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PHYSIOGRAPHIC AND TECTONIC SETTING

The Belmont Park Ranch 7.5′ quadrangle is located in Madison County, Montana, approximately 40 km (24.9 mi) 
southeast of Dillon and 25 km (15.5 mi) south of Alder (fig. 1). The quadrangle comprises much of the 
southwestern part of the upper Ruby River Valley, about 8 km (5 mi) south of the Ruby River Reservoir. The 
upper Ruby River Valley is bounded by predominately northeast–southwest-trending mountain ranges, the Ruby 
Range to the northwest and the Snowcrest, Greenhorn, and Gravelly Ranges to the southeast (fig. 1). The modern 
topography in the region generally reflects Basin and Range extension and/or collapse of the thickened Cordillera 
during the Eocene to present (Constenius, 1996). Exposure of bedrock geology in the Belmont Park Ranch 
quadrangle is generally fair, and includes Archean to Paleoproterozoic metamorphic basement rocks and 
noteworthy exposures of Tertiary (Paleogene and Neogene) rocks of the Dillon Volcanic Group and the Bozeman 
Group.

The northwest-flowing Ruby River traverses the very northeast corner of the Belmont Park Ranch quadrangle. 
The Ruby River’s tributaries, including the perennial Sweetwater and Robb Creeks, and their respective named 
tributaries, the perennial Spring Brook and ephemeral Dry Hollow Creek, drain the majority of the map area. The 
quadrangle is characterized by moderate relief with elevations ranging from 1,700 to 2,128 m (5,580 to 6,980 ft) 
above sea level, and is composed of Dry Gneissic–Schistose–Volcanic Hills and Dry Intermontane Sagebrush 
Valleys ecoregions. The natural vegetation of this semiarid region is mostly sagebrush steppe with an average 
annual precipitation from 30 to 56 cm (12 to 21 in). Grazing, wildlife habitat, and irrigation-supported farming in 
the bottomlands are common land uses (Woods and others, 2002). 

GEOLOGIC SUMMARY

The oldest rock units are exposed within the Ruby Range in the northwestern part of the map area and are 
composed of primarily gneiss and intercalated amphibolite bodies, which both generally display a regional 
northeast–southwest–trending foliation, and are collectively mapped as the Archean Dillon Gneiss (Adg). The 
Dillon Gneiss formed by ca. 2.9–2.6 Ma. Elsewhere within the Ruby Range temporally distinct ca. 2.5–2.4 Ga and 
ca. 1.8 Ga tectonothermal events are also reported (Harms and Baldwin, 2020 and references within). The Dillon 
Gneiss (Adg) is in fault contact with, or unconformably overlain by, late Eocene rocks of the Dillon Volcanic 
Group, poorly consolidated Tertiary strata of the Bozeman Group, or younger unconsolidated Quaternary deposits. 
Within the map area, ca. 34 Ma rocks of the Dillon Volcanic group (Tsr) are primarily felsic in composition and 
exposed along Sweetwater Creek. The remainder of the quadrangle contains noteworthy exposures of the Tertiary 
Bozeman Group, including the Renova (Trca, Trdc, Trpa) and overlying Sixmile Creek (Tscs, Tscu, Tsct) 
Formations. Here, the Renova Formation is generally fine-grained, while the Sixmile Creek Formation contains 
coarser conglomerates/breccias along with interbedded tephra deposits (dated at ca. 14.1 to 8.2 Ma), and localized 
volcanic flows such as the ca. 6 Ma Timber Hill Basalt (Tsct; Fritz and others, 2007). The Timber Hill Basalt 
forms a prominent mesa along the western portion of the map area where it overlies more recessive Sixmile Creek 
sedimentary members. Mesoproterozoic to Cretaceous rocks are absent within the map area, suggesting their 
complete exhumation or non-deposition prior to deposition of the Renova Formation in the late Eocene.

