24.3	31.2	46.0	49.7	50.7	28.4	40.9	19.8
	P2O\$	<i>c</i> i	4.	ωi	4	7	2	~	⊷ i	1.4	5
Constituent, %	Na ₂ O	∞i	7:	3.1	4.	1.2	7.	λi	1.2	3.6	1.0
Constit	MgO	5.4	4.	8.3	6.7	6.3	3.6	3.8	3.5	3.7	7.4
	K20	7.	λί	7.	- :	77	س ز	∞.	<i>د</i> :	 :	L.
	Fe ₂ O ₃ K	3.8	14.7	5.6	8.7	4.7	7.5	6.0	12.8	6.4	12.2
	CaO	16.5	13.2	23.0	21.6	17.4	14.8	11.4	16.8	20.5	19.9
	Al ₂ O ₃	15.9	15.3	17.2	13.8	12.9	7.9	16.9	15.2	13.6	9.5
100	bed	Knobloch	Flowers- Goodale	Knobloch	Knobloch	Knobloch	Knobloch	Flowers- Goodale	Knobloch	Knobloch	Terret
+ 1	can.	307-309	311	312-313	314	315-316	318	319	322	323	324
i d	Deptn sampled	100 to 120 ft.	53 to 62 ft.	92 to 109 ft.	42 to 52 ft.	85 to 100 ft.	103 to 105 ft.	54 to 61 ft.	93 to 101 ft.	52 to 60 ft.	38 to 44 ft.
	Drill hole and location	SH-7074 1S 45E S20 BAAD	SH-7076 1S 45E S14 DDBD	SH-7077 1S 45E S34 ABBB	SH-7079 1S 46E S28 BBCC	SH-7080 1S 46E S34 CACB	SH-7083 1S 46E S2 CCCD	SH-7084 1N 45E S36 BABD	SH-7092 1N 46E S18 ADDD	SH-7093 1N 46E S30 ABCC	SH-7094 1N 45E S16 BBDA

COAL QUALITY

The fifteen core samples obtained were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, forms of sulfur, and heating value are shown in Table 81, and major ash constituents are shown in Table 82.

COAL RESERVES

Strippable reserves in the Beaver Creek-Liscom Creek coal deposit total 627,490,000 tons, of which the Knobloch bed accounts for 491,620,000 tons (Table 80).

GREENLEAF CREEK-MILLER CREEK COAL DEPOSIT

LOCATION

The Greenleaf Creek-Miller Creek coal deposit (Pl. 30) in parts of T. 1 and 2 S., R. 42 and 43 E., Rosebud County, is bounded on the south by the Northern Cheyenne Indian Reservation north boundary, on the east by the Tongue River valley, and on the west by the valley of Rosebud Creek.

FIELD WORK AND MAP PREPARATION

The field work in the Greenleaf Creek-Miller Creek area during the summer of 1970 was followed in the summer of 1972 by geologic mapping on black-and-white aerial photos and 7½-minute topographic quadrangle maps. Overburden maps were prepared during the following winter.

PREVIOUS GEOLOGIC WORK

The area has been mapped by the U.S. Geological Survey (Bass, 1932). Strippable coal was described in later reports by Kepferle (1954) and Ayler, Smith, and Deutman (1969).

LAND OWNERSHIP

The Greenleaf Creek-Miller Creek area lies within the land grant to Burlington Northern, Inc., whereby the railroad was granted available odd-numbered sections along its right-of-way. Although the railroad has retained ownership of the mineral rights, it has conveyed most of the surface. The State of Montana owns sec. 16 and 36 in each township and has retained its surface and mineral rights. In the rest of the area, most of the surface is privately owned, but most of the coal is owned by the Federal Government.

SURFACE FEATURES AND LAND USE

Much of the coal deposit underlies an asymmetric ridge forming the divide between the northeastward-flowing Greenleaf Creek on the east and the northward-flowing Miller Creek on the west. Both of these intermittent streams are tributaries of Rosebud Creek. A few knobs on the crest of the ridge are capped by the clinker that resulted from burning of the Sawyer coal bed. The western side of the ridge rises abruptly from the coal outcrop to the crest, but the eastern side is broad and rolling. Farther east, the topography becomes more rugged as the clinker of the burned Knobloch bed is encountered; valleys become narrow and steep sided. Farther south, the clinker of the Sawyer bed forms a sharp ridgeline.

The principal land use in the area is livestock grazing supplemented by some dry-land farming and raising of hay in meadows along the valley bottoms of Greenleaf Creek and Miller Creek. The clinkered areas are covered with stands of ponderosa pine.

GEOLOGIC STRUCTURE

The strata in the Greenleaf Creek-Miller Creek coal deposit are almost horizontal, but show an apparent dip to

Table 83.-Reserves, overburden, overburden ratio, acres, and tons/acre, Greenleaf Creek-Miller Creek coal deposit.

ROSEBUD, KNOBLOCH, and SAWYER BEDS

Thickness of overburden, fi		d reserves, on tons		verburden, Illion cu. yd.		urden rat yards/to	,	Астез		Tons/acre
0 to 50 50 to 100 100 to 150	19 <u>12</u>	5.8 6.01 1.90 3.71	Total	240.56 823.97 740.70 1,805.22	Average	1.77 4.20 <u>6.07</u> 3.97	Total	4,480.0 6,790.4 3,648.0 14,918.4	Average	30,312.5 28,865.7 33,415.6 30,413.5

Table 84.-Proximate analysis, forms of sulfur, and heating value, Greenleaf Creek-Miller Creek coal deposit.

