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Author’s Note: This map is part of the Montana Bureau of Mines and Geology (MBMG) Groundwater Assessment
Atlas for the Gallatin—Madison Area groundwater characterization. It is intended to stand alone and describe a
single hydrogeologic aspect of the study area, although many of the area’s hydrogeologic features are interrelat-
ed. For an integrated view of the hydrogeology of the Gallatin—-Madison Area, the reader is referred to the other
maps of Montana Groundwater Assessment Atlas 8. (http://mbmggwic.mtech.edu).

Introduction

The map area covers parts of Madison County (fig. 1) and is characterized by intermontane basins delin-
eated on the basis of topography. The basins generally trend north—northwest, encompass perennial streams with
broad floodplains, and are bounded by mountain ranges. The basins contain several thousands of feet of unconsol-
idated to semi-consolidated Quaternary and Tertiary basin-fill deposits that form the major aquifer systems in the
study area. The surrounding mountains consist of older sedimentary, igneous, and metamorphic rocks that also
occur at depth below the basin-fill. Groundwater in the bedrock is contained in interconnected joints, fractures,
and other forms of secondary porosity that serve as conduits for groundwater movement. (Briar and Madison,
1992; Kendy and Tresch, 1996; Thamke and Reynolds, 2000; Waren and LaFave, 2011). Water (fig. 2B) that
infiltrates into the fractured bedrock percolates downward and then moves laterally outward from the mountains
to the valleys. The lateral subsurface movement of groundwater to the valleys is a source of recharge to basin-fill
aquifer systems. This map depicts the potentiometric surface for the unconsolidated basin-fill aquifer system and
margins of the fractured-bedrock aquifer system in (1) the Madison, and (2) the upper Jefferson, Beaverhead, Big
Hole, and Ruby River Valleys within Madison County (fig. 1). The Gallatin Valley potentiometric surface is
presented in Madison (2022).

Potentiometric Surface

A potentiometric surface represents the altitude to which water levels rise in wells completed in an
aquifer; it is useful for determining the general direction of groundwater flow and estimating depth to water at a
given location. The potentiometric surface is generally a subdued representation of the regional topography; the
highest groundwater altitudes coincide with the regional topographic highs and the lowest altitudes with the
regional topographic lows. Groundwater flow is generally perpendicular to potentiometric contours from higher to
lower altitudes. In this area, flow is away from mountainous recharge areas (regional topographic highs) towards
and parallel to the major surface drainages (regional topographic lows). The potentiometric surface altitude at a
site may be subtracted from the land-surface altitude at that location to yield depth to groundwater estimate.

Groundwater Fluctuations

Groundwater levels fluctuate in response to groundwater withdrawals (fig. 3), anthropogenic causes such
as land use (figs. 4, 5), and natural causes (figs. 6, 7) such as wet or dry climate anomalies (Madison, 2016, 2022);
(fig. 2). The fluctuations occur at seasonal, annual, or multi-year frequencies and provide insights on groundwater
recharge and stresses acting on aquifers. Long-term (10+ year) hydrographs for 16 wells are included on the map
to show representative groundwater-level fluctuations. Across the map area, annual groundwater fluctuations
range up to 45 ft. There are two typical fluctuation patterns, and each reflect different recharge sources: (1) a
“natural” pattern that reflects seasonal and interannual climate variability, and (2) an “irrigation” pattern that
reflects recharge from leaky irrigation canals and excess infiltrating irrigation water not consumed by crops.

The natural (un-irrigated) pattern shows water levels generally rising in spring and early summer in
response to snowmelt and increased precipitation, and then declining during the late summer and fall, reaching
seasonal lows in the winter months (fig. 6 for wells in the Jefferson Valley and fig. 7 for wells in the Madison
Valley). Extended droughts or wet periods manifest as multiyear water-level declines or increases (figs. 2, 6, 7).

