IDENTIFICATION AND CHARACTERIZATION OF RARE EARTH ELEMENTS IN LARGE-SCALE MINE WASTES—TASK 4

DATA SUMMARY REPORT

YEAR 1 (2022–2023)

Terence E. Duaime, Jackson T. Quarles, and Matthew J. Vitale prepared for Army Research Laboratory

Front photo: Reclaimed open pit at the Zortman Mine, Zortman, MT. Photo by Matthew Vitale, August 2023.

Identification and Characterization of Rare Earth Elements in Large-Scale Mine Wastes—Task 4 Data Summary Report Year 1 (2022–2023)

prepared for Army Research Laboratory

Terence E. Duaime, Jackson T. Quarles, and Matthew J. Vitale

Cooperative Agreement (CA): W911NF-22-2-0015

Montana Bureau of Mines and Geology Open-File Report 769

January 2025 https://doi.org/10.59691/XXXX

This research was sponsored by the Combat Capabilities Development Command Army Research Laboratory and was accomplished under Cooperative Agreement W911NF-22-2-0015. The views and conclusions contained in this document are those of the authors, and should not be interpreted as representing the official policies, either expressed or implied, of the Combat Capabilities Development Command Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

TABLE OF CONTENTS

1.0 Introduction
2.0 Year 1 Sampling Objectives
3.0 Background and Sample Site Description
3.1 Butte Mining District
3.2 Anaconda Operations11
3.3 Beal Mountain Mine15
3.4 Golden Sunlight Mine
3.5 Solvay Phosphate Plant
3.6 Philipsburg Mining District
3.7 Basin Mining District
3.8 Black Eagle Smelter25
3.9 Columbus/Stillwater Mine Smelter27
3.9.1 Columbus/Mouat27
3.9.2 Stillwater Mine Smelter
3.10 Zortman–Landusky
3.11 Flat Creek
3.12 Neihart Mining District (Barkers/Hughesville)
4.0 Summary
5.0 Acknowledgments
6.0 References

FIGURES

Figure 1-1. Location map showing counties where study/sampling areas are located throughout Montana	1
Figure 3-2. REE concentration percentages for every sample taken at the Berkeley Pit	4
Figure 3-1. The Berkeley Pit and the Horseshoe Bend Water Treatment plant	4
Figure 3-3. REE concentration percentages for every sludge sample taken at HsB	4
Figure 3-4. An aerial view of the Anaconda Smelter and operations, as well as a pile of the black slag	.12
Figure 3-5. REE concentration percentages for every sample taken at the Anaconda slag piles	.12
Figure 3-6. Inside the Beal Mountain Water Treatment plant	.15
Figure 3-7. REE concentration percentages for every solid sample taken at Beal Mountain	.15
Figure 3-8. REE concentration percentages for every aqueous sample taken at Beal Mountain	.15
Figure 3-9. The pit at the Golden Sunlight Mine	.18
Figure 3-10. REE concentration percentages for every sample taken at Golden Sunlight, including germanium	.18
Figure 3-11. REE concentration percentages for every sample taken at the Solvay slag piles	.19
Figure 3-12. REE concentration percentages for every sample taken in the Philipsburg area	.23
Figure 3-13. The inside of the Sibanye–Stillwater Columbus smelter concentrate receiving area	.27

Figure 3-14. REE concentration percentages for every solid sample taken from the Stillwater smelter27
Figure 3-15. The discharge from the Zortman–Landusky bioplant
Figure 3-16. REE concentration percentages for every solid sample taken at Zortman–Landusky that was analyzed by ALS
Figure 3-17. REE concentration percentages for every aqueous sample taken at Zortman–Landusky
Figure 3-18. Reclamation of the contaminated soil in Flat Creek, Superior, Montana
Figure 3-19. REE concentration percentages for every sample taken at Flat Creek, including germanium33
Figure 3-20. A large waste rock dump on the mountains near Neihart, Montana
Figure 3-21. REE concentration percentages for every solid sample taken in the Neihart Mining District 35
Figure 3-22. REE concentration percentages for every aqueous sample taken in the Neihart Mining District
Figure 3-23. Average total REE concentrations per solid sample site for samples below 200 mg/kg
Figure 3-24. Average total REE concentrations per solid sample site for samples below 200 mg/kg
Figure 3-25. Average total REE concentrations per aqueous sample site below 100 µg/L
Figure 3-26. Average total REE concentrations per aqueous sample site above 100 µg/L40