Recognized faults are limited to two northwest-trending faults, the Sweetwater and Stone Creek faults, and one 
northeast-trending fault, the East Ruby fault. Although no faults were found to cut Quaternary units within the 
map area, to the northwest the Stone Creek fault is shown to cut Quaternary deposits (Stotter, 2019), and the 
Sweetwater Fault is also inferred to have been active in the Quaternary (Mosolf and Sears, 2023). Within the map 
area, the northeast-trending East Ruby fault is truncated by the northwest-trending Stone Creek fault, suggesting 
the northwest-trending fault set is the younger feature. Prior workers (e.g., Fritz and Sears, 1993) have related the 
northwest-trending fault in the region to passage of the Yellowstone hotspot and associated crustal doming. 
Quaternary alluvium (Qal), alluvium and colluvium (Qac), and alluvial fan deposits (Qaf) are common along the 
Sweetwater Creek, Rob Creek, Dry Hollow, and Spring Brook drainages. Where undercut and over-steeped slopes 
have formed along Sweetwater Creek, Quaternary Landslide (Qls) and Talus (Qt) deposits are also present. 

PREVIOUS MAPPING

The Belmont Park 7.5′ quadrangle is included in a small-scale (1:250,000-scale) geologic map by Ruppel and 
others (1993) and parts of the quadrangle are included in larger-scale (1:24,000-scale) thesis mapping of Monroe 
(1976), Ripley (1987), and Garson (1992).

METHODS

Field Mapping
Geologic mapping in the Belmont Park Ranch 7.5′ quadrangle was conducted over the 2022 field season as part of 
the U.S. Geological Survey (USGS) STATEMAP program, a component of the National Cooperative Geologic 
Mapping Program (NCGMP). A 1:24,000-scale topographic base was utilized for field mapping, and geologic 
contacts were refined using the orthoimagery dataset produced by the National Agricultural Imagery Program 
(NAIP; 2018–2020). Structure and observational data were located using a handheld GPS device; structure data 
were measured with a traditional hand transit or mobile device. Field sheets were scanned and georeferenced in 
GIS software. The geologic data were subsequently digitized to the Geologic Map Schema (GeMS) geodatabase 
of the NCGMP. 

Geochemistry and U-Pb Geochronology
Rock samples collected for whole-rock geochemistry and U-Pb geochronology were processed at the MBMG 
mineral separation laboratory. A ~100–200 g split of the crushed material was prepared for bulk-rock geochemical 
analysis and subsequently analyzed by X-ray fluorescence (XRF) and inductively coupled plasma mass 
spectrometry (ICP-MS) at the Peter Hooper GeoAnalytical Lab, Washington State University. Zircon was isolated 
from select specimens by standard density and magnetic separation techniques at the MBMG mineral separation 
laboratory. Zircon separates were then analyzed by laser ablation inductively coupled plasma mass spectrometry 
(LA-ICP-MS) at the University of California, Santa Barbara.

Whole-rock chemical data acquired from this map area (Mosolf and others, 2023a) are provided in table 1. Zircon 
U-Pb geochronology results (Mosolf and others, 2023b) are provided in figure 2 and summarized in table 2.

Sixmile Creek Formation (Miocene)— A poorly consolidated sequence of interbedded conglomerate and coarse 
sandstone beds (Monroe, 1976), with lesser intervals of mudstone and tephra. The Big Hole River member and 
Anderson Ranch beds were mapped as an undivided unit (Tscu). Anderson Ranch beds extensive enough to be 
mapped at 1:24,000 scale are shown with lines. The Sweetwater Creek member (Tscs) and Timber Hill Basalt 
(Tsct) were mapped separately. Previously published radiometric age dates for the Sixmile Creek Formation span 
16–3.7 Ma, consistent with fossil ages (Monroe, 1976; Fritz and Sears, 1993). U-Pb zircon dates collected in this 
study have calculated ages of 14.1 to 8.2 Ma (fig. 2A), and contain older zircon grains that range from 2,900 to 80 
Ma (fig. 2B). Estimated total thickness of all members combined is at least 460 m (1,510 ft).

