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LOCATION AND PHYSIOGRAPHIC SETTING

The Red Canyon 7.5′ quadrangle is in Beaverhead and Madison counties, approximately 32 km (20 mi) 
southeast of Dillon, Montana. The quadrangle borders the Ruby Graben, covering parts of the Sweetwater 
Hills and Sweetwater Basin in the southern Ruby Range (fig. 1). The map area is characterized by hilly 
terrain, grassland, and sparse timber; a prominent escarpment bounding the Sweetwater Hills was likely 
formed by the Sweetwater fault. Exposure of the bedrock geology and overlaying unconsolidated 
Tertiary–Quaternary deposits is good to excellent. The Red Canyon quadrangle spans a significant 
drainage divide separating Blacktail Deer and Sweetwater Creeks, both of which are tributaries to the 
Jefferson River system. The quadrangle elevation ranges from 1,835 to 2,333 m (6,020 to 7,655 ft).

GEOLOGIC SUMMARY

The oldest rock in the map area is Precambrian crystalline basement formed by 3.30–2.77 Ga (Adg and 
Aeg) and composed primarily of gneiss and layered amphibolite with narrow ribbons of infolded marble, 
thin layers of pelitic gneiss and schist, and meta-ultramafic rock. The metamorphic assemblages contain 
several generations of folds, record tectonothermal overprints circa 2.7–1.8 Ga (this study; Okuma, 1971), 
and are cut by numerous Proterozoic diabase dikes (Yd) and pegmatite intrusions (Yp). The Precambrian 
basement rocks were deeply exhumed during Late Cretaceous crustal shortening (Carrapa and others, 
2019; Mosolf, 2021a), stripping the Paleozoic–Mesozoic sedimentary overburden in the map area. 

Poorly consolidated Tertiary sediments composing the Renova and Sixmile Creek Formations of the 
Bozeman Group nonconformably rest on the Precambrian basement assemblages. The older Renova 
Formation (Tre) is generally fine-grained and ash-rich, whereas the younger Sixmile Creek Formation 
(Tsc) comprises coarser sediments interbedded with volcanogenic deposits. The two formations are 
separated by an angular unconformity that formed during local Miocene extension (Thomas and Sears, 
2020). The Timber Hill Basalt member of the Sixmile Creek Formation (Tsct; 6 Ma) forms a prominent 
mesa in the map area, capping recessive sedimentary members of the Sixmile Creek Formation. The 
Tertiary and older rocks are displaced by a series of parallel, northwest-striking sinistral normal faults 
formed during Miocene time (Fritz and Sears, 1993). The Sweetwater fault is the most significant of these 
structures, with over 200 m (650 ft) of vertical separation and Quaternary movement in the last 130 Ka.
  
Hot spring deposits with poor age constraints occur locally (QTtr), commonly paralleling bedrock fabrics 
and faults. Prominent Quaternary alluvial fans (Qaf) onlap the Sweetwater fault escarpment and cover the 
Bozeman Group and Precambrian rocks in the Sweetwater Basin. Several mass movement deposits (Qls) 
occur throughout the map area, including a large landslide and rockfall complex rimming the northeast 
extent of the Timber Hill Basalt member. Extensive alluvial deposits (Qal) have formed along Sweetwater 
Creek and its tributaries. 

PREVIOUS MAPPING

The Red Canyon 7.5′ quadrangle is covered by small-scale mapping by Ruppel and others (1993, scale 
1:250,000) and Klepper (1950, scale 1:250,000). Large-scale mapping by Okuma (1971, scale 1:24,000) 
covered the northwest part of the quadrangle and was focused on the metamorphic basement rocks. 
Pioneering work on the Precambrian basement rocks in the Ruby Range pertinent to this study was 
conducted by Garihan (1979a, b), Karasevich (1980), Dahl (1979, 1980), Dahl and Friberg (1980), 
Desmarais (1981), and James (1990). Ripley (1987, scale 1:24,000) mapped Tertiary sedimentary deposits 
in the eastern part of the quadrangle; the local Tertiary stratigraphic framework is summarized by Thomas 
and Sears (2020), Vuke (2020), and references therein.