TABLES

Table 1-1. Potential study/resource areas–REE, MBMG Task 42
Table 3-1. Butte operations, Butte mine flooding monitoring sites—rare earth element and germanium concentrations
Table 3-2. Butte operations, Butte mine flooding monitoring sites—rare earth element and germanium statistics
Table 3-3. Butte operations, Butte mine flooding monitoring sites—rare earth element and germanium concentrations
Table 3-4. Butte operations, Butte mine flooding monitoring sites—rare earth element and germanium statistics. 7
Table 3-5. Butte operations, Butte treatment lagoons—rare earth element and germanium statistics7
Table 3-6. Butte operations, Butte treatment lagoons—rare earth element and germanium statistics7
Table 3-7. Butte operations, Butte treatment lagoons—rare earth element and germanium concentrations7
Table 3-8. Butte operations, Butte treatment lagoons—rare earth element and germanium concentrations7
Table 3-9. Butte operations, Montana Resources mill-rare earth element and germanium concentrations8
Table 3-10. Butte operations, Horseshoe Bend Water Treatment Plant—rare earth element and germanium concentrations
Table 3-12. Butte operations, Horseshoe Bend Water Treatment Plant—rare earth element and germanium statistics
Table 3-11. Butte operations, Montana Resources mill-Rare earth element and germanium statistics9
Table 3-13. Butte operations, Horseshoe Bend Water Treatment Plant sludge—rare earth element and germanium concentrations
Table 3-14. Butte operations, Berkeley Pit—rare earth element and germanium concentrations10
Table 3-15. Butte operations, Horseshoe Bend Water Treatment Plant sludge—rare earth element and germanium statistics

Montana Bureau of Mines and Geology Open-File Report 769

Table 3-16. Butte operations, Berkeley Pit—rare earth element and germanium statistics
Table 3-17. Anaconda operations, Anaconda slag—rare earth element and germanium concentrations13
Table 3-19. Anaconda operations, Opportunity ponds—rare earth element and germanium statistics
Table 3-18. Anaconda operations, Anaconda slag—rare earth element and germanium statistics13
Table 3-20. Anaconda operations, Opportunity ponds—rare earth element and germanium concentrations
Table 3-21. Beal Mountain, aqueous samples—rare earth element and germanium concentrations16
Table 3-22. Beal Mountain, aqueous samples—rare earth element and germanium statistics17
Table 3-23. Beal Mountain, solid samples—rare earth element and germanium statistics
Table 3-24. Beal Mountain, solid samples—rare earth element and germanium concentrations17
Table 3-25. Golden Sunlight—rare earth element and germanium statistics
Table 3-26. Golden Sunlight—rare earth element and germanium concentrations
Table 3-27. Solvay/Stauffer, Solvay slag—rare earth element and germanium statistics
Table 3-28. Solvay/Stauffer, Solvay slag—rare earth element and germanium concentrations19
Table 3-29. Philipsburg mining district, Philipsburg Area solids (WVU)—rare earth element and germanium statistics. 20
Table 30. Philipsburg mining district, Philipsburg area solids (WVU)—rare earth element and germanium concentrations 20
Table 3-31. Philipsburg mining district, Philipsburg area solids (ALS)—rare earth element and germanium concentrations 21
Table 3-32. Philipsburg mining district, Philipsburg area solids (ALS)—rare earth element and germanium statistics. 22
Table 3-33. Philipsburg mining district, Ted Antonioli—rare earth element and germanium statistics23
Table 3-34. Philipsburg mining district, Ted Antonioli—rare earth element and germanium concentrations. 23
Table 3-35. Basin/Ten Mile watersheds, Crystal and Bullion mines—rare earth element and germanium statistics. 24
Table 3-36. Basin/Ten Mile watersheds, Crystal and Bullion mines—rare earth element and germanium concentrations 24
Table 3-37. Black Eagle Smelter/Great Falls—rare earth element and germanium statistics
Table 3-38. Black Eagle Smelter/Great Falls—rare earth element and germanium concentrations
Table 3-39. Columbus/MOAUT monitoring wells—rare earth element and germanium statistics
Table 3-40. Columbus/MOAUT monitoring wells-rare earth element and germanium concentrations28
Table 3-41. Nye/Fishtail/Columbus Chrome, Stillwater Smelter—rare earth element and germanium statistics
Table 3-42. Nye/Fishtail/Columbus Chrome, Stillwater Smelter—rare earth element and germanium statistics
Table 3-43. Zortman–Landusky, aqueous samples—Rare earth element and germanium statistics
Table 3-44. Zortman–Landusky, aqueous samples—rare earth element and germanium concentrations30
Table 3-45. Zortman–Landusky, solids samples (WVU)—rare earth element and germanium concentrations