Tsct Timber Hill Basalt, informal (late Miocene)—Reddish-gray to black vesicular basalt flow. Contains 
phenocrysts of plagioclase, altered pyroxene, and trace amounts of hornblende and magnetite in a dark 
groundmass (Garson, 1992). Forms a resistant ridge that can be traced approximately 60 km (37 mi) to the 
southwest (Fritz and Sears, 1993). Exposures within this map area represent the units, most northern known 
extent. The Timber Hill Basalt overlies rounded, likely fluvial, gravels and conglomerates of the Sixmile 
Creek Formation, suggesting the basalt flowed down a paleochannel. Reported K-Ar whole-rock ages span 
from 6.3 ± 0.2 Ma to 5.9 ± 0.2 Ma (Fritz and others, 2007). Unit is approximately 12 m (40 ft) thick.

Tscu Sixmile Creek Formation, undivided (late to middle Miocene)—Predominately coarse-grained, 
clast-supported conglomerate of the Big Hole River member interstratified with Anderson Ranch tephra 
beds. Bioturbation, Hemphillian-age vertebrate fossils, and soft sediment deformation are typical 
throughout the unit. Paleosol horizons are also present. Intraformational low-angle unconformities, clastic 
dikes, and syndepositional fault and/or soft sediment compaction features are commonly observable, 
indicating tectonically active deposition (fig. 3). Gentle folds within this unit are likely associated with 
intrabasinal faulting, and differential compaction of beds during burial. Mapped relationships suggest this 
unit may be as thick as 300 m (984 ft).

Big Hole River member, informal—Black, green, red, pink, and white, well-rounded, polymictic cobble to 
pebble conglomerate, with lesser coarse-grained feldspathic and lithic sandstone intervals. Clasts are 
predominantly quartzite and argillite, with lesser chert and volcanics. Locally, volcanic clasts are 
moderately abundant, generally in the lower stratigraphic horizons. However, even where most 
abundant, volcanic clasts are still a subordinate clast component (<20 percent), generally rounded, and 
not accompanied with gneiss or schist basement clasts, distinguishing the Big Hole River member from 
the Sweetwater member. Clastic grain sizes range primarily from silt to cobbles (<25 cm, 10 in); 
however, rare boulders (<40 cm, 16 inches) can be found. Channelization is typical, with abundant 
large-scale planar and festoon cross-bedding. Load structures, including flame structures and clastic 
dikes, are locally present. Many beds grade laterally or vertically from sandstone to conglomerate, with 
gravel lenses in sandstone beds typical. Conglomeratic deposits are typically well stratified, although 
some massive intervals are present. Coarser, predominately cobble conglomerate intervals are almost 
exclusively clast-supported, but finer intervals and gravel lenses are often supported in a sandy matrix. 
Meter-scale intervals of darker gray/brown color, extensive root casts, and more resistant outcrop 
patterns are also present and interpreted as paleosol horizons. Locally, offset of beds below a non-offset 
paleosol horizon can be found and are interpreted to record syndepositional faulting (fig. 3). 
Conglomerate horizons within individual outcrops are as thick as 15 m (50 ft); total map unit thickness 
is approximately 110 m (360 ft).

Anderson Ranch beds, informal—White to light gray, tabular to lenticular bedded, trough cross-bedded, 
fluvially reworked and air-fall tephra deposits. Tephra is a mix of ash and pumice, often interbedded 
with silicic sand and gravel, and intrabasinal rip-up clasts. Rip-up clasts range from rounded pebbles to 
large angular fragments of finer-grained tephra and pumice (Thomas and Sears, 2020). Locally, pumice 
pebble conglomerate beds are present. Monroe (1976) reports that the absence of bentonitic clay 
distinguishes this unit from tephra-rich members of the underlying Renova Formation. U-Pb zircon 
dates of tephra interbedded with the Big Hole River member collected in this study have calculated 
ages of 14.1 to 8.2 Ma (fig. 2A, table 2). We note that the North American Stratigraphic Code (NACSN, 
2021) specifies that stratigraphic members may contain beds or flows, but may never contain other 
members. Thus, we informally refer to these tephra intervals as beds, while prior workers (Fritz and 
Sears, 1993; Thomas and Sears, 2020) have referred to them as spatially and temporally interleaved 
informal members. This map unit delineates well-exposed and continuous tephra beds. Up to 30 m (100 
ft) thick.