METHODS  

Geologic Mapping

Field mapping was conducted over approximately 3.5 months in 2022 for the STATEMAP component of 
the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program. A 
1:24,000-scale topographic base was utilized for field mapping, and geologic contacts were refined using 
the orthoimagery dataset produced by the National Agricultural Imagery Program (NAIP; 2018–2020). 
Structure and observational data were located using a handheld GPS device; structure data were measured 
with a traditional hand transit or mobile electronic device (Apple iPhone 12). Metamorphic foliations 
represent all types of recognizable surfaces of metamorphic origin. In gneiss and schist, the foliation 
commonly parallels mineral compositional layering. Igneous foliations represent surfaces that parallel 
textures formed by mineral alignment in the groundmass. Field sheets were scanned and georegistered in 
GIS software. The geologic data were subsequently digitized to the Geologic Map Schema (GeMS) 
geodatabase mandated by the STATEMAP program. 

Whole-Rock Element Chemistry and U-Pb Geochronology

Rock samples collected for whole-rock geochemistry and U-Pb geochronology were processed at the 
MBMG mineral separation laboratory. A 100- to 200-g split of the crushed material was prepared for 
bulk-rock geochemical analysis and analyzed by X-ray fluorescence (XRF) and inductively coupled 
plasma mass spectrometry at the Peter Hooper GeoAnalytical Lab, Washington State University. Zircon 
was isolated from specimens by standard density and magnetic separation techniques at the MBMG 
mineral separation laboratory and analyzed by laser ablation inductively coupled plasma mass 
spectrometry (LA-ICPMS) at the University of California, Santa Barbara.

Whole-rock geochemical data and analytical methods were published by Mosolf and others (2023a). Rare 
earth element (REE) data from these samples are plotted in figure 2. Table 1 provides U-Pb zircon ages 
calculated from samples with coherent and interpretable distributions of single-crystal dates; not all 
samples yielded interpretable emplacement or depositional ages (see Mosolf and others, 2023a). Age 
distributions obtained for select detrital and metamorphic samples are plotted in figure 3. The complete 
U-Pb zircon datasets and analytical methods are reported in Mosolf and others (2023b).

DESCRIPTION OF THE MAP UNITS

The Red Canyon geologic map shows rock units exposed at the surface or underlain by a thin surficial cover 
of soil and colluvium. Surficial sedimentary and mass movement deposits are shown where they are thick 
and extensive enough to be mapped at 1:24,000 scale. Igneous and metamorphic rocks are classified using 
the International Union of Geological Sciences nomenclature (Le Bas and Streckeisen, 1991; Schmid and 
others, 2007). Minerals in igneous and metamorphic rock units are listed in order of decreasing abundance. 
Grain size classification of unconsolidated and consolidated sediment is based on the Wentworth scale 
(Lane, 1947). Multiple lithologies within a rock unit are listed in order of decreasing abundance. 

Quaternary Deposits

Extensive alluvial fans (Qaf) onlap the range-front escarpment separating the Sweetwater Hills and Sweetwater 
Basin. Landslide deposits (Qls) occur throughout the map area and are primarily formed in poorly consolidated 
Tertiary deposits of the Bozeman Group. Localized hot spring deposits (QTtr) occur along bedrock faults, 
fractures, or foliation planes (Monroe, 1976; Ripley, 1995). Sweetwater Creek is the only perennial stream in 
the map area and has formed extensive alluvial deposits in the northern part of the quadrangle.

Qal Alluvium (Quaternary: Holocene)—Unconsolidated, poorly to well-sorted, weakly stratified gravel, 
sand, silt, and clay. Clasts are subangular to rounded cobbles and smaller. Thickness is generally less 
than 6 m (20 ft).

Qc Colluvium (Quaternary: Holocene)—Unconsolidated slope deposit that contains angular, poorly 
sorted pebbles, cobbles, and boulders. Includes talus. Thickness is generally less than 10 m (33 ft). 

Qaf Alluvial-fan deposit (Quaternary: Holocene and Pleistocene?)—Unconsolidated, poorly sorted 
cobbles, gravel, sand, and silt forming extensive, fan-shaped deposits shed from the Sweetwater fault 
escarpment. Thickness as much as 30 m (100 ft).