The irrigation response is characterized by water levels rising sharply at the beginning of the irrigation
season, in late spring (fig. 4 for wells in the Jefferson Valley or fig. 5 Madison Valley). Water levels remain
elevated (a blunt peak or plateau) during the summer months while irrigation is ongoing, and sharply decline
when irrigation water is “turned off.” Water-level decline persists until the next irrigation period begins in the
spring of the following year. The timing and magnitude of water-level fluctuation is consistent from year to year,
reflecting irrigation practices.

Well 130177 in the Beaverhead Valley (fig. 2B) was installed to assess groundwater conditions prior to
the installation of the East Bench canal; the canal delivers irrigation water from Clark Canyon Reservoir to about
50,000 acres of land including a terrace (the East Bench) flanking the Beaverhead River (Rogers, 2008). The
long-term record from this well documents the significance of leakage from irrigation diversions (canals and
excess irrigation water) to the groundwater system. With the onset of irrigation on the East Bench in 1965, the
static water level in well 130177 rose about 70 ft (fig. 2A). The subsequent water-level response shows the annual
irrigation cycle, in addition to multi-year increasing and decreasing trends caused by wetting and drying climate
cycles (fig. 2B). During the drought of the early 2000’s, irrigation diversions were severely diminished; in 2004
no water was diverted and the water level in 130177 approached pre-canal levels. Water levels recovered with the
resumption of diversions in 2005.

Long-term hydrographs (figs. 3—5) do not show declining trends. In the Jefferson Valley near Whitehall,
Bobst and Gebril (2021) documented land-use changes and conversion from flood to sprinkler irrigation that
could alter groundwater recharge. Hydrograph for well 108471 is similar to well hydrographs on the Burton
Bench where irrigation was converted from flood to sprinkler irrigation (Madison, 2004); because sprinkler
irrigation is more efficient than flood, recharge is less and the hydrographs peaks are less than peaks when flood
irrigating. Although such changes may cause decreased groundwater recharge, these hydrographs demonstrate that
water levels have not changed appreciably over the past decade.

Map Construction

These maps are based on about 500 measured water levels gathered during site visits between January
2008 and December 2012, and water levels collected as part of the long-term statewide groundwater monitoring
network (Carstarphen and others, 2015). Although the data were collected over a 4-year period, the long-term
hydrographs for wells completed in the basin-fill and surrounding bedrock do not show changes or trends over
that time period that would affect the configuration of the potentiometric contours, or introduce noticeable error in
interpretation at the scale and contour interval presented.

This potentiometric surface map is a general interpretation of regional conditions and groundwater flow
directions. Readers interested in site-specific interpretations should re-evaluate the data with an appropriate
contour interval.

Water-level measurements and other site information are available from Montana Bureau of Mines and
Geology’s Ground Water Information Center (GWIC) database, http://mbmggwic.mtech.edu.
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Hydrogeologic Framework

Regional Aquifers’ Regional Confining Units?
Unconsolidated to weakly
consolidated basin-fill.
Lenticular beds of clay, silt,
sand, gravel. QTbf and Tbf are
inter-connected and function as
a valley-fill aquifer system.

QTbf Cenezoic Basin-Fill/Alluvial Aquifer

Tbf  Tertiary Basin-Fill

Cretaceous sandstone beds Kegle Cretaceous Eagle Aquifer
within Kootenai, Eagle, and
Fort Union Formations. Primary
porosity and permeability in
combination with secondary
permeability along fractures.

Klvgs Cretaceous Livingston Group

Kshale CcClaggett Fm
Kkotn Cretaceous Kootenai Aquifer

Kshale Colorado Group
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Cenezoic and Mesozoic Igneous Rocks

MP io— ic Sed
Fractured bedrock with mostly sed Mesozoic-Paleozoic Sedimentary Rocks

secondary porosity and
permeability along fractures

P nd/or solUtion covitios. Mmdsn Mississipppian Madison Group Aquifer

Pzl

Lower Paleozoic Sedimentary Rocks

Precambrian Fractured Igneous,
Metasedimentary, and Metamorphic Rocks
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Modified after Crowley and others, 2017. 'Aquifer where saturated with water.
2Locally may yield water to wells from sandstone.