77 44	neaung value (Btu)	8510 11808 13029	8692 11936 13024	8247 11461	12775	9181 9181 12908	8423 11873 12709	8815 11614 12884	45	12532	8805 11922 12955	827-	12093 13132	0030	8590 11780 12981 8175	13319	8209 11411 12557	8432 11821 12968	$\frac{8377}{11867}$	13112 8454 11714	12924 18286	12953
	Organic	.322 343 343	.317 317	262 262 24	.406	.853 1.195 1.680	.211 .298 .319	.455 .600 .665	.162 .225	.240	.189 .255 .277	.371 .371	i		103 141 155 167 168	.374 .449	.215 .299 .329	.164 .230 .252	061	.096 .195 .77	2595 251 251	.236
Form of sulfur. %	Pyritic	.181 .251 .277		\sim	484	1.006 1.410 1.982	.106 .149 .159	.060 .079 .088	00.00 44.60 64.47	.036	.009 .012 .013	225 225 225 225	io 600 600 600 600 600 600 600 600 600 60	100	.8593 .814 .896 .01	2.851 3.424	310 341 341	245 235 200 200 200 200 200 200 200 200 200 20	1.169	1.830	729	1.120
Form	Sulfate	.017 .024 .026	.0017 .023	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.065	.031 .043 .061	0.00 000 000 000	.026 .034 038	5000 5000 5000 5000 5000 5000 5000 500	.048	.017 .023 .025	9 9 9 9 9		000.	000 000 000 000 000	.022 .026	0.0.0 0.00 0.00 0.00	9 9 9 9 9 9 9	023	036	00.00 00	.037
	Sulfur	.422 .586 .646	SOC	∪ ~ ~ <	956	1.890 2.647 3.722	317 7447 878	.541 .713	304	.324	.214 .290 .315	.596 256	56.00 1880 1880 1880	400	.696 .955 1.052 2.393	3.247	.438	569 869 87 869	1.253	1.961	1.064 1.892 1.892	1.394
	Ash	6.755 9.374	6.080 8.349	7.396	ł.	20.613 28.874	4.665 6.576	7.483	4.519 6.291		5.889 7.974	5.538	6.045		6.747 9.253 12.324	16.722	6.567	6.310 8.846	6.701	550	8.541	11.780
ate, %	Fixed carbon	37.043 51.399 56.715	1000		100	25.00	38.961 54.920 58.786	6.78 8.46	39.767 39.615 55.143	8.84	38.001 51.457 55.916	243	38.451 50.335	8	39.058 53.563 59.025 35.187	7.74	37.981 52.795 58.099	36.854 51.668 6854	36.006	56.357 37.962	58.033 37.756	52.069 59.022
Proxim	Volatile matter	28.271 39.228 43.28	8.72	2.23 7.67 7.07	1.32	550	27.315 38.504 41.214	999	46.233 27.706 38.566	=	29.960 40.569 44.084	900	31.894 41.751	n	27.115 37.184 40.975 26.189	35.535 42.670	27.392 38.076 41.901	28.165 39.486	27.883	243.643.045.05.05.05.05.05.05.05.05.05.05.05.05.05	38.039 41.967 26.213	36.151 40.978
	Moisture	27.930	27.180	28.050		28.610	29.060	24.100	28.160		26.150	26.330	23.610		27.080)	28.060	28.670	29.410	27.830	27.490	•
	Form of 1, analysis	₹ B(MP	OĄ£	ΔO	V B(J∢¤U	₹ ¤(U ⊄¤	Ü	∀ ªU	ΑB	OKE	၁	4m04	e Cm	4m()AM	م ه	POP	ಶ∪∢	ಖ
	Coal	Knobloch				Local	Sawyer	Sawyer			Sawyer	Knobloch			Rosebud		Knobloch			Rosebud		
	Lab. number	Č	575	326	327	9	328		373	374	330		331	332	333	334	i.	555	336	337	338	339
	Depth sampled	59 to	67 ft.	74 ft.	74 to 83 ft.	43 to	45 ff. 77 to 86 ff	58 to	68 ft. 68 to	78 ft.	125 to 133 ft.	92 to	100 ft. 100 to	102 ft.	43 to 50 ft.	50 to 55 ft.	41 to	51 II. 51 to	59 ft.	59 to 61 ft.	210 to 216 ft.	216 to 226 ft.
	Drill hole and location	SH-7096 1S 43E S28	DBBA			SH-7097 1S 43E S34	CBCB	SH-7098 1S 43E S32	BDCC		SH-7099 2S 43E S6 BDDA	SH-70100	ACBB		SH-70101 1S 42E S24 BCCA		SH-70102 1S 43E S16	BADA				

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

Table 85.-Major ash constituents, Greenleaf Creek-Miller Creek coal deposit.

	Total	94.8	95.0	8.96	96.2	97.1	94.9	9.96	94.4	9.96
	To	6	6	6	ō.	9.	ŏ	õ	ŏ	ŏ
	TiO ₂	o:	۲.	9.	<i>L</i> :	o;	7:	7.	7.	۸i
	SO3	9.4	3.1	11.5	9.5	8.0	13.4	10.9	13.0	10.1
	SiO2	38.8	53.1	28.2	35.0	41.8	31.1	38.4	35.5	35.6
	P2O5	4.	.2	4.	λi	4.	4.	λί	κi	٠ċ
Constituent, %	Na ₂ O	4.	□ :	11.7	9.2	9.0	4.2	9.	.2	7.
Const	MgO	8.8	1.5	3.9	3.3	2.8	5.0	3.7	5.1	3.4
	K20	<i>L</i> :	2.5	ω;	4.	7:	<i>5</i> i	1.2	 !	1.0
	Fe ₂ O ₃	4°.5	9.3	7.2	6.4	5.4	6.2	14.5	5.9	17.8
	CaO	17.0	3.6	14.9	14.3	14.1	15.7	10.5	17.1	11.0
	Al ₂ O ₃	17.9	20.9	18.1	18.4	15.4	18.0	15.6	16.5	16.0
Coal	peq	Knobloch	Local	Sawyer	Sawyer	Sawyer	Knobloch	Rosebud	Knobloch	Rosebud
Lab.	sample	325-327	328	329	373-374	330	331-332	333-334	335-337	338-339
Depth	sampled	59 to 83 ft.	43 to 45 ft.	77 to 86 ft.	58 to 78 ft.	125 to 133 ft.	92 to 102 ft.	43 to 55 ft.	41 to 61 ft.	210 to 226 ft.
Drill hole	and location	SH-7096 1S 43E S28 DBBA	SH-7097 1S 43E S34 CBCB		SH-7098 1S 43E S32 BDCC	SH-7099 2S 43E S6 BDDA	SH-70100 1S 42E S36 ACBB	SH-70101 1S 42E S24 BCCA	SH-70102 1S 43E S16 BADA	

the south. The top of the Knobloch coal bed is highest in the northern part of the deposit, 3,258 feet in drill hole SH-70102, in sec. 16, T. 1 S., R. 43 E., and it declines to 3,218 feet in drill hole SH-7096 in sec. 28 and to 3,169 feet in drill hole SH-7098 in sec. 32.