Table 3-46. Zortman–Landusky, solids samples (WVU)—rare earth element and germanium statistics31
Table 3-47. Zortman–Landusky, solids samples (ALS)—rare earth element and germanium statistics
Table 3-48. Zortman–Landusky, solids samples (ALS)—rare earth element and germanium concentrations 32
Table 3-49. Flat Creek tailings—rare earth element and germanium statistics 33
Table 3-50. Flat Creek tailings—rare earth element and germanium concentrations
Table 3-51. Barkers/Hughesville, aqueous samples—rare earth element and germanium concentrations36
Table 3-52. Barkers/Hughesville, aqueous samples—rare earth element and germanium statistics
Table 3-53. Barkers/Hughesville, solids samples—rare earth element and germanium statistics
Table 3-54. Barkers/Hughesville, solids samples—rare earth element and germanium concentrations

1.0 INTRODUCTION

The United States is reliant on foreign countries (e.g., China) for much of its rare earth element (REE) supply. The reliance on foreign countries for REEs is a major concern for the U.S. in both domestic use and military security. China is the largest producer of REEs and has set quotas on production and exports, both of which have the potential to affect the U.S. economy and defense network. The U.S. desire to move to a more "Green Energy" environment will only put more strain on REE supply. This task aims to identify REE occurrences in large-scale waste sources associated with past underground and open-pit mining and ore processing facilities throughout portions of Montana. Mine types include metallic, non-metallic, and coal. Programs to identify REE deposits throughout the U.S. are underway; however, exploration and mine development can take decades before resulting in an increase in U.S. resources and production. Recovery of REEs from abandoned/inactive sites would shorten the time necessary to add to the U.S. REE supply and production, as no new mine permitting would be required. Recovery of REEs from mine waste has a secondary benefit of aiding environmental cleanup and reducing waste sources.

Montana Bureau of Mines and Geology Open-File Report 769

This data summary report presents the results of aqueous and solid sample collection and analysis performed as part of a Cooperative Agreement titled "Materials Technology for Rare Earth Elements Processing (MT-REEP)." MT-REEP consists of several different tasks focused on sharing expertise with Montana Technological University, including Montana Bureau of Mines and Geology (MBMG) faculty and staff. The multiple research projects aim to demonstrate that REEs exist and can be produced economically-even from undesirable mining wastes-without environmental damage, thus reducing the Nation's dependence on foreign-based supply chains. Task 4 focuses on the collection of samples from a preliminary list of large-scale mining and ore processing sites throughout Montana. Throughout the year, additional sites were added as contact was made with various State and Federal agencies and private companies. The list currently consists of 21 sites. Table 1-1 contains the initial 13 sites, plus the added sites, while figure 1-1 shows the counties the sites are located within.

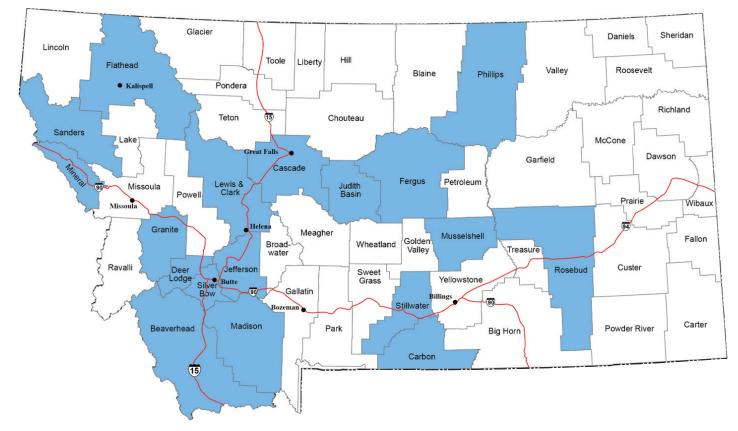


Figure 1-1. Location map showing counties where study/sampling areas are located throughout Montana.