Tscs Sweetwater member, informal (Miocene)—Yellowish gray, light gray, and reddish gray, predominantly 
conglomerate with distinctly subangular to angular boulders as much as 2 m (6 ft) in diameter. Clast 
lithologies include basement rocks (gneiss and schist, often garnet-bearing) with lesser vesicular volcanic, 
pegmatite, quartzite, and coarse-grained, feldspathic, and lithic-rich sandstone. Localized beds of siltstone, 
limestone, and tuff are present in subordinate amounts. Conglomerate-filled channels are locally common. 
Clast sorting is generally poor. At outcrop scale, bedding is often indistinct or crudely stratified. A tephra 
interval sampled from this unit gave a zircon U-Pb weighted mean age of 12.5 ± 0.1 Ma, indicating that 
deposition of the Sweetwater member was contemporaneous with the Big Hole River member in this area. 
As thick as 150 m (492 ft) thick and thins to the southwest within the map area.
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DESCRIPTION OF MAP UNITS

Unconsolidated and Geomorphic Units

Qal Alluvium (Quaternary: Holocene)—Unconsolidated, well-rounded, moderate to well sorted cobbles, 
gravel, sand, and silt deposited in active stream channels and floodplains. Thickness generally less than 6 m 
(20 ft). 

Qac Alluvium and Colluvium (Quaternary: Holocene)—Dominantly sand, silt, clay, and subordinate gravel 
and cobbles locally, deposited on relatively gentle slopes primarily by sheetwash and gravity processes. 
Thickness generally less than 10 m (33 ft).

Qaf Alluvial Fan Deposits (Quaternary: Holocene)—Unconsolidated, moderately to poorly sorted, locally 
derived deposits composed of silt and sand with subangular to subrounded boulder-size clasts. Deposits 
formed as coalescent alluvial fan channels to debris flow fans along the front of steep hillslopes. Thickness 
as much as 15 m (50 ft). 

Qt Talus Deposits (Quaternary: Holocene)—Unconsolidated, locally derived deposits of angular clasts on 
and below steep slopes. Variable thickness, generally less than 10 m (33 ft).

Qls Landslide Deposits (Quaternary)—Unconsolidated, unsorted, and unstratified mixtures of proximally 
derived angular material, forming characteristic irregular hummocky topography due to downslope 
movement related to mass wasting processes. Some deposits may be currently or recently active as 
evidenced by limited denudation of head scarps. The most significant landslides are associated with over 
steepening and undercutting of slopes where resistant volcanic rocks of the Timber Hill Basalt (Tsct) of the 
Sixmile Creek Formation overlie more recessive Sixmile Creek Formation members. Variable thicknesses 
as much as 15 m (50 ft).

Bozeman Group

Here, we utilize the Bozeman Group nomenclature of Kuenzi and Fields (1971). The Bozeman Group consists of 
two formations, the predominantly fine-grained Eocene–lower Miocene, Renova Formation, and the 
unconformably overlying upper Miocene–Pliocene, predominately coarse-grained Sixmile Creek Formation. 
Petkewich (1972) applied the Kuenzi and Fields (1971) Renova Formation nomenclature to rocks near Dillon, and 
recognized four mappable members: (a) Climbing Arrow, (b) Dunbar Creek, (c) Williams Creek basalt, and (d) 
Passamari. Monroe (1976) recognized three (the Climbing Arrow, Dunbar Creek, and Passamari) of these four 
members within the Ruby Valley. 