Two small faults have been mapped in sec. 32 and 33, T.1 S., R. 43 E. (Bass, 1932). The southernmost fault, in the southwest quarter of sec. 33, is downthrown on the south about 75 feet; the fault surface dips steeply northward. The second fault, in the northern part of sec. 32, is downthrown on the north about 50 feet or less (Bass, 1932, p. 45).

COAL BEDS

Coal beds in the Greenleaf Creek-Miller Creek coal deposit that have economic value are, from bottom to top, the Rosebud, Knobloch, and Sawyer beds. The stratigraphic distance between the Rosebud and the Knobloch increases, west to east, from 89 feet in drill hole SH-70100, sec. 36, T. 1 S., R. 42 E., to 151 feet in drill hole SH-70102, sec. 16, T. 1 S., R. 43 E. A similar separation is indicated by drill hole SH-7096, sec. 28, T. 1 S., R. 43 E., but the gamma log of an oil well in sec. 34, T. 1 S., R. 43 E., shows a further increase to 166 feet of strata between the two coal beds. The Sawyer bed is 178 feet above the Knobloch bed in drill hole SH-7098, sec. 32, T. 1 S., R. 43 E.

The Knobloch coal bed is 23 feet thick in drill hole SH-7096 in T. 1 S., R. 43 E., but thins westward to about 17 feet in drill hole SH-70100 in T. 1 S., R. 42 E. The Rosebud coal bed is 13 to 14 feet thick in T. 1 S., R. 42 E., but thins eastward to 9 feet as shown by the gamma log of an oil well in sec. 34, T. 1 S., R. 43 E. The Sawyer coal bed is 19 feet thick in drill holes SH-7098 and SH-7099. In drill hole SH-7097, sec. 34, T. 1 S., R. 43 E., it is only 10 feet thick.

COAL QUALITY

Seventeen project core samples were obtained and were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, forms of sulfur, and heating value are shown in Table 84, and major ash constituents are shown in Table 85.

COAL RESERVES

Strippable reserves in the Rosebud, Knobloch, and Sawyer coal beds total 453,710,000 tons (Table 83).

PINE HILLS COAL DEPOSIT

LOCATION

The Pine Hills coal deposit (Pl. 31), in T. 7 N., R. 49 and 50 E., Custer County, is 14 miles east of Miles City; U.S. Highway 12 traverses the northwest corner of the mapped area. Coal has been mined by underground methods at the now abandoned Storm King mine in sec. 4, T. 7 N., R. 49 E., but fires in 1969 and 1970 totally destroyed the old workings and caused the surface to collapse.

FIELD METHODS AND MAP PREPARATION

The field work for the Pine Hills coal deposit, a cooperative project of Burlington Northern, Inc., and the Montana Bureau of Mines and Geology, was completed in 1968. Loren Williams was in charge of the field mapping and was assisted by Peter Mattson of Burlington Northern and by Gardar Dahl and Robert Lambeth of the Montana Bureau of Mines and Geology. The field method utilized was developed by Burlington Northern, Inc., (Carmichael, 1967). The field work included setting temporary bench marks throughout the area and obtaining topographic control by careful altimeter surveys. Details on the quality and quantity of coal were obtained by drilling and collecting core samples.

PREVIOUS GEOLOGIC WORK

The geology of the area was described in a U.S. Geological Survey report on the Miles City coal field (Collier and Smith, 1909). Strippable coal in the Pine Hills coal deposit was described by Brown and others (1954) and by Ayler, Smith, and Deutman (1969).

LAND OWNERSHIP

Burlington Northern, Inc., owns part of the odd-numbered sections in the two townships containing the Pine Hills coal deposit. The railroad has kept the coal although it has conveyed most of the surface. The State of Montana owns the surface and the coal in sec. 16 and 36, T. 7 N., R. 49 E., and sec. 16, T. 7 N., R. 50 E. Although the Federal Government has conveyed the surface, it has retained the coal rights in the rest of the area.

SURFACE FEATURES AND LAND USE

The Pine Hills coal deposit underlies a high ridge that forms the divide between Cottonwood Creek, an intermittent stream that flows northward to the Yellowstone River, and Mill Creek, an intermittent stream that flows

Table 86.-Reserves, overburden, overburden ratio, acres, and tons/acre, Pine Hills coal deposit.

DOMINY BED

Thickness of overburden, ft.	Indicated reserves, million tons	Overburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 50 50 to 100 100 to 150	68.45 95.07 30.35 Total 193.87	110.73 357.77 198.72 Total 667.72	1.61 3.76 6.54 Average 3.44 Total	2,080 2,956.8 <u>985.6</u> 6,022.4	32,908.7 32,153.0 30,793.4 32,191.5
Thickness of overburden, ft.	Inferred reserves, million tons	Overburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 150	86.09	367.84	4.27	3,040	28,319.1
Thickness of overburden, ft.	Indicated and inferred reserves, million tons	Overburden, million cu. yd.	Overburden ratio, cubic yards/ton	Acres	Tons/acre
0 to 150	279.96	1,035.06	3.69	9,062.4	30,892.5

southwestward to the Tongue River. Farther south the divide separates the Tongue River drainage from the Powder River drainage to the east. The top of the divide is smooth and rolling, but the edges are steep and rugged and reveal resistant clinker produced by burning of the Dominy coal bed. Ponderosa pine trees line the fringes of the divide.

The principal land uses are livestock grazing and dryland farming.

GEOLOGIC STRUCTURE

The strata in the Pine Hills coal deposit are almost horizontal. The maximum difference in the altitude of the top of the Dominy coal bed in the three drill holes is only 22 feet.

COAL BEDS

Strippable reserves in the Pine Hills coal deposit are confined to the Dominy coal bed, which consists of two benches. The thickness of the lower bench ranges from 16 to 24 feet (Brown and others, 1954), but in the three project drill holes, it ranges from 17 to 20 feet (Pl. 31).

The upper bench of the Dominy is 3 to 4 feet thick, as shown in the drill holes, and is 5 to 6 feet above the thick lower bench.

The F coal bed, above the Dominy bed, has burned throughout the area except for a small patch described by Collier and Smith (1907, p. 57). Its clinker caps the buttes and ridges in the area.