Table 1-1. Potential study/resource areas-REE, MBMG Task 4.

- 1. Butte Operations
 - a. Berkeley Pit
 - b. Horseshoe Bend
 - c. HsB WTP sludge
 - d. Leach pads
 - e. Waste dumps
 - f. Yankee Doodle Tailings
- 2. Anaconda Operations
 - a. Smelter Hill slag
 - b. Smelter Hill tailings
 - c. Opportunity Pond
- 3. Columbia Falls Aluminum Plant
 - a. SPL ponds
 - b. Waste pits

4. Beal Mountain

- a. Waste dump
- b. Tailings/leach pad
- 5. Golden Sunlight Mine
 - a. Waste dump
 - b. Tailings (?)

6. Solvay/Stauffer

- a. Tailings basin
- b. Waste pile
- c. Maiden Rock ore piles
- 7. Garrison/Phosphate Area Mines
 - a. Waste dumps

8. Phillipsburg Mining District

- a. Waste dumps
- b. Tailings
- c. AMD sites

9. Basin/Ten Mile Watersheds

- a. AMD sites (Basin/Cataract Creeks)
- b. Luttrell Waste Repository

10. Great Falls/Lewistown Coal Fields

- a. Belt/Stockett/Sand Coulee AMD
- b. Waste/spoils piles

11. Black Eagle Smelter/Great Falls

- a. Waste dumps
- b. Tailings
- c. Seeps
- 12. Roundup/Red Lodge Coal Fields
 - a. Waste/spoils piles

13. Nye/Fishtail/Columbus Chrome

- a. Waste piles
- b. Ore stock piles
- c. Columbus Smelter

14. Zortman–Landusky

- a. AMD
- b. Treated water
- c. Waste piles

- 15. Montana Tunnels
 - a. AMD/seeps
 - b. Waste piles
- 16. Thompson Falls–U.S. Minerals
 - a. Waste Dumps
 - b. Tailings
 - c. AMD seeps
- 17. Kendall Mine/Lewistown
 - a. Waste Dumps
 - b. Tailings
 - c. AMD seeps
- 18. Hog Heaven Mine/Kalispell area
 - a. Waste Dumps
 - b. Tailings
 - c. AMD seeps
- 19. Carpenter/Snow Creek
 - a. Waste Dumps
 - b. Tailings
 - c. Seeps

20. Flat Creek Tailings

- a. Waste dumps
- b. Tailings

21. Barkers/Hughesville

- a. Waste dumps
- b. Tailings
- c. AMD seeps

Montana Bureau of Mines and Geology Open-File Report 769

Year 1 work focused on the following activities:

- 1. Perform a thorough literature search of existing information for each site and compile REE data.
- 2. Develop detailed field and laboratory quality assurance project plans (QAPP) and sampling and analysis plans to guide personnel to ensure high-quality data are collected and analytical data meet the Army Research Laboratory (ARL) program goals.
- 3. Initiate contact with property owners and regulatory agencies (i.e., USFS, EPA, and DEO) for site access; and
- 4. Implement a reconnaissance/limited sampling program to collect opportunistic aqueous and solid samples for REE at sites located in southwest Montana.

This data summary report describes the sampling conducted for item 4 above. Sampling procedures followed those described in the project-specific QAPP developed under item 2 above. Many of the sites shown in table 1-1 are part of ongoing U.S. Environmental Protection Agency Superfund activities or other regulatory action; therefore, sampling and analysis procedures, along with safety procedures, were designed to be compatible with those governing Superfund sites.

Solid samples were submitted to ALS Laboratories and West Virginia University (WVU) for rare earth element analysis and the MBMG Analytical Laboratory for inorganic analysis for the dissolved and total recoverable fractions. Water-quality data from the MBMG lab are available from the MBMG Groundwater Information Center online at: Montana's Ground Water Information Center 2025.

2.0 YEAR 1 SAMPLING OBJECTIVES

Limited reconnaissance sampling was conducted during the first year of the project at sites where access was easily obtained and previous data suggested REE existed in waste material. Initial reconnaissance sampling entailed collecting an adequate number of solid and/or aqueous samples at specific sites to determine if REE concentrations merited more detailed sampling. Sample sites included acid mine

drainage discharge, sludge from water treatment facilities, waste dumps, smelter wastes, and mill tailings.