Qls Landslide deposit (Quaternary: Holocene)—Unstratified, poorly sorted rock fragments deposited 
by slumps, slides, rock falls, and debris flows. Typically characterized by hummocky topography, 
subdued landslide scarps, and rock talus. Variable thickness, generally less than 30 m (100 ft).

QTtr Travertine (Holocene and Tertiary?)—Deposits of white to gray, massive travertine that generally 
lacks internal structure but is porous locally. Mainly occurs as isolated bodies but is intercalated with 
Tertiary sediments locally. Thickness unknown.

Bozeman Group

The Bozeman Group is mapped as two formations in the quadrangle: the Eocene–Oligocene Renova 
Formation (Tre) and the Miocene Sixmile Creek Formation (Tsc and Tsct). The Renova Formation comprises 
shale and siltstone of lacustrine origin. The Sixmile Creek Formation is a complex sequence of coarse 
volcano-fluvial sedimentary deposits, including the informal Timber Hill Basalt, Big Hole River, Anderson 
Ranch, and Sweetwater members (Thomas and Sears, 2020 and references therein). The Sweetwater member 
marks the chronostratigraphic base of the Sixmile Creek Formation and consists mainly of conglomeratic 
deposits derived from the erosion of local basement uplifts and Eocene volcanogenic deposits. A thick 
sequence of roundstone conglomerate and interbedded tephra composing the Big Hole River and Anderson 
Ranch members rests on the Sweetwater member and older map units. The Big Hole River, Anderson Ranch, 
and Sweetwater members were previously defined by lithostratigraphy that proved challenging to map and 
were lumped as an undivided unit (Tsc). The Timber Hill Basalt member (Tsct) locally caps the Tertiary 
sequence in the quadrangle and is the northeastern most remnant of a lava flow that can be traced for 
approximately 50 km (31 mi) along an ancestral paleovalley extending from Lima to the upper Ruby Valley 
(Sears, 1995). The basalt forms a prominent mesa in the quadrangle, inverting the topography of the 
paleovalley it armored. Scattered outcroppings of basalt in the northern part of the quadrangle (Tb) are possibly 
equivalent to the Timber Hill Basalt member, or a Pliocene basalt northeast of the map area (approximately 4 
Ma; Marvin and others, 1974).

The tephra beds of the Anderson Ranch member erupted from silicic calderas that formed as the Yellowstone 
hotspot tracked northeastward along the eastern Snake River Plain (Shane and Sears, 1995; Thomas and others, 
1995; Perkins and Nash, 2002). In the Blacktail Deer Creek area immediately west of the Red Canyon 
quadrangle, Perkins and Nash (2002) correlated tephra beds in the Anderson Ranch member with the 14 Ma 
Owyhee–Humbolt, 12.5 Ma Bruneau–Jarbidge, 10 Ma Twin Falls–Picabo, and 6–4 Ma Heise volcanic fields of 
the Yellowstone hotspot track (Pierce and Morgan, 1990).

Tb Basalt, undivided (Pliocene?)—Flaggy, aphanitic basalt containing sparse olivine phenocrysts (<1 
percent). Basalt is vesiculated and brecciated locally, containing accidental clasts of metamorphic 
basement rock. Typically altered and weathers to a rusty red color. Occurs as scattered outcrops in the 
northern half of the quadrangle. Thickness unknown. 

Tsct  Timber Hill Basalt member of the Sixmile Creek Formation (late Miocene)—Basalt flow that 
unconformably rests on the recessive Big Hole River member, forming a prominent mesa between 
Timber Hill and Sweetwater Creek. The interior of the flow is flaggy to massive and mostly 
aphanitic with <1 percent fresh olivine phenocrysts. Columnar joints are common. Basalt is black to 
dark gray on a fresh surface and weathers to brown. Reported K-Ar whole-rock ages span 6.3 ± 0.2 
Ma to 5.9 ± 0.2 Ma (Fritz and others, 2007). Geochemical data are enriched in light rare earth 
elements, indicative of fractionation, mixing, or assimilation by parental melts (fig. 2). Thickness is 
approximately 12 m (40 ft). 