Within the Ruby Valley, Monroe (1976) also subdivided the Sixmile Creek Formation into three informal, 
lithologically defined members: the metamorphic fanglomerate, feldspathic sandstone, and quartzite pebble 
conglomerate members. Fritz and Sears (1993) revised this Sixmile Creek nomenclature into three spatially and 
temporally interleaved lithologic units consisting of the Sweetwater Creek, Anderson Ranch, and Big Hole River 
members, and one volcanic flow—the Timber Hill Basalt. Within the Belmont Park Ranch quadrangle, proximally 
derived predominately subangular conglomerates, interpreted as fanglomerate deposits of the Sweetwater member 
(Tscs), occupy a consistent basin margin location and can be delineated at 1:24,000-scale. Anderson Ranch tephra 
beds are interbedded with round quartzite cobble conglomerates of Big Hole River member and do not always 
occur in a consistent stratigraphic order. The Sixmile Creek Formation is best exposed along south-facing slopes in 
the eastern part of the quadrangle. Anderson Ranch tephra and Big Hole River round cobble conglomerate 
lithologies commonly crop out and are interbedded at the meter scale. Due to the interbedded relationship, we refer 
to the tephra intervals as Anderson Ranch beds, not members.

Renova Formation (Eocene to Oligocene)—Composed primarily of fine-grained rocks consisting of shale, 
mudstone, limestone, and medium- or fine-grained sandstone beds that largely reflect fluvial and lacustrine 
deposition (Kuenzi and Fields, 1971; Monroe, 1976; Vuke, 2020), making it distinct from the younger, mostly 
coarser-grained Sixmile Creek Formation. Three members of the Renova Formation, described below, are 
recognized within the map area—the basal Climbing Arrow, and overlying Dunbar Creek and Passamari Members. 
Estimated total thickness of the three members is at least 175 m (575 ft). 

Trpa Passamari Member (late Oligocene to early Miocene)—Consists of a lower and upper interval. The 
upper interval is composed of light tan, fine-grained shales that vary from thinly bedded and fissile with 
small amounts of volcanic ash to silty, blocky-weathering, and lacking volcanic ash. An upper interval is 
very light buff and light gray, calcareous, thinly bedded shales with fine sand and clay horizons. The 
Passamari Member commonly forms low rounded hills with generally poor outcrops limited to recent 
erosional gullies. This unit is interpreted as lacustrine with local conglomerates reflecting deltaic 
deposition. Contact with the underlying Dunbar Creek Member is not exposed in the upper Ruby River 
Valley (Monroe, 1976). Upper contact is generally a low (<10 degree) angular unconformity with the 
overlying basal Sweetwater member of the Sixmile Creek Formation. At least 70 m (230 ft) thick.

Trdc Dunbar Creek Member (Oligocene)—Greenish-gray to light brown, primarily siltstone sequence with 
mudstone, lesser sandstone, and rare tuffaceous interbeds (Monroe, 1976). Commonly forms a distinct 
“popcorn” weathering surface and gradationally overlies the Climbing Arrow Member. Outcrops are rare 
with limited exposure along low-relief hills in sections 22 and 23 (T. 8 S., R. 5 W.). Approximately 40 mi 
(64 km) north of the map area, in the Jefferson Basin, the Dunbar Creek Member is approximately 180 to 
300 m thick (~600 to 1,000 ft; Kuenzi and Fields, 1971; Monroe 1976) but in this map area, only ~24 m 
(~80 ft) is exposed.

Trca Climbing Arrow Member (Eocene)—Poorly exposed light gray to pale orange and brown mudstone with 
lesser amounts of quartz–biotite sandstone. In the upper Ruby River Valley, the Climbing Arrow Member 
can be differentiated from the overlying Dunbar Creek Member by its rare conglomerate and limestone 
interbeds, complete lack of tuffaceous horizons, and significantly less siltstone. A minimum thickness of at 
least 80 m (~260 ft) is exposed.

Tertiary Volcanics

Tsr Sweetwater Rhyolite (late Eocene to early Oligocene)—Pink, maroon, tan, and gray, interbedded 
rhyolite (table 1) and volcaniclastic tuff. Rhyolites are mostly aphanitic with some quartz phenocrysts. 
Volcanic units are interbedded with locally cross-bedded, lithic/feldspathic and tuffaceous sandstones. 
Sandstones are coarse, locally pebble conglomerates containing subangular, polymictic lithics. U-Pb 
geochronology results yield a ca. 34 Ma depositional age for this unit (fig. 2A, table 2), suggesting 
volcanism was contemporaneous with the Virginia City Volcanic Group (Mosolf, 2021) approximately 25 
km (16 mi) to the northeast. As thick as 180 m (600 ft) thick.

