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Figure 2. (A) 36-month departure from 
normal precipitation (1895–2022) in Climate 
Region 2 (http://www.cefa.dri.edu/West-
map/Westmap_home.php). Groundwater 
levels increase during wetting climates 
(1990–1997) and decline during drying 
climates (1998–2002). (B) Hydrograph for 
well 130177 shows response to irrigation 
recharge from East Bench Irrigation Unit 
and wetting/drying climate anomalies. 
Construction of the irrigation unit started in 
1960, and the first growing season to use 
East Bench Unit water was in 1965. 
Between 1965 and 1975, water in the well 
rose more than 70 feet as a result of a 
wetter climate and irrigation recharge. 
Between 2000 and 2005, water level in well 
130177 dropped more than 40 feet because 
of a drying climate and decreased irrigation 
diversions. 

Figure 4. Well hydrographs in upper Jefferson Valley 
that reflect groundwater recharge from leaky irrigation 
conveyance structures (ditches, lateral, canals) and 
excess irrigation water to crops. Wells show higher 
water levels in the summer and fall and lower water 
levels in late winter/spring responding to irrigation 
recharge cycles.

Figure 7. Well hydrographs in Madison Valley that 
reflect natural recharge sources and track climate 
trends (fig. 6). The hydrographs show a declining 
trend from 2010 to 2016, increasing from 2017 to 
2019, and decreasing from 2020 to present. Wells 
show higher water levels in the summer and fall and 
lower water levels in late winter/spring, responding to 
natural recharge cycles.

Figure 5. Well hydrographs in Madison Valley that 
reflect groundwater recharge from leaky irrigation 
conveyance structures (ditches, lateral, canals) and 
excess irrigation water to crops. Wells show higher 
water levels in the summer and fall and lower water 
levels in late winter/spring, responding to irrigation 
recharge cycles.

Figure 3. Water level in this well reflects local use from a bedrock 
aquifer with lower storage capacity and transmissivity than the 
subjacent sand and gravel basin-fill aquifer. About 8 mi2 of land 
have been subdivided into several hundred lots, and about 200 
residences individually withdraw water for domestic purposes. Most 
of the year, withdrawn groundwater is returned to the aquifer via the 
septic system and consumptive use is minimal. During summer 
months, many of the residences irrigate their lawns and most of the 
withdrawn water for lawn irrigation is consumed by the plants or 
evaporated. The water levels in the wells decline with the initiation 
of the irrigation season and continue to decline until the end of 
irrigation season in early fall. From fall to the next irrigation season, 
water level rises until the start of the next irrigation season. 
Compare with figures 6 and 7.

Figure 6. Well hydrographs in upper Jefferson Valley 
and major tributary valleys that reflect natural 
recharge sources and track climate trends. The 
hydrographs show a declining trend from 2010 to 
2016, increasing from 2017 to 2019, and decreasing 
from 2020 to present. Wells show higher water levels 
in the summer and fall and lower water levels in late 
winter/spring, responding to natural recharge cycles.
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Figure 1. The Gallatin–Madison Groundwater Characterization Area is in southwestern Montana.
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Potentiometric Surface in the Madison,
Upper Jefferson, Beaverhead, Big Hole, and
Ruby River Valleys within Madison County,

Southwest Montana
James P. Madison

2023

Author’s Note: This map is part of the Montana Bureau of Mines and Geology (MBMG) Groundwater Assessment 
Atlas for the Gallatin–Madison Area groundwater characterization. It is intended to stand alone and describe a 
single hydrogeologic aspect of the study area, although many of the area’s hydrogeologic features are interrelat-
ed. For an integrated view of the hydrogeology of the Gallatin–Madison Area, the reader is referred to the other 
maps of Montana Groundwater Assessment Atlas 8. (http://mbmggwic.mtech.edu).

Introduction
The map area covers parts of Madison County (fig. 1) and is characterized by intermontane basins delin-

eated on the basis of topography. The basins generally trend north–northwest, encompass perennial streams with 
broad floodplains, and are bounded by mountain ranges. The basins contain several thousands of feet of unconsol-
idated to semi-consolidated Quaternary and Tertiary basin-fill deposits that form the major aquifer systems in the 
study area. The surrounding mountains consist of older sedimentary, igneous, and metamorphic rocks that also 
occur at depth below the basin-fill. Groundwater in the bedrock is contained in interconnected joints, fractures, 
and other forms of secondary porosity that serve as conduits for groundwater movement. (Briar and Madison, 
1992; Kendy and Tresch, 1996; Thamke and Reynolds, 2000; Waren and LaFave, 2011). Water (fig. 2B) that 
infiltrates into the fractured bedrock percolates downward and then moves laterally outward from the mountains 
to the valleys. The lateral subsurface movement of groundwater to the valleys is a source of recharge to basin-fill 
aquifer systems. This map depicts the potentiometric surface for the unconsolidated basin-fill aquifer system and 
margins of the fractured-bedrock aquifer system in (1) the Madison, and (2) the upper Jefferson, Beaverhead, Big 
Hole, and Ruby River Valleys within Madison County (fig. 1). The Gallatin Valley potentiometric surface is 
presented in Madison (2022).