Tsc Sixmile Creek Formation, undivided (late to middle Miocene)—Weakly consolidated sequence of 
conglomerate, sandstone, mudstone, and tephra up to 500 m (1,500 ft) thick. Published radiometric age 
dates for the Sixmile Creek Formation span 16–3.7 Ma, consistent with vertebrate fossil ages (Monroe, 
1976; Fritz and Sears, 1993). U-Pb zircon ages obtained in this study span 16.1–7.5 Ma (table 1). 

Big Hole River member, informal (Miocene)—Well-sorted, well-rounded fluvial conglomerate that 
forms crude and possibly channelized bedforms. Conglomerate clasts are typically spherical, 
pebble to cobble sized, and predominantly composed of quartzite but also include gneiss, basalt, 
rhyolite, and limestone. Clast lithologies include vitreous pink quartz-arenite, fine-grained white 
quartz-arenite, black quartz-arenite, black chert laced with quartz veins, and brown cherty 
litharenite. Subordinate sandstone beds are cross-bedded and form tabular, stepped cliffs. The Big 
Hole River member rarely crops out and typically forms gravel-draped hillslopes.

Anderson Ranch member, informal (Miocene)—Distinct white, friable beds of tephra up to 30 m 
(100 ft) thick that are interlayered with roundstone conglomerate, sandstone, and mudstone. Best 
exposed in low cliffs located in the drainage bottom east of Timber Hill (section 24, T. 9 S., R. 6 
W.). The tephra beds are generally lenticular, trough cross-bedded and composed of a mix of ash 
and pumice, silicic sand and gravel, and tabular to irregular fragments of tuffaceous rip-up clasts. 
The tephra beds are interfingered with conglomeratic deposits of the Big Hole River member and 
commonly capped by well-cemented caliche deposits. The Anderson Ranch member is 
distinguished from tephra-rich members of the Renova Formation by sparse bentonitic clay 
(Monroe, 1976).

Sweetwater Creek member, informal (earliest middle Miocene)—Interbedded conglomerate and 
feldspathic sandstone intervals lithologically distinct from the Big Hole River member. 
Conglomerates are channelized and trough cross-bedded deposits of clast-supported, angular to 
subangular pebbles and cobbles in a coarse, sandy matrix. Clasts are mainly derived from local 
Precambrian basement and Eocene volcanic rocks. Brown interbeds of immature, medium to 
coarse sandstone are up to 1 m (3 ft) thick, massive to cross-bedded, and contain ash, pumice, and 
small lithic fragments (<4 mm) locally. 

Tre Renova Formation, undivided (Eocene to Oligocene)—Slope forming sequence of light-colored 
smectitic fissile shale, siltstone, and limestone with subordinate intervals of sandstone, conglomerate, 
and tuff that are generally well stratified. Contains fossil fish, insect, leaf, and vertebrate fossils of 
Arikareean age (Becker, 1961; Dorr and Wheeler, 1964; Monroe, 1976; Ripley, 1987). Typically forms 
low rounded hills with outcrops limited to gullies and steep bluffs; best exposed in section 19, T. 9 S., 
R. 5 E., east of Timber Hill. A siltstone sample at this location (JM22RC07) yielded a maximum 
depositional U-Pb zircon age of 33.4 ± 0.4 Ma and is likely equivalent to the late Oligocene–early 
Miocene Passamari member of the Renova Formation in the upper Ruby Valley (Monroe, 1976). A 
poorly exposed sandstone in the northern part of the map area (sample JM22RC12; section 26, T. 8 S., 
R. 6 W.) tentatively correlated to the Renova Formation yielded a maximum depositional age of 42.2 ±
0.4 Ma. As thick as 60 m (200 ft).

Precambrian Metamorphic and Intrusive Rocks

The Precambrian metamorphic basement rocks in the Ruby Range can be divided into three northeast-trending 
belts, the Christensen Ranch Metasedimentary Suite, the Dillon Gneiss, and the Elk Gulch Suite; only the latter 
two units are exposed in the quadrangle, where gneiss and amphibolite enriched in incompatible elements are 
the dominate lithologies observed (fig. 2). The Elk Gulch Suite and Dillon Gneiss are intensely deformed and 
commonly contain northeast-striking isoclinal folds. Geochronology data suggest that basement protoliths had 
formed by 3.30–2.77 Ga with tectonothermal overprints of the Beaverhead/Tendoy and Big Sky orogenies 
occurring at approximately 2.45 Ga and 1.78 Ga, respectively (fig. 3; this study; Harms and Baldwin, 2020; 
Jones, 2008; Cramer, 2015).