COAL QUALITY

Three core samples were obtained during the field evaluation of the Pine Hills coal deposit, and they were analyzed by the U.S. Bureau of Mines, Grand Forks Coal Research Laboratory. Proximate analysis, ultimate analysis, heating value, and forms of sulfur are shown in Table 87. Major ash constituents and fusibility of ash are shown in Table 88.

COAL RESERVES

The indicated reserves in the Pine Hills coal deposit in the main bench of the Dominy coal bed are 193,870,000 tons. Inferred reserves in the eastern part of the area amount to an additional 86,090,000 tons (Table 86).

Table 87.-Proximate analysis, ultimate analysis, heating value, and forms of sulfur, Pine Hills coal deposit.

Organic	.18 .27 .30	.19 .27 .31	8. 4. 4. 4. 4. 4.
Pyritic	32 53 53 53	.39 .56 .64	.06 .10
Sulfate	.05 .07 .08	.05 .07 .08	.02 .03 .04
neaung ⁄alue (Btu)	7240 10650 11870	7220 10440 11840	7420 10710 11820
0	41.43 19.10 21.29	40.42 18.78 21.30	40.78 19.51 21.56
Z	.65 .96 1.07	.70 1.02 1.15	.71 1.02 1.13
ပ	43.95 64.63 72.03	43.89 63.47 71.95	45.19 65.17 71.97
Н	6.43 4.22 4.70	6.22 4.04 4.58	6.33 4.22 4.66
S	.82 .91	.62 .90 1.02	.43 .62 .68
Ash	6.98	8.15	6.56 9.46
rixed	33.24 48.89 54.48	33.68 48.70 55.21	34.61 49.91 55.13
Volatile matter	27.77 40.84 45.52	27.32 39.51 44.79	28.17 40.63 44.87
Moisture	32.01	30.85	30.66
Form of 1/ analysis 1/	CBA	CBA	CBA
Coal bed	Dominy	Dominy	Dominy
Lab. number	GF-68- 1865	GF-68- 1862	GF-68- 1863
Drill hole and location	PH-1C 7N 50E S29 ACAB	PH- 2C 7N 49E S13 DCDA	PH-3C 7N 49E S11 CDDD
	Lab. Coal Form of Volatile Fixed analysis 1/ Moisture matter carbon Ash S H C N O value (Btu) Sulfate Pyritic (Lab. Coal Form of Arguine Fixed analysis 1/ Moisture matter carbon Ash S H C N O value (Btu) Sulfate Pyritic (Inumber bed analysis 1/ Moisture matter carbon Ash S H C N O value (Btu) Sulfate Pyritic (Inumber bed analysis 1/ Moisture matter carbon Ash S H C N O value (Btu) Sulfate Pyritic (Inumber bed analysis 1/ Moisture matter carbon Ash S S 6.43 43.95 .65 41.43 7240 .05 .32 GF-68- B 40.84 48.89 10.27 .82 42.2 64.63 .96 19.10 10650 .07 .48 1865 .07 .48 1865 .07 .08 .53	Lab. Coal Form of Amily Private number bed analysis 1/ Moisture matter carbon Ash S H C N O value (Btu) Sulfate Pyritic of Aminy B 32.01 27.77 33.24 6.98 .56 6.43 43.95 .65 41.43 7240 .05 .32 CF-68- C C Aminy B 30.85 27.32 33.68 8.15 6.22 43.89 70 40.42 7220 .05 .39 CGF-68- B 39.51 48.70 11.79 .90 4.04 63.47 1.02 18.78 10440 .07 .56 18.62 C C C C C C C C C C C C C C C C C C C

¹/A, as received; B, moisture free; C, moisture and ash free.

Table 88.—Major ash constituents and fusibility of ash, Pine Hills coal deposit.

MO	NTAN. gg:		20	50
	Fluid temp.	2350	2350	2520
Fusibility of ash, F	Softening temp.	2300	2300	2470
Fusibilit	deformation temp.	2250	2250	2420
	Total	6.96	98.0	97.2
	LOI @ 800, C	1.	1.	2.
	SiO ₂ SO ₃ TiO ₂	λί	4.	4.
	SO3	23.7 15.2 .5	25.5 15.4 .4	20.1 13.9 .4
%	SiO2	23.7	25.5	20.1
Constituent, %	P_2O_5	4.	ω	c i
Con	K ₂ O MgO Na ₂ O	٨	2.4	1.3
	MgO	8.7	6.7	7.6
	K20	-:	T.	7
	Fe ₂ O ₃	8.3	8.3	5.6
	CaO	27.4	26.0	34.4
	Al ₂ O ₃	12.0	12.2	11.2
	Coal bed	Dominy	Dominy	Dominy
	Lab. sample	GF-68- 1865	GF-68- 1862	GF-68- 1863
	Depth sampled	95 to 112 ft.	143 to 161 ft.	74 to 93 ft.
	Drill hole and location	PH-1C 7N 50E S29 ACAB	PH-2C 7N 49E S13 DCDA	PH-3C 7N 49E S11 CDDD

Table 89.-Reserves, overburden, overburden ratio, acres, and tons/acre, Knowlton coal deposit.

DOMINY BED

Thickness of overburden, ft.	Indicated resembles million to:	· · ·	interburden ra	tio,	Acres	Tons/acre
0 to 50 50 to 100 100 to 150	219.61 425.86 102.04 Total 747.51	462.35 1,723.99 513.15 Total 2,699.49	2.10 4.04 5.02 Average 3.61	Total	3,471.45 12,918.49 3,223.28 19,613.32	63,260.8 32,965.1 31,656.9 Average 38,112.3
Thickness of overburden, ft.	Indicated resonable million to	,		,	Acres	Tons/acre
0 to 50 50 to 100 100 to 150	58.34 37.64 24.33 Total 120.31	93.56	1.11 2.48 $\frac{4.15}{2.15}$ Average	Total	3,180.8 768.0 499.2 4,448.0	18,341.3 49,010.4 48,737.9 27,048.1

KNOWLTON COAL DEPOSIT

LOCATION

The Knowlton coal deposit (Pl. 32A and B) is in T. 6 and 7 N., R. 53 and 54 E., Custer County, about 40 miles east of Miles City. U.S. Highway 12 crosses the north end of the mapped area. The coal field underlies the high divide between the Powder River valley to the west and the O'Fallon Creek valley to the east.