Initial sampling results are being used to develop more detailed sampling plans at sites with elevated REE concentrations. Sites with total REE concentrations above 412 mg/kg in solids/sludge (concentration approximately two times that found in earth's crust; Balaram, 2019) and total REE concentrations above 499 μ g/L in aqueous samples (value identified as having secondary recovery potential) are considered as sites with elevated concentrations. Sites were also evaluated on the ratio of the amount of critical REEs (i.e., neodymium, europium, terbium, dysprosium, erbium, and yttrium) in the REE sum to the amount of more abundant REEs, also known as the outlook coefficient (Coutl; Seredin and Dai, 2012). The higher the coefficient, the more promising the material is as a secondary source; sites with a coefficient of 0.7 or above are considered elevated for critical REEs.

3.0 BACKGROUND AND SAMPLE SITE DESCRIPTION

A total of 149 aqueous and 243 solid samples were collected from 12 sites during year 1 activities. A description of each sample site and summary of aqueous, sludge, and solid sample results showing average, minimum, maximum, and number of samples are presented below.

3.1 Butte Mining District

Butte, Montana is well known for its long mining history. Mining first began in the 1860s with placer gold deposits. Soon after, silver, copper, and zinc were found in quantity and began to be mined. Duaime and McGrath (2019) noted the existence of 517 underground mines on the Butte Hill, with depths reaching up to 1 mi; production of ore from these mines was prodigious, with more than 23 billion pounds of copper and 4.9 billion pounds of zinc produced from 1880 through 2017. Over 10,000 miles of underground workings (Duaime and others, 2002) were exhumed in search of these metals; several open pit mines (e.g., the Berkeley Pit) were operated as part of mining operations. In 1982 the mines closed and the water pumps dewatering them were turned off. Open pit mining ended in 1983, but resumed in 1986. The cessation of underground mine dewatering allowed heavy-metal-laden water to flood the abandoned workings and Berkeley Pit (fig. 3-1).

Figure 3-1. The Berkeley Pit and the Horseshoe Bend Water Treatment plant.

Initial sampling focused on the collection of aqueous samples from sites monitored as part of the Butte Mine Flooding Operable Unit–Long-Term Monitoring Program. Samples were collected from a combination of alluvial and bedrock monitoring wells, underground mines, and surface-water sites, including the Berkeley Pit. Solid samples were collected from ore being mined in the Continental Pit and processed ore

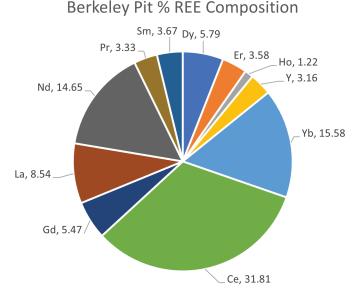


Figure 3-2. REE concentration percentages for every sample taken at the Berkeley Pit. Elements with less than 1% concentration were removed.

from the site concentrator. In addition, sludge samples were collected and analyzed from the onsite Horseshoe Bend Water Treatment Plant (HsB). Other opportunistic samples (both solid and aqueous) were collected in the Butte area. In total, 110 samples were collected and analyzed for REE; the results are presented in figures 3-2 and 3-3 and tables 3-1 through 3-16.

HsB Sludge % REE Composition

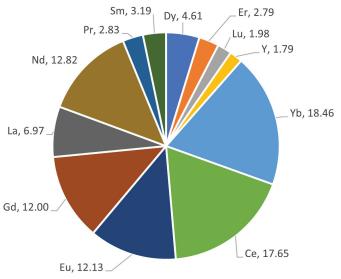


Figure 3-3. REE concentration percentages for every sludge sample taken at HsB. Elements with less than 1% concentration were removed.