Precambrian Metamorphic and Intrusive Rocks

The only recognized Precambrian unit in the map area is the Dillon Gneiss, the name used by Heinrich (1960) and 
Garihan (1979) for the massive-to-foliated quartzofeldspathic/granitic gneiss with abundant intercalations of 
amphibolite within the Ruby Range, and equivalent to the Quartzofeldspathic Gneiss unit of James (1990). The 
Dillon Gneiss has been considered a western exposure of ca. 2.8 Ga Neoarchean rocks of the Wyoming Province, 
and likely experienced several younger Precambrian tectonothermal pulses at ~2,500–2,400 Ma and 1,800–1,700 
Ma (Harms and Baldwin, 2020; Mogk and others, 2020).

Adg Dillon Gneiss (Archean)—Light gray, tan to orange, strongly foliated, and commonly lineated 
quartzofeldspathic gneiss with intercalated quartz, aplite, and pegmatitic bodies. Mineralogy consists 
primarily of quartz, microcline, plagioclase, and minor biotite, locally garnetiferous. Crops out as resistant, 
thick, sheet-like masses usually along foliation planes. Hosts salt-and-pepper-colored, foliated amphibolite 
bodies parallel to foliation that are composed primarily of blocky amphibole with lesser, likely secondary 
quartz. Amphibolite bodies are as much as ~25 m (82 ft) thick. Originally named the “Dillon Granite 
Gneiss” (Heinrich, 1960) and subsequently referred to as the Quartzofeldspathic Gneiss (James, 1990). 
U-Pb zircon results for the Dillon Gneiss exhibit significant Pb-loss but concordant dates range from 2,890 
to 2,480 Ma (fig. 2B). 

STRUCTURAL GEOLOGY

Metamorphic basement rocks of the Dillon Gneiss are intensely deformed in the Ruby Range, and record several 
generations of deformation. Although there are multiple generations of folds, the main metamorphic foliation is 
mostly axial planar to isoclinal folding, with fold axes that generally trend northeast (~046°) with a plunge (~17°; 
fig. 5A). Regionally extensive Paleozoic and Mesozoic strata (e.g., Ruppel and others, 1993) are absent in the 
Belmont Park quadrangle, suggesting their complete exhumation and erosion, likely during Cordilleran 
contractional deformation, prior to Tertiary deposition of the Bozeman Group.

Tertiary Bozeman Group strata and older rocks within the map area are displaced by two generations of high-angle, 
northeast- and northwest-trending normal faults that accommodated Cenozoic extension. The southeast-dipping 
East Ruby fault (Ruppel and others, 1993) places Renova Formation rocks against the Dillon Gneiss. Based on 
Dillon Gneiss exposures in the hanging wall, throw along this mapped segment of the East Ruby fault is 
approximately 60 to 100 m (~200 to 330 ft). The trace of the fault to the southwest within Sixmile Creek and 
younger strata is not clearly mappable. Renova Formation sediments in proximity to the East Ruby fault are 
generally fine-grained, and coarse-grained Sixmile Creek strata (Sweetwater member) generally thins to the 
southwest. These relationships suggest that the most recent movement on the East Ruby fault was likely in the early 
Miocene after deposition of the Renova Formation, and movement post-middle Miocene deposition of the lower 
Sixmile Creek Formation (ca. 12.5 Ma) may have been limited. 

The northern extent of the East Ruby fault is crosscut by the younger, generally northwest-trending Stone Creek 
fault. The Stone Creek fault downdrops upper Renova Formation (Passamari Member) and Sixmile Creek 
Formation (Sweetwater member) onto Dillon Gneiss and lower Renova Formation (Climbing Arrow Member). 
Within the map area, there is likely at least 180 m (~590 ft) of normal throw along the Stone Creek fault, but along 
its trace to the northwest, it may have significantly more throw and/or an earlier left-lateral offset (Garson, 1992). 
In the southwest part of the map, a similarly oriented northwest-trending fault, the Sweetwater fault, offsets Sixmile 
Creek Formation. To the northwest in the adjacent Red Canyon 7.5′ quadrangle (Mosolf and Sears, 2024), the 
Sweetwater Fault offsets the Timber Hill Basalt of the Sixmile Creek Formation, with approximately 200–250 m 
(720 ft) of normal throw. Consequently, movement on these northwest-trending faults appears to postdate 
movement on the northeast-trending East Ruby fault. Their orthogonal geometries suggest these northwest-trending 
faults may have originated as transfer faults to the northeast-trending East Ruby Fault, perhaps associated with 
long-lived crustal anisotropies (see Mosolf and Sears, 2024). 