The Elk Gulch Suite is the structurally deepest metamorphic assemblage in the Ruby Range and is inferred to 
be the oldest. The petrologically diverse assemblage is composed of gneiss, migmatite, and amphibolite. The 
Dillon Gneiss is a massive to foliated granitic gneiss that is enriched in incompatible elements (fig. 2) and 
contains abundant intercalations of amphibolite. The Elk Gulch Suite and Dillon Gneiss are difficult to 
differentiate in the field; the former tends to be more mafic and richer in plagioclase (Garihan, 1979b). 
Amphibolite occurs throughout both metamorphic assemblages but is only mapped in areas with intercalations 
thick and abundant enough to be shown at 1:24,000 scale. 

Northwest-striking diabase dikes generally crosscut the metamorphic fabric in the crystalline basement rocks 
and commonly parallel northwest-striking fractures and faults. Wooden and others (1978) described the diabase 
in the Ruby Range as low potassium tholeiite with a whole-rock Rb-Sr age of 1.4 Ga. A single 
northeast-striking pegmatite dike of unknown age was identified in the quadrangle; Giletti (1966) reported 
radiometric ages of approximately 1.6 Ga for pegmatites in the adjacent Christensen Ranch quadrangle, and 
Mosolf (2021b) reported U-Pb zircon ages of approximately 1.7 Ga from a pegmatitic dike swarm intruding 
the Archean basement near Virginia City.

Yd Diabase (Mesoproterozoic?)—Diabase dikes are approximately 1–30 m (3–100 ft) thick with 
continuous lengths exceeding approximately 1 km (0.6 mi). Diabase is recessive and weathers to 
spheroidal boulders, commonly creating topographic sags. The rock is frequently altered to secondary 
minerals, but original diabasic and gabbroic textures are well preserved. Primary minerals appear to 
have been plagioclase and pyroxene, with minor amounts of quartz, magnetite, and ilmenite. 
Secondary minerals include actinolite, chlorite, and sericite. Wooden and others (1978) reported a 
single Rb-Sr age of approximately 1.4 Ga for the diabase occurring in the area. 

Yp Pegmatite (Mesoproterozoic?)—A single pegmatite dike (< 2 m; ~6 ft thick) was identified in the 
west-central part of the map area where it intrudes the Dillon Gneiss. The pegmatite contains brittle 
fractures but is not foliated and is composed of coarse microcline and quartz with minor amounts of 
albite-oligoclase. Muscovite from a zoned pegmatite in the adjacent Christensen Ranch quadrangle 
yielded a K-Ar age of 1.66 Ga and an Rb-Sr age of 1.65 Ga (Giletti, 1966).

XAam Amphibolite (Archean or Early Proterozoic)—Black and white, massive- to well-foliated, 
sheet-like bodies primarily composed of fine- to coarse-grained hornblende, plagioclase, and quartz. 
Amphibolite typically occurs as two compositional varieties: gneiss containing 40–50 percent horn-
blende in alternating hornblende-rich and quartz-plagioclase rich layers; or hornblendite with accessory 
plagioclase and quartz. The presence of garnet varies locally from approximately 0 to 25 percent. 
Amphibolite is intercalated with the other basement assemblages, ranging in size from centimeter-scale 
lenses to extensive sheets that are tens of meters thick. 

Adg Dillon Gneiss (Archean)—Gray to reddish-brown, massive- to well-foliated, medium- to 
coarse-grained, locally garnetiferous gneiss of granitic composition that typically forms large, rounded 
outcrops. Potassium feldspar is the most abundant mineral, intergrown with oligoclase and quartz in 
nearly equal proportions. Subordinate mineral constituents include biotite, muscovite, garnet, and 
fibrous sillimanite. Massive to weakly foliated gneiss often grades into a strongly banded gneiss with a 
greater abundance of darker minerals, including biotite, garnet, and occasional hornblende. The Dillon 
Gneiss includes subordinate layers and pods of amphibolite, narrow ribbons of infolded marble, thin 
layers of pelitic gneisses and schists, and meta-ultramafic rock. Originally named the “Dillon Granite 
Gneiss” (Heinrich, 1960) and subsequently referred to as “Quartzofeldspathic Gneiss” by James (1990). 
Stotter (2019) suggested the assemblage be renamed the “Dillon Gneiss,” adopted in this map. U-Pb 
zircon data constrain a minimum emplacement age between approximately 3.3 and 2.7 Ga (fig. 3).