		s, Dulle		6 IIInool			te Mines	Butte Mineshafts Aqueous		l allu gr			cellul auto				
Ci ciana 2	ß	6	Ъ	오	З	₽	щ	۲	ę	g	E	8	eJ	PN	Pr	Sm	ж
sample ID	(µg/L)	(µg/l)	(µg/l)	(µg/l)	(Hg/L)	(µg/L)	(µg/L)	(J/g/)	(Jug/L)	(µg/L)	(µg/L)	(µg/L)	(hg/l)	(µg/L)	(µg/l)	(µg/l)	(hg/l)
AMC-5	⊲2.00	6.38	4.58	1.52	0.47	0.88	0.57	2.98	66.02	50.29	0.63	5.64	14.88	15.12	3.71	2.84	0.17
AMW-20	⊲2.00	4.63	2.91	1.01	0.32	0.71	0.34	1.98	46.23	60.24	0.58	4.70	29.59	14.23	4.03	2.51	0.15
Anselmo Dissolved	⊲2.00	0.01	0.01	<0.002	<0.002	<0.002	<0.002	0.01	0.58	0.08	<0.003	0.01	0.09	0.02	<0.003	<0.004	0.08
Anselmo Mine	NA	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.00	0.04	<0.02	<0.02	0.07	0.02	<0.02	<0.02	0.00
GM-1	⊲2.00	0.05	0.04	0.01	0.00	<0.002	0.00	0.03	0.89	1.01	0.00	0.05	0.74	0.20	0.06	0.01	0.10
Green Seep	⊲2.00	<0.004	<0.004	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003	<0.004	0.07
Kelley Dissolved	⊲2.00	24.19	14.37	4.98	1.65	3.78	1.80	10.77	161.13	19.62	3.60	24.10	5.35	17.57	2.87	8.70	0.27
Kelley Mine	NA	25.18	14.60	5.38	1.69	4.02	1.90	11.15	0.00	21.36	3.79	24.35	5.99	19.09	3.16	9.33	0.00
CP-9	⊲2.00	504.64	329.25	107.34	44.55	76.25	46.61	299.41	2977.14	6376.91	74.38	475.06	1108.74	1547.90	374.87	329.53	11.13
LP-10	⊲2.00	0.15	0.11	0.04	0.02	0.02	0.02	0.10	1.57	0.37	0.02	0.16	0.08	0.32	0.06	0.08	0.08
LP-12	⊲2.00	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.09	0.02	<0.003	0.01	0.02	0.01	<0.003	40.004	0.07
LP-13	⊲2.00	60.0	0.08	0.03	0.01	<0.002	0.01	0.06	2.06	0.07	<0.003	0.09	0.03	0.12	0.02	0.01	0.15
LP-14	⊲2.00	40.004	<0.004	<0.002	<0.002	<0.002	<0.002	<0.004	0.10	<0.008	<0.003	<0.003	0.02	40.008	<0.003	40.004	0.10
LP-15	⊲2.00	0.01	<0.004		<0.002	<0.002	<0.002	<0.004	0.27	0.02	<0.003	<0.003	0.03	<0.008	<0.003	<0.004	0.20
LP-16	⊲2.00	0.02	0.03	0.01	0.00	0.00	0.00	0.03	0.58	0.15	<0.003	0.02	0.13	0.05	0.01	40.004	0.09
LP-17R	⊲2.00	10.39	7.89	2.54	0.95	1.45	1.03	5.94	99.71	62.29	1.07	8.80	9.34	17.46	3.86	3.71	0.13
Marget Ann	⊲2.00	<0.004	<0.004	<0.002	<0.002	<0.002	<0.002	<0.004	0.11	0.06	<0.003	<0.003	0.04	0.03	<0.003	<0.004	0.04
Ophir Dissolved	⊲2.00	0.03	0.02	<0.002	<0.002	<0.002	<0.002	0.02	0.44	0.32	<0.003	0.03	0.19	0.17	0.03	0.02	0.08
Ophir Mine	NA	0.04	0.03	<0.02	<0.02	<0.02	<0.02	0.03	0.00	0.33	<0.02	0.04	0.20	0.18	0.04	0.03	0.00
Orphan Boy Dissolved	⊲2.00	0.01	0.01	<0.002	<0.002	<0.002	<0.002	0.01	0.21	0.04	<0.003	<0.003	0.01	0.02	<0.003	<0.004	0.11
Orphan Boy Mine	NA	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.00	0.06	<0.02	<0.02	0.03	0.03	<0.02	<0.02	0.00
Steward Dissolved	⊲2.00	2.83	1.73	0.61	0.16	0.43	0.20	1.08	26.65	1.70	0.40	3.05	0.77	1.63	0.24	0.86	0.17
Tech Well	⊲2.00	<0.004	<0.004	<0.002	<0.002	<0.002	<0.002	<0.004	0.10	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003	<0.004	0.08
Travona Dissolved	⊲2.00	0.01	0.01	<0.002	<0.002	<0.002	<0.002	0.01	0.26	0.15	<0.003	0.01	0.10	0.06	0.01	<0.004	0.06
Travona Mine TR	⊲2.00	0.03	0.03	0.01	0.01	0.01	0.01	0.03	0.27	0.21	0.01	0.03	0.11	0.11	0.03	0.03	0.04
WellB	⊲2.00	<0.004	<0.004	<0.002	<0.002	<0.002	<0.002	0.00	0.05	0.03	<0.003	<0.003	0.01	<0.008	<0.003	<0.004	0.09
WellC	⊲2.00	0.28	0.23	0.07	0.02	0.01	0.03	0.14	4.28	<0.008	0.02	0.21	<0.003	0.05	<0.003	0.01	0.14
Well D-2	19.90	0.64	0.39	0.13	0.05	0.11	0.05	0.30	4.30	0.64	0.10	0.65	0.21	0.63	0.11	0.29	0.16
WellE	⊲2.00	<0.004	<0.004	<0.002	<0.002	<0.002	<0.002	<0.004	0.02	0.03	<0.003	<0.003	<0.003	⊲0.008	<0.003	40.004	0.10
Well F	⊲2.00	<0.004	<0.004	_	<0.002	<0.002	<0.002	<0.004	0.01	<0.008	<0.003	<0.003	<0.003	⊲0.008	<0.003	<0.004	0.08
WellG	⊲2.00	<0.004	<0.004	<0.002	<0.002	<0.002	<0.002	<0.004	0.02	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003	<0.004	0.09
Moto Cross clomente represent hours DE	1001 040	tooort h		<u>ц</u>	Vollow ron	roconto liabt	0 +4~:!				404 0						