FIELD WORK AND MAP PREPARATION

All the field work resulting in the present map of the Knowlton coal deposit was completed during the summer of 1971. Geologic mapping on 7½-minute topographic maps, where available, was supplemented by mapping on black-and-white aerial photos for the rest of the area.

PREVIOUS GEOLOGIC WORK

The Knowlton coal deposit was originally mapped by the U.S. Geological Survey. The western part of the area was described in the Miles City coal report (Collier and Smith, 1909). The eastern part was included in the report on the Baker lignite field (Bowen, 1912).

LAND OWNERSHIP

The Knowlton coal deposit lies within the land grant to Burlington Northern, Inc. The railroad, although it has

conveyed much of the surface, has retained the coal rights. At the time of the grant, some odd-numbered sections were not available, so the railroad's coal ownership in the area is not complete. The State of Montana owns surface and minerals on sec. 16 and 36 in each township. The Federal Government has conveyed most of the surface, but has, in general, retained the mineral rights, although some coal is privately owned.

SURFACE FEATURES AND LAND USE

The Knowlton coal deposit underlies the high divide between Powder River to the west and O'Fallon Creek to the east. The divide is a relatively flat, gently rolling plateau bordered by clinker, which supports ponderosa pine. All of the streams in the area are intermittent and flow only during periods of heavy precipitation or spring runoff. Numerous springs in the area supply abundant water for livestock.

The principal land uses in the area are livestock grazing and dry-land farming for which the gently rolling terrain is ideally suited. Various grains are cultivated, and hay is raised in many fields.

GEOLOGIC STRUCTURE

The strata in the Knowlton coal deposit are almost horizontal, but a northwest dip of a few feet per mile can be detected.

Table 90.-Proximate analysis, forms of sulfur, and heating value, Knowlton coal deposit.

					STR	IPPAB	LE CO	AL, S	OUTH	EASTE	KN M	ONTA	.NA			
	Heating value (Btu)	6323 9942 11408	6654 10752 11903	6479 10605 11575	6792 10828 11665	6449 10371 11651	7154 11045 12027	7271 11083	6354 10128 11843	6718 11609 12688	10493 11454	6297 10113 12160	6955 11104 12312	12152 10476 12152	6554 10848 12010	10006 11790
	Organic	.058 .092 .105	.057 .093 .103	.110 .180 .196	.141 .224 .242	232	.305 .332 .332	372	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	.325 .325 .355	2404 404 1404	.371 .597 .717.	286	575: 573: 499:	.223 .369 408	.5434 .511
Form of sulfur, %	Pyritic	.473 .744 .854	.481 .778 .861	.438 478 874	.042 .067 .073	0.055 0.088 0.099	.395 .663 .663	372 372 502	500 500 500 500 500 500 500 500	104	.392 .650 .710	124 239 239	.426 .680 .7480	036 0055 0055	6,536 4,536 4,536	0.03 980 980 980 980
Form o	Sulfate	.153 .240 .276	.029 .046 .051	9 9 9 9 9 9	.021 .034 .036	.021 .033 .037	.015 .023 .025	0.00 0.00 0.45 0.50	0.00 0.022 0.022	000000000000000000000000000000000000000	0.00 0.00 4.00 4.00 4.00 4.00 4.00 4.00		0.021	00:00 00:00 41:00 00:00	034	0007
	Sulfur	.684 1.076 1.235	.567 .917 1.015	.377 .617 .674	.325 .355	353	.606 .936 1.020	.518 .790	3.290 3.390 3.390 3.390	.516 516 564	1.077		1.171	.426 .650 .754	2.67 039 039	.325 .501 .590
	Ash	8.178 12.858	5.983 9.667	5.122 8.384	4.504	6.832 10.987	5.290 8.168	5.802 8.843	9.084 14.479	4.920 8.502	5.058 8.388	10.484 16.836	5.684	9.032	5.846	9.828 15.136
	Fixed carbon	29.550 46.462 53.318	30.683 49.576 54.882	30.312 49.618 54.159	31.084 49.551 53.384	28.982 46.610 52.363	32.180 49.684 54.103	32.220 49.109	29.148 46.458 54.324	29.117 50.314 54.989	30.282 50.219 54.817	27.179 43.648 52.484	30.719	28.447 43.430 50.377	29.805 49.330	29.845 45.965 54.164
Proxim	Volatile matter	25.873 40.680 46.682	25.224 40.757 45.118	25.656 41.998 45.841	27.143 43.269 46.616	26.366 42.403 47.637	27.299 42.148 45.897	27.588	24.508 39.063 45.676	23.833	24.960 41.393 45.183	24.607 39.516 47.516	26.236	28.021 42.780 49.623	24.769 40.994 45.386	25.25 28.25 45.89 8.89 8.83 8.36
	Moisture	36.400	38.110	38.910	37.270	37.820	35.230	34.390	37.260	42.130	39.700	37.730	37.360	34.500	39.580	35.070
	Form of 1, analysis	∀ m∪	V M O	-AWO	∀ M∪	ΑæС	OBPO	₹¤€)∢mU	∀ a∪)∢¤C	OBPO	∀ M() KMO	ďαζ	して困り
	Coal bed	Dominy (L)	Dominy (U)		Dominy (M)	Dominy (M)	(F)	Dominy (M)	(F)	Dominy (U)			Dominy (M)	(L)	Dominy (M)	(L)
	Lab. number	412	413	414	415	416	417	9	418 419	420	42.1	422	,	423 425	364	427
	Depth sampled	22 to 32 ft.	51 to	60 to 71 ft.	80 to 88 ft.	35 to	55 to 64 ft.	100 to	10/ II. 111 to 121 ft.	90 to	98 to	110 to 11.	42 to	57 to 67 ft.	50 to	30 11. 68 to 74 ft.
	Drill hole and location	SH-7158 7N 54E S16 BBBB	SH-7159 7N 54E S21 DA DR		SH-7160 7N 54E S21 DCBB	SH-7161 7N 54E S29		SH-7162 7N 54E S32	ACDD	SH-7163 6N 54E S5	CADB		SH-7164 6N 53E S2	DACA	SH-7165 7N 54E S31	CAAA