The Cenozoic units within the area generally show minimal folding (figs. 5B, 5C). Where folded into open 
synclines and anticlines, the folding may represent differential compaction of the strata in proximity to syn- and 
post-depositional faults, as evidenced by associated sedimentary compaction structures such as clastic dikes and 
flame structures.
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TABLE 1. Major oxide and trace element geochemistry.
Sample ID JM22BPR03 DB22BPR04 DB22BPR05
Map unit Tsr Adg Adg
Lithology Rhyolite Amphibolite Gneiss
Latitude (°N) 45.0778 45.0954 45.0944
Longitude (°W) 112.2178 112.2462 112.2450

Major Elements (wt %)

SiO2 81.93 50.22 76.03
TiO2 0.44 0.79 0.32

Al2O3 10.27 15.32 11.13

FeO* 0.87 10.65 3.62
MnO 0.00 0.18 0.03
MgO 0.27 8.21 0.13
CaO 0.21 10.93 1.12
Na2O 0.11 1.98 2.80
K2O 1.62 0.49 3.83
P2O5 0.09 0.07 0.07
Sum 95.82 98.85 99.07
LOI 3.87 0.81 0.49

Trace Elements (ppm)

Ni+ 10.9 158.9 2.7
Cr+ 74.5 502.8 8.9
V+ 67.8 333.9 11.8
Ga+ 18.5 19.4 25.6
Cu+ 11.7 139.0 1.6
Zn+ 25.7 110.2 99.8
La 30.5 3.6 60.0
Ce 56.6 8.4 124.6
Pr 6.5 1.3 12.8
Nd 23.9 6.1 45.7
Sm 4.4 2.0 8.6
Eu 0.9 0.7 1.6
Gd 3.6 2.5 7.3
Tb 0.5 0.5 1.2
Dy 3.2 3.0 7.2
Ho 0.7 0.7 1.5
Er 1.9 1.9 4.3
Tm 0.3 0.3 0.7
Yb 1.8 1.9 4.2
Lu 0.3 0.3 0.7
Ba 328.6 117.6 1,482.5
Th 9.7 0.5 24.6
Nb 14.4 2.1 15.1
Y 19.0 17.9 38.6
Hf 5.3 1.3 13.1
Ta 1.1 0.3 1.0
U 2.1 0.2 2.6
Pb 11.8 15.9 36.3
Rb 61.7 10.1 104.0
Cs 7.2 0.1 0.4
Sr 110.1 119.6 70.4
Sc 6.0 36.5 2.9
Zr 190.5 45.1 485.5

Major elements and trace elements denoted by + were analyzed by XRF; all other trace 
elements were measured by ICP-MS. FeO* indicates all Fe expressed as Fe2+. 
All samples analyzed by X-ray fluorescence (XRF) and inductively coupled plasma mass 
spectrometry (ICP-MS) at the Washington State University GeoAnalytical Lab. 
Datum used for sample coordinates is World Geodetic Survey 1984 (WGS84).
Complete geochemical data available from Mosolf and others (2023a).    