()
Ы
atio
ntra
Ľ,
concel
Ы
ы С
Ε
.□
an
Ĕ
E C
ő
p
a
Ę
ner
~
ele
_
Ð
eal
-rare e
are
Ϋ́
ļ
ites
sit
σ
. ⊑ .
5
2
nito
nonito
monito
ng monite
ding monite
õ
õ
õ
mine floo
mine floo
utte mine floo
mine floo
utte mine floo
ns, Butte mine floo
ns, Butte mine floo
utte mine floo
ns, Butte mine floo
ns, Butte mine floo
ns, Butte mine floo
ns, Butte mine floo
ns, Butte mine floo
ns, Butte mine floo
ns, Butte mine floo

Note. Green elements represent heavy REE, Yellow represents light REE, and NA represents not analyzed.

Table 3-2. Butte operations, Butte mine flooding monitoring sites—rare earth element and germanium statistics.

Bu	tte Minesh	afts Aqueo	ous Statistic	cs		
		Total REE				
Sample ID	Coutl	(µg/L)	REE	REE	REE	
AMC-5	1.77	176.67	11.04	0.17	66.02	
AMW-20	1.12	174.16	10.88	0.15	60.24	
Anselmo Dissolved	0.00	0.88	0.10	0.01	0.58	
Anselmo Mine	0.00	0.14	0.02	0.00	0.07	
GM-1	0.00	3.19	0.21	0.00	1.01	
Green Seep	0.00	0.07	0.07	0.07	0.07	
Kelley Dissolved	8.01	304.73	19.05	0.27	161.13	
Kelley Mine	2.20	150.97	8.88	0.00	25.18	
LP-9	0.84	14,683.69	917.73	11.13	6376.91	
LP-10	5.02	3.19	0.20	0.02	1.57	
LP-12	0.00	0.24	0.02	0.00	0.09	
LP-13	0.00	2.82	0.20	0.01	2.06	
LP-14	0.00	0.22	0.07	0.02	0.10	
LP-15	0.00	0.53	0.11	0.01	0.27	
LP-16	0.00	1.13	0.08	0.00	0.58	
LP-17R	2.07	236.54	14.78	0.13	99.71	
Marget Ann	0.00	0.27	0.05	0.03	0.11	
Ophir Dissolved	0.00	1.32	0.12	0.02	0.44	
Ophir Mine	0.00	0.93	0.08	0.00	0.33	
Orphan Boy Dissolved	0.00	0.40	0.05	0.01	0.21	
Orphan Boy Mine	0.00	0.14	0.02	0.00	0.06	
Steward Dissolved	12.64	42.50	2.66	0.16	26.65	
Tech Well	0.00	0.19	0.09	0.08	0.10	
Travona Dissolved	0.00	0.68	0.07	0.01	0.26	
Travona Mine TR	1.96	0.95	0.06	0.01	0.27	
Well B	0.00	0.17	0.03	0.00	0.09	
Well C	0.00	5.48	0.42	0.01	4.28	
Well D-2	7.07	28.64	1.68	0.05	19.90	
Well E	0.00	0.14	0.05	0.02	0.10	
Well F	0.00	0.09	0.04	0.01	0.08	
Well G	0.00	0.11	0.06	0.02	0.09	