U = Upper bench of Dominy M = Middle bench of Dominy L = Lower bench of Dominy

6842 110715 1105357 105351 11542	6785 12021 12021 11115 12025 17143	12098 12098 12098 10904 10904 11858	6583 10050 11928	6737 10526 12224 10345 11856	6793 10680 11972 6780 10610 12409	6587 10759 11944	6629 10612 11940 6671 10563
2350 2350 2653 1728 172	ikiki-iddid4: 9048:448:80	iduki-idk 9047 2002 2002 1002	.171 .261 .310	2444. 244. 252. 23. 23. 23. 24. 24.	122224 10012 10023 1322 1322 1322	.345 .564 .626	.117 .188 .212 .162 .257 .289
.072 .112 .025 .034 .037	2021 2025 0031 0050 1130 1130	411.42.0000 2000.0000 2000.0000000000000000	.015 .023 .027		1.2566 6293 1.5293 1.52	0000 0000 0000	12,266 10,000 10,000 11,000 10
00000 0011 0011 0011 0111	0.000.000.000.000.000.000.000.000.000.	0155 0266 00098 01098 0155 0155	.015 .023 .027	0.000000 7.80000000 7.800000000000000000	000000 00000 00000 00000 00000 00000 0000	.028 .046 .051	000000 00000 00000 00000 00000 00000 0000
2254 2225 2222 2222 2322 2322	uki oʻlikiki oʻso 4400-ikiki oʻso 0400-iki 0400-iki 04	icio 1000 1000 1000 1000 1000 1000 1000 10	201 307 364	1227.7 1.201.1	325 572 572 1393 1629	.374 .610 .677	6228 6228 628 628 628 628 638 648 648 648 648 648 648 648 648 648 64
6.629 10.382 4.949 8.253	4.866 7.937 4.665 7.570 3.879 6.285	4.919 8.143 4.932 8.049	10.314	8.889 13.889 8.402 12.753	6.861 10.788 9.263 14.497	6.076 9.923	6.950 11.125 6.924 10.965
32.222 50.465 356.312 34.881 59.771	521.37 522.35.47 522.35.47 523.35.47 523.35.47 523.35.47 523.35.47 523.35 523.3	\$1.197 \$1.197 \$2.220 \$2.555 \$7.156	30.391 46.399 55.070	29.575 46.211 53.664 29.621 44.962 51.534	30.864 48.528 54.397 28.397 45.316 52.999	30.513 49.833 55.323	30.112 48.203 54.237 30.174 47.781 53.666
24.99 39.152 43.688 22.130 40.229	25.069 44.4413 394.606 43.195 45.6313 45.6313	24,252 24,252 24,252 23,380 23,380 24,580 24,580 24,580 24,580	24.795 37.855 44.930	25.537 46.336 27.857 42.285 48.485	25.875 40.684 45.603 25.680 40.187 47.001	24.641 40.244 44.677	25.408 40.672 45.763 26.052 41.254 46.334
36.150	38.690 38.370 38.280	39.590	34.500	36.000	36.400	38.770	37.530
CMACOMA	4mU4mU4mC	O R P C R P C	CBA	4m04m0	CMPCMP	CBA	CBACBA
Dominy (U)	Dominy (U)	(M) (L)	Dominy (L)	Dominy (M & L)	Dominy (M & L)	Local	Dominy (M & L)
428	430	433	435	436	456	438	439
110 to 118 ft. 120 ft.	50 to 58 ft. 58 to 66 ft. 44 ft	91 to 98 ft. 124 to 131 ft.	32 to 37 ft.	60 to 69 ft. 69 to 71 ft.	42 to 50 ft. 50 to 56 ft.	60 to 65 ff.	20 to 30 ft. 34 ft.
SH-7166 A 7N 53E S36 DCDD	SH-7172 7N 54E S8 ADBB		SH-7173 7N 54E S5 DDAD	SH-7176 6N 54E S9 CBBC	SH-7177 6N 54E S16 ABAC	SH-7178 6N 54E S16 CBAD	SH-7178 A 6N 54E S16 CDDA

 $^{1}/\mathrm{A},$ as received; B, moisture free; C, moisture and ash free.

U= Upper bench of Dominy M = Middle bench of Dominy L = Lower bench of Dominy

Table 91.-Major ash constituents, Knowlton coal deposit.

ı										
	Total	95.2	90.8	94.9	92.3	93.4	93.3	92.6	0.96	97.9
	TiO_2	9.	4.	4.	6	4	9.	λi	∞i	∞i
	SO3	14.9	15.2	21.4	26.5	7.0	8.7	14.3	11.3	8.5
	SiO2	27.2	14.9	14.4	13.2	32.6	36.5	18.5	32.4	34.0
., %	P2O5	i	∞í	7	1.	⊷ !	 i	4.	- :	 !
Constituent, %	Na ₂ O	4.	1.1	۸i	∞i	1.4	1.2	7.	2.0	∞.
0	MgO	6.3	10.3	10.0	6.4	6.1	5.1	12.4	6.1	7.3
	K20	ci	7.	7	7	.2	∞.	т.	κi	λi
	Fe ₂ O ₃	6.4	6.4	13.2	14.7	3.6	4.7	8. 8.	6.2	5.2
	CaO	21.8	30.8	22.2	20.2	22.1	16.9	30.4	21.5	21.4
	Al ₂ O ₃	17.3	10.7	12.4	10.0	19.9	18.7	10.5	15.3	19.3
7001	peq	Dominy (L)	Dominy (U)	Dominy (M)	Dominy (M)	(L)	Dominy (M & L)	Dominy (U)	Dominy (M & L)	Dominy (M)
40	sample	412	413-414	415	416	417	418-419	420-422	423, 425	426
Donth	sampled	22 to 32 ft.	51 to 71 ft.	80 to 88 ft.	35 to 42 ft.	55 to 64 ft.	100 to 121 ft.	90 to 111 ft.	42 to 67 ft.	50 to 56 ft.
Dail holo	and location	SH-7158 7N 54E S16 BBBB	SH-7159 7N 54E S21 DADB	SH-7160 7N 54E S21 DCBB	SH-7161 7N 54E S29 CCAB		SH-7162 7N 54E S32 ACDD	SH-7163 6N 54E S5 CADB	SH-7164 6N 53E S2 DACA	SH-7165 7N 54E S31 CAAA