JM22BPR01 vitric tuff Tscu 45.0330 -112.2415 WM 206/238 33/49 8.2 0.1 2.6

DB22BPR01 tephra Tscu 45.0281 -112.2033 WM 206/238 25/40 8.9 0.1 2.3

DB22BPR03 tephra Tscu 45.0107 -112.1275 WM 206/238 35/40 10.1 0.1 2.6

SP22BPR01 tephra Tscu 45.0761 -112.1975 MDA 206/238 21/46 14.1 0.2 0.8

DB22BPR02 tephra Tscs 45.1225 -112.2202 WM 206/238 31/40 12.5 0.1 0.9

JM22BPR03 rhyolite Tsr 45.0778 -112.2178 WM 206/238 12/90 34.0 0.7 3.1

JM22BPR02 welded tuff Tsr 45.0679 -112.2342 WM 206/238 13/77 34.2 0.4 1.3

JM22BPR04 sandstone Trpa 45.0532 -112.2421 See Fig. 2 - - - -

DB22BPR05 gneiss Adg 45.0944 -112.2450 MEA 207/206 16/72 2732 11 1.4

Sample Lithology Unit Latitude
(°N) 

Longitude
(°W) 

Method No. of Spot
Analysesa

Age
(Ma)

2σ MSWD
Table 2. U-Pb zircon geochronology

Note. Reported ages are the weighted mean of the 207Pb corrected 206Pb/238U ages obtained for each sample. MSWD 
is the Mean Square Weighted Deviation. 
Method: WM 206/238 weighted mean of select 206Pb/238U dates
   MDA 206/238 max depositional age, weighted mean of youngest 206Pb/238U dates
   MEA 207/206 maximum emplacement age, weighted mean of oldest overlapping 207Pb/206Pb dates
aNumber of spot analyses used to calculate weighted mean age.
Zircon separates were prepared at the MBMG and analyzed by LA-ICPMS at the University of California, Santa 
Barbara, CA. Latitudes and longitudes are in the 1984 World Geodetic Survey (WGS84) datum.
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Tscu - Sixmile Creek Formation, 
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Tscs - Sixmile Creek Formation,
             Sweetwater Creek member
Tsr - Sweetwater Rhyolite
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Figure 2. (A) Weighted mean ages of youngest Tertiary zircon populations from the Sixmile Creek and 
Eocene/Oligocene volcanic samples (all shown in 207Pb corrected, 206Pb/238U dates), which are interpreted as 
volcanic and/or syndepositional ages. (B) Zircon kernel density estimate (KDE) plots (with 25 Myr bin and 
bandwidths) of U-Pb dates from the Sixmile Creek, Renova, and Eocene volcanic units, which are interpreted as 
inherited and/or detrital grains, and from the Archean Dillon Gneiss, which are interpreted as metamorphic 
and/or igneous grains. KDE plots were calculated using 207Pb corrected, 206Pb/238U dates (<1000 Ma) and 
207Pb/206Pb with no common Pb correction (>1000 Ma) ratios, and filtered to omit analyses greater than 20 
percent discordant. Age-peaks consisting of more than a single analysis were labeled, rounded to the nearest 5 
Ma. The number of analyses that meet this filter and are plotted out of the total number of analyses is indicated 
(n = number of analyses plotted/total number of analyses).

Complete geochronology data available from Mosolf and others (2023b).
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the continuous (not offset) overlying cross-bedded horizon at the top of the ~2-m outcrop.
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Figure 4. Measured stratigraphic section of conglomerate and tephra lithologies of the Big Hole River member 
and Anderson Ranch beds of the Sixmile Creek Formation. The stratigraphy shown above is representative of 
the lithologies that were mapped as Sixmile Creek Formation, undivided (Tscu). Inset photo A shows a likely 
Hemphillian-age limb fossil found within the measured section; pencil is approximately 15 cm (6 in).
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Figure 5. Lower-hemisphere projection stereogram of poles to plane measurements for all measured 
(A) metamorphic foliations, (B) bedding surfaces and, (C) igneous foliations. The data are plotted on 
an equal-area stereonet and fit with Kamb contours. In stereogram (A) the great circle represents the 
cylindrical best fit of the metamorphic foliations with the corresponding trend and plunge of the fold 
hinge marked by the labeled black square.
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Figure 1. Simplified geologic–tectonic map of the Dillon area showing 
the major structures and geologic units discussed in the text. The 
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quadrangle. The geology is mostly derived from the geologic map of the 
Dillon 1° x 2° quadrangle (Ruppel and others, 1993) and overlain on a 
shaded digital elevation model (DEM).
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