Aeg Elk Gulch Suite (Archean)—Diverse assemblage of biotite gneiss, hornblende gneiss, augen gneiss, 
migmatite, and amphibolite. The most abundant rock type is a banded migmatic gneiss composed of 
conspicuous dark layers of biotite and hornblende that alternate with layers consisting primarily of quartz 
and feldspar. Layers of pelitic schists and gneisses are common throughout the unit. Overall, the Elk 
Gulch Suite is more mafic and aluminous than the Dillon Gneiss. This unit was previously named the 
“pre-Cherry Creek Group” (Heinrich, 1960) and “Older Gneiss and Schist” (James, 1990). Stotter (2019) 
renamed the assemblage the Elk Gulch Suite after its type locality, which was adopted in this map.

STRUCTURAL GEOLOGY

Precambrian Deformation

Crystalline rocks of the Dillon Gneiss and Elk Gulch Suite are intensely deformed, with several 
generations of folds evident in outcrop and map patterns. A penetrative foliation is generally parallel to 
compositional and migmatic layering (fig. 4), and appears to be penetrative across  the Dillon Gneiss and 
Elk Gulch Suite. Widespread isoclinal folding is mostly axial planar to the main metamorphic foliation 
and readily visible in outcrops of the Dillon Gneiss assemblage. Most of the isoclinal folds plunge 
northeasterly, with parallel folds being most common, and similar folds are observed locally. Isoclinal 
folds are refolded by at least two subsequent generations of folds likely formed during a single orogenic 
pulse (Okuma, 1971). The primary metamorphic foliation is folded by the map-scale Sweetwater Creek 
Antiform that plunges 18 degrees to the northeast. Diabase and pegmatite dikes crosscut the older 
deformational fabrics and folds, constraining early metamorphism and folding prior to  1.7–1.4 Ga. 
Previously published geochronology ages (e.g., Harms and Baldwin, 2020; Jones, 2008; Cramer, 2015) 
and U-Pb zircon data from this study (fig. 3) record igneous and tectonothermal pulses circa 2.77 Ga, 
2.5–2.4 Ga (Beaverhead/Tendoy orogeny), and 1.8–1.7 Ga (Big Sky orogeny). 

Cordilleran Thrust Belt Deformation

Paleozoic–Mesozoic strata that unconformably rest on the crystalline basement in the northern Ruby 
Range are deformed by Late Cretaceous folds and faults (Tysdal, 1976). In the southern part of the range, 
the Phanerozoic cover was exhumed and completely eroded during crustal shortening, exposing the 
Precambrian basement rocks in the Red Canyon quadrangle. Cordilleran structures were not readily 
identified in the map area, but northwest-striking extensional faults likely overprint and perhaps invert 
older shortening structures. Additionally, the age of the Sweetwater Creek Antiform is poorly constrained 
and plausibly formed or was further folded during Late Cretaceous crustal shortening after earlier 
Precambrian deformation. Low-temperature thermochronology data from the northern part of the Ruby 
Range suggest rapid cooling, and inferred tectonic exhumation of the basement rocks was underway by 
approximately 80 Ma (Carrapa and others, 2019).