96.4	92.9	95.2	7.96	94.5	9.96	9.96	92.6	97.3
∞i	ω	7	رخ.	7.	λi	9.	∞i	۲.
7.7	18.2	20.8	8.2	3.8	15.5	14.2	11.5	8.3
31.3	16.8	14.6	29.4	59.4	27.8	28.2	36.3	31.9
~ !	κi	4.	εi	- :	T.	T.	~	1.
εċ	1.9	1.1	2.9	ē;	9.	1.2	1.9	6:
11.4	10.9	8.8	9.5	4.1	6.2	7.1	6.9	9.3
1.	ω	7	ιċ	ę;	c i	4	2:	2
2.3	9.9	11.7	4.7	3.2	8.7	7.1	4.5	4.7
31.2	28.7	24.9	22.0	7.7	21.3	20.7	22.0	22.1
11.2	8.9	12.5	18.9	13.7	15.7	17.2	11.4	19.1
Dominy (U)	Dominy (U)	(M)	(L)	Dominy (L)	Dominy (M & L)	Dominy (M & L)	Local	Dominy (M & L)
428-429	430-432	433	434	435	436-437	456-457	438	439-440
110 to 120 ft.	50 to 74 ft.	91 to 98 ft.	124 to 131 ft.	32 to 37 ft.	60 to 71 ft.	42 to 56 ft.	60 to 65 ft.	20 to 34 ft.
SH-7166 A 7N 53E S36 DCDD	SH-7172 7N 54E S8 ADBB			SH-7173 7N S4E S5 DDAD	SH-7176 6N 54E S9 CBBC	SH-7177 6N 54E S16 ABAC	SH-7178 6N 54E S16 CBAD	SH-7178 A 6N 54E S16 CDDA

U = Upper bench of Dominy M = Middle bench of Dominy L = Lower bench of Dominy

COAL BEDS

The coal beds in the Knowlton coal deposit that carry economically recoverable reserves are the three benches of the Dominy coal bed, low in the Tongue River Member of the Fort Union Formation. The upper bench maintains a thickness of 25 feet or more. In the northern part of the area its base is 10 feet above the middle bench, and in the southern part of the deposit it is 81 feet above the combined middle and lower benches (Pl. 32B). In the northern part of the deposit the middle bench is 23 feet above the lower bench, but in the southeastern part of the area, these two benches join to form a single bench 17 feet thick, as shown in drill hole SH-7163, sec. 5, T. 6 N., R. 54 E.

The three benches of the Dominy bed are shown in drill hole SH-7172, sec. 8, T. 7 N., R. 54 E. The upper bench is 28 feet thick; 11 feet below it is the middle bench, which is 12 feet thick; 23 feet below that is the lower bench which is 10 feet thick. In drill hole SH-7166 A,

sec. 36, T. 7 N., R. 53 E., the upper bench is 31 feet thick; 20 feet below it is the middle bench, which is 9 feet thick; 14 feet below that is the lower bench, which is 11 feet thick. Another coal bed below the Dominy has been drilled in the southeastern corner of the deposit, in sec. 16, T. 6 N., R. 54 E. In drill hole SH-7177 it is 6 feet thick, and in drill hole SH-7178, it is 5 feet thick.

COAL QUALITY

Thirty core samples of the benches of the Dominy coal bed were taken during the 1971 core-drilling program and were analyzed by the Montana Bureau of Mines and Geology analytical laboratory. Proximate analysis, forms of sulfur, and heating values are shown in Table 90, and major ash constituents are shown in Table 91.

COAL RESERVES

The coal reserves in the three benches of the Dominy coal bed in the Knowlton area total 867,820,000 tons (Table 89).

REFERENCES

- AMERICAN SOCIETY FOR TESTING AND MATERIALS, 1964, ASTM Designation D 388-38, Standards on coal and coke: Philadelphia, p. 88-92.
- AVERITT, PAUL, 1965, Coal deposits of eastern Montana, in Mineral potential of eastern Montana—a basis for future growth: Montana Bur. Mines and Geology Spec. Pub. 33, p. 9-25; also in Proceedings of the first Montana coal resources symposium: Montana Bur. Mines and Geology Spec. Pub. 36, p. 69-80, 1966.
- ----, 1969, Coal resources of the United States: U.S. Geol. Survey Bull. 1275, 116 p.
- AYLER, M.F., SMITH, J.B., and DEUTMAN, G.M., 1969, Strippable coal resources of Montana: U.S. Bur. Mines Prelim. Rept. 172, 68 p.
- BAKER, A.A., 1929, The northward extension of the Sheridan coal field, Big Horn and Rosebud Counties, Montana: U.S. Geol. Survey Bull. 806-B, p. 15-67.
- BALSTER, C.A. (editor), 1971, Catalog of stratigraphic names for Montana: Montana Bur. Mines and Geology Spec. Pub. 54, 448 p.
- ----, 1973, Structure contour map, Upper Cretaceous, south-eastern Montana: Montana Bur. Mines and Geology Spec. Pub. 60, map sheet.
- BASS, N.W., 1932, The Ashland coal field, Rosebud, Powder River, and Custer Counties, Montana: U.S. Geol. Survey Bull. 831-B, 105 p.

- BECHTEL CORP., 1969, Tongue River Project, report financed by the State of Montana Water Resources Board, 3 volumes.
- BOWEN, C.F., 1912, The Baker lignite field, Custer County, Montana: U.S. Geol. Survey Bull. 471-D, p. 202-226.
- BROWN, ANDREW, CULBERTSON, W.C., DUNHAM, R.J., KEPFERLE, R.C., and MAY, P.R., 1954, Strippable coal in Custer and Powder River Counties, Montana: U.S. Geol. Survey Bull. 995-E, p. 151-199.
- BROWN, BARNUM, 1907, The Hell Creek beds of the Upper Cretaceous of Montana: Their relation to contiguous deposits, with faunal and floral lists and a discussion of their correlation: American Mus. Nat. History Bull., v. 23, p. 823-845.
- BROWN, R.W., 1962, Paleocene flora of the Rocky Mountains and Great Plains: U.S. Geol. Survey Prof. Paper 375, 119 p.
- BRYSON, R.P., 1952, The Coalwood coal field, Powder River County, Montana: U.S. Geol. Survey Bull. 973-B, p. 23-106.
- ----, and BASS, N.W., 1966, Geologic map and coal sections of the Moorhead coal field, Montana: U.S. Geol. Survey Openfile Rept., 37 fig., 3 tables (15 sheets).
- CARMICHAEL, V.W., 1967, Procedures for rapid estimation of Fort Union coal reserves: U.S. Bur. Mines Inf. Circ. 8376, p. 10-18.
- COLLIER, A.J., and SMITH, C.D., 1909, The Miles City coal field, Montana: U.S. Geol. Survey Bull. 341-A, p. 36-61.