Potentiometric Surface 
A potentiometric surface represents the altitude to which water levels rise in wells completed in an 

aquifer; it is useful for determining the general direction of groundwater flow and estimating depth to water at a 
given location. The potentiometric surface is generally a subdued representation of the regional topography; the 
highest groundwater altitudes coincide with the regional topographic highs and the lowest altitudes with the 
regional topographic lows. Groundwater flow is generally perpendicular to potentiometric contours from higher to 
lower altitudes. In this area, flow is away from mountainous recharge areas (regional topographic highs) towards 
and parallel to the major surface drainages (regional topographic lows). The potentiometric surface altitude at a 
site may be subtracted from the land-surface altitude at that location to yield depth to groundwater estimate.

Groundwater Fluctuations
Groundwater levels fluctuate in response to groundwater withdrawals (fig. 3), anthropogenic causes such 

as land use (figs. 4, 5), and natural causes (figs. 6, 7) such as wet or dry climate anomalies (Madison, 2016, 2022); 
(fig. 2).  The fluctuations occur at seasonal, annual, or multi-year frequencies and provide insights on groundwater 
recharge and stresses acting on aquifers. Long-term (10+ year) hydrographs for 16 wells are included on the map 
to show representative groundwater-level fluctuations. Across the map area, annual groundwater fluctuations 
range up to 45 ft. There are two typical fluctuation patterns, and each reflect different recharge sources: (1) a 
“natural” pattern that reflects seasonal and interannual climate variability, and (2) an “irrigation” pattern that 
reflects recharge from leaky irrigation canals and excess infiltrating irrigation water not consumed by crops.  

The natural (un-irrigated) pattern shows water levels generally rising in spring and early summer in 
response to snowmelt and increased precipitation, and then declining during the late summer and fall, reaching 
seasonal lows in the winter months (fig. 6 for wells in the Jefferson Valley and fig. 7 for wells in the Madison 
Valley). Extended droughts or wet periods manifest as multiyear water-level declines or increases (figs. 2, 6, 7).

The irrigation response is characterized by water levels rising sharply at the beginning of the irrigation 
season, in late spring (fig. 4 for wells in the Jefferson Valley or fig. 5 Madison Valley). Water levels remain 
elevated (a blunt peak or plateau) during the summer months while irrigation is ongoing, and sharply decline 
when irrigation water is “turned off.” Water-level decline persists until the next irrigation period begins in the 
spring of the following year. The timing and magnitude of water-level fluctuation is consistent from year to year, 
reflecting irrigation practices.

Well 130177 in the Beaverhead Valley (fig. 2B) was installed to assess groundwater conditions prior to 
the installation of the East Bench canal; the canal delivers irrigation water from Clark Canyon Reservoir to about 
50,000 acres of land including a terrace (the East Bench) flanking the Beaverhead River (Rogers, 2008). The 
long-term record from this well documents the significance of leakage from irrigation diversions (canals and 
excess irrigation water) to the groundwater system. With the onset of irrigation on the East Bench in 1965, the 
static water level in well 130177 rose about 70 ft (fig. 2A). The subsequent water-level response shows the annual 
irrigation cycle, in addition to multi-year increasing and decreasing trends caused by wetting and drying climate 
cycles (fig. 2B). During the drought of the early 2000’s, irrigation diversions were severely diminished; in 2004 
no water was diverted and the water level in 130177 approached pre-canal levels. Water levels recovered with the 
resumption of diversions in 2005.  

Long-term hydrographs (figs. 3–5) do not show declining trends. In the Jefferson Valley near Whitehall, 
Bobst and Gebril (2021) documented land-use changes and conversion from flood to sprinkler irrigation that 
could alter groundwater recharge. Hydrograph for well 108471 is similar to well hydrographs on the Burton 
Bench where irrigation was converted from flood to sprinkler irrigation (Madison, 2004); because sprinkler 
irrigation is more efficient than flood, recharge is less and the hydrographs peaks are less than peaks when flood 
irrigating. Although such changes may cause decreased groundwater recharge, these hydrographs demonstrate that 
water levels have not changed appreciably over the past decade. 

Map Construction
These maps are based on about 500 measured water levels gathered during site visits between January 

2008 and December 2012, and water levels collected as part of the long-term statewide groundwater monitoring 
network (Carstarphen and others, 2015). Although the data were collected over a 4-year period, the long-term 
hydrographs for wells completed in the basin-fill and surrounding bedrock do not show changes or trends over 
that time period that would affect the configuration of the potentiometric contours, or introduce noticeable error in 
interpretation at the scale and contour interval presented.

This potentiometric surface map is a general interpretation of regional conditions and groundwater flow 
directions. Readers interested in site-specific interpretations should re-evaluate the data with an appropriate 
contour interval.

Water-level measurements and other site information are available from Montana Bureau of Mines and 
Geology’s Ground Water Information Center (GWIC) database, http://mbmggwic.mtech.edu.
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