Cenozoic Extensional Deformation

The Tertiary and older map units are cut by a series of high-angle, northwest-trending extensional faults 
with a prolonged slip history, extending from the Precambrian to the present (Schmidt and Garihan, 
1983). The Sweetwater fault is the most prominent in the map area, forming a steep escarpment bounding 
the southwest margin of the Sweetwater Basin. The fault has a demonstrable normal component of 
separation, offsetting the Timberhill Basalt member down-to-the-northeast approximately 200–250 m 
(655–820 ft; fig. 5; Stickney and Bartholomew, 1987; Ostenaa and Wood, 1990). Tertiary growth strata 
are preserved in both the hanging wall and footwall blocks of the Sweetwater fault, indicating it was 
active during periods of late Eocene through Miocene crustal extension and contemporaneous 
sedimentation. The fault may have a previously undocumented oblique-slip component, sinistrally 
offsetting the Sweetwater Creek Antiform approximately 2.8 km (1.7 mi); however, it’s unclear if the 
antiformal traces used as piercing points are derived from a single, contiguous structure. Furthermore, the 
Timber Hill Basalt member has minor lateral offsets, requiring large oblique-slip fault motions before 6 
Ma, possibly as an accommodation zone to the East Ruby fault (fig. 1). The southern trace of the East 
Ruby fault (fig. 1) may project into the Red Canyon quadrangle, where it is obscured by Quaternary 
deposits and possibly truncated by the northwest-striking Sweetwater fault (Thomas and others, 1995; 
Sears and others, 2009).

Fault scarps are not readily observed in the field; however, the Sweetwater fault is presumed to be 
Quaternary-active (e.g., Stickney and Bartholomew, 1987; Ostenaa and Wood, 1990). Using the Timber 
Hill Basalt member (6 Ma) as a structural datum, the fault’s average slip rate is approximately 0.03–0.04 
mm/yr (0.001–0.002 in/yr; Stickney and Bartholomew, 1987; Fritz and Sears, 1993). 
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Figure 5. A field photograph looking north shows the northeast extent of the Timber Hill Basalt member 
(Tsct) resting on Precambrian basement rocks and recessive Tertiary sedimentary deposits of the 
Bozeman Group. The Sweetwater fault vertically displaces the basalt flow down to the northeast 
approximately 220 m (660 ft).
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Figure 3. Kernel density estimate (KDE) plots of the 207Pb corrected 206Pb/238U (<1,400 Ma) 
and 207Pb/206Pb (>1,400 Ma) zircon age data. KDE bandwidths and bin widths are 20 m.y. A 
discordance filter was not applied to the data. C, Cenozoic, Mz, Mesozoic, Pz, Paleozoic.
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JM22RC10 vitric tuff Tsc 45.0094 112.3662 MDA 206/238 12/50 7.5 0.2 1.4
DN-65 vitric-lithic tuff Tsc 45.0636 112.2762 WM 206/238 20/40 9.1 0.1 0.9
JM22RC08 pumice tuff Tsc 45.0467 112.2623 WM 206/238 38/50 9.8 0.1 1.2
JM22RC02 vitric tuff Tsc 45.0225 112.2545 WM 206/238 38/49 10.1 0.1 2.2
JM22RC09 lithic tuff Tsc 45.0218 112.3447 MDA 206/238 26/50 12.5 0.1 1.3
JM22RC05 sandstone Tsc 45.0245 112.2691 MDA 206/238 19/92 16.1 0.1 0.9
JM22RC07 siltstone Tre 45.0348 112.2579 MDA 206/238 20/84 33.4 0.4 1.3
JM22RC12 sandstone Tsc 45.1091 112.3051 MDA 206/238 16/159 42.2 0.4 1.3
JM22RC15 gneiss Adg 45.0759 112.2762 MEA 207/206 3/47 2774.0 21.0 0.6
JM22RC17 gneiss Adg 45.0552 112.3514 MEA 207/206 69/80 2805.0 5.9 2.1
JM22RC14 gneiss Adg 45.1103 112.3244 MEA 207/206 13/64 3313.0 12.0 1.5

Note: aNumerator is the number of spots used for age calculation; the denominator is the total number of spots analyzed.
bMSWD is the Mean Square Weighted Deviation.
Method: WM 206/238 weighted mean of select 206Pb/238U dates
 MDA 206/238 max depositional age, weighted mean of youngest 206Pb/238U dates
 MEA 207/206 minimum emplacement age determined by weighted mean of oldest 207Pb/206Pb dates
Zircon separates were prepared at MBMG and analyzed by LA-ICPMS at the University of California, Santa Barbara.
Latitudes and longitudes are in the 1984 World Geodetic Survey (WGS84) datum.  

TABLE 1. U-Pb zircon geochronology
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