REFERENCES 135

- CULBERTSON, W.C., 1954, Three deposits of strippable lignite west of the Yellowstone River, Montana: U.S. Geol. Survey Bull. 995-H, p. 293-332.
- CURRY, W.H., III, 1971, Laramide structural history of the Powder River Basin, Wyoming: Wyoming Geol. Assoc. Guidebook, Wyoming Tectonics Symposium, p. 49-60.
- DOBBIN, C.E., 1929, The Forsyth coal field, Rosebud, Treasure, and Big Horn Counties, Montana: U.S. Geol. Survey Bull. 812-A, p. 1-55.
- GILMOUR, E.H., and DAHL, G.G., JR., 1967, Montana coal analyses: Montana Bur. Mines and Geology Spec. Pub. 43, 21 p.
- GILMOUR, E.H., and WILLIAMS, L.A., 1969, Geology and coal resources of the Foster Creek coal deposit, eastern Montana: Montana Bur. Mines and Geology Bull. 73, 9 p.
- KEPFERLE, R.C., 1954, Selected deposits of strippable coal in central Rosebud County, Montana: U.S. Geol. Survey Bull. 995-I, p. 333-381.
- LAW, B.E., and GRAZIS, S.L., 1972, Preliminary geologic map and coal resources of the Decker quadrangle, Big Horn County, Montana: U.S. Geol. Survey Open-file Rept., 1 map, coal sections, stratigraphic chart.
- MATSON, R.E., DAHL, G.G., JR., and BLUMER, J.W., 1968, Strippable coal deposits on state land, Powder River County, Montana: Montana Bur. Mines and Geology Bull. 69, 81 p.
- MATSON, R.E., and VAN VOAST, W.A., 1970, Preliminary summary report of strippable low-sulfur coals of southeastern Montana: Montana Bur. Mines and Geology Open-file Rept., submitted to Office of Fuel Resources, National Air Pollution Control Administration, Department of Health, Education, and Welfare.
- McGREW, P.O., 1971, The Tertiary history of Wyoming: Wyoming Geol. Assoc. Guidebook, Wyoming Tectonics Symposium, p. 29-33.
- MEEK, F.B., and HAYDEN, F.V., 1861, Descriptions of new Lower Silurian (Primordial), Jurassic, Cretaceous, and Tertiary fossils, collected in Nebraska Territory, with some remarks on the rocks from which they were obtained: Philadelphia Acad. Sci. Proc., v. 13, p. 415-447.
- MISSOURI BASIN STUDIES, 1972, Montana Wyoming Aqueducts—Missouri Yellowstone tributaries: Pick-Sloan Missouri Basin Program, Montana-Wyoming, 31 p.
- OLIVE, W.W., 1957, The Spotted Horse coal field, Sheridan and Campbell Counties, Wyoming: U.S. Geol. Survey Bull. 1050, 83 p.
- PARKER, F.S., and ANDREWS, D.A., 1939, The Mizpah coal field, Custer County, Montana: U.S. Geol. Survey Bull. 906-C, p. 85-133.

PERRY, E.S., 1935, Geology and ground-water resources of southeastern Montana: Montana Bur. Mines and Geology Mem. 14, 66 p.

- PIERCE, W.G., 1936, The Rosebud coal field, Rosebud and Custer Counties, Montana: U.S. Geol. Survey Bull. 847-B, p. 43-120.
- ROBINSON, C.S., MAPEL, W.J., and BERGENDAHL, M.H., 1964, Stratigraphy and structure of the northern and western flanks of the Black Hills uplift, Wyoming, Montana, and South Dakota: U.S. Geol. Survey Prof. Paper 404, 134 p.
- ROGERS, G.S., 1918, Baked shale and slag formed by the burning of coal beds: U.S. Geol. Survey Prof. Paper 108-A, p. 1-10.
- ----, and LEE, WALLACE, 1923, Geology of the Tullock Creek coal field, Rosebud and Big Horn Counties, Montana: U.S. Geol. Survey Bull. 749, 181 p.
- ROYSE, C.F., 1972, The Tongue River and Sentinel Butte Formations (Paleocene) of western North Dakota: a review: Guidebook 3, North Dakota Geol. Survey Misc. Series No. 50, p. 31-42.
- STONE, R.W., and CALVERT, W.R., 1910, Stratigraphic relations of the Livingston Formation of Montana: Econ. Geology, v. 5, p. 741-764.
- TAFF, J.A., 1909, The Sheridan coal field, Wyoming: U.S. Geol. Survey Bull. 341-B, p. 123-150.
- THOM, W. T., JR., HALL, G. M., WEGEMANN, C. H., and MOULTON, G.F., 1935, Geology of Big Horn County and the Crow Indian Reservation, Montana, with special reference to the water, coal, oil, and gas resources: U.S. Geol. Survey Bull. 856, 200 p.
- U.S. BUREAU OF LAND MANAGEMENT and U.S. FOREST SERVICE, 1972, Summary of Decker-Birney resource study: Open-file Rept., 124 p., 17 maps.
- U.S. GEOLOGICAL SURVEY and MONTANA BUREAU OF MINES AND GEOLOGY, 1973, Preliminary coal drill-hole data and chemical analyses of coal beds in Sheridan and Campbell Counties, Wyoming, and Big Horn County, Montana: Open-file Rept., 51 p. data and analyses, 3 p. text, 3 tables.
- U.S. WEATHER BUREAU, 1965, Climate summary of the U.S., Supplement for 1951 through 1960, Montana.
- WARREN, W.C., 1959, Reconnaissance geology of the Birney-Broadus coal field, Rosebud and Powder River Counties, Montana: U.S. Geol. Survey Bull. 1072-J, p. 561-585.
- WEGEMANN, C.H., 1910, Notes on the coal of the Custer National Forest, Montana: U.S. Geol. Survey Bull. 381-A, p. 108-114.
- WYOMING GEOLOGICAL ASSOCIATION, 1965, Geologic history of Powder River Basin: Am. Assoc. Petroleum Geologists Bull. 49, p. 1893-1907, 24 fig.