Table 3-3. Butte operations, Butte mine flooding monitoring sites—rare earth element and germanium concentrations.

•))				,								
						Bu	Butte Mineshafts Solids	chafts Sol	ids								
Cample ID	Ge	Dy	Er	Ч	З	Tb	Tm	¥	γþ	٣	B	gq	e	PN	Pr	Sm	Sc
עו שוקווואנ	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)						
220-230 GM-1	1.6	3.66	2.32	0.79	0.38	0.65	0.37	22.7	2.32	72.4	1.2	4.33	37	27.9	8	5.12	14.4
330-340 GM-1	1.8	3.25	Z.03	69.0	0.28	0.57	0.3	1.86	19.1	66.1	1.14	3.84	34.6	25.8	7.27	4.77	13.6
490-500 GM-1	1.7	3.69	2.18	0.74	0.31	0.61	0.32	2.1	21.3	74.7	1.1	4.29	38.8	29.3	8.2	5.21	14
610-620 GM-1	1.4	3.64	2.16	0.81	0.35	0.59	0.31	2.09	21.9	73.5	1.16	4.03	38.8	Z9.3	8.09	5.05	14.9
800-810 GM-1	1.2	3.54	2.18	0.72	0.35	0.63	0.33	2.1	21.3	58.3	1.22	3.98	31.1	26.2	6.78	4.44	15.3
Granite Mine	3.7	2.66	1.49	0.52	0.24	0.42	0.23	1.84	14.8	56.7	1.04	3.01	30.9	23.8	6.9	4.36	8
YDT-2014-001	1.6	3.61	2.16	0.77	0.36	0.6	0.34	2.24	20	67.3	1.11	3.88	37	24.8	7.33	4.52	13.5

Montana Bureau of Mines and Geology Open-File Report 769

Table 3-4. Butte operations, Butte mine flooding monitoring sites-rare earth element and germanium statistics.

our in olonione una gon					
B	utte Mine	shafts Solid	ls Statistics		
famala ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couti	(mg/kg)	REE	REE	REE
220-230 GM-1	0.77	205.14	12.07	0.37	72.40
330-340 GM-1	0.75	187.00	11.00	0.28	66.10
490-500 GM-1	0.74	208.55	12.27	0.31	74.70
610-620 GM-1	0.76	208.08	12.24	0.31	73.50
800-810 GM-1	0.89	179.67	10.57	0.33	58.30
Granite Mine	0.74	160.61	9.45	0.23	56.70
YDT-2014-001	0.74	191.12	11.24	0.34	67.30

Table 3-5. Butte operations, Butte treatment lagoons-rare earth element and germanium statistics.

Bu	utte Treatn	nent Lagoo	on Solids (W	/VU) Statistic	S
Comple ID	Court	Total REE	Average	Minimum	Maximum
Sample ID	Coutl	(mg/kg)	REE	REE	REE
BTL-WTP#2	1.38	70.01	4.38	0.16	19.29
BTL-WTP#4	1.34	55.02	3.44	0.14	15.41

Table 3-6. Butte operations, Butte treatment lagoons—rare earth element and germanium statistics.

В	utte Treati	ment Lago	on Solids (A	LS) Statistics	;
Ćamala ID	Court	Total REE	Average	Minimum	Maximum
Sample ID	Coutl	(mg/kg)	REE	REE	REE
BTL-WTP#2	0.13	30.34	1.90	0.06	9.40
BTL-WTP#4	0.13	31.28	1.96	0.07	9.90

concentrations.
germanium c
t and g
ement
h ele
eartl
rare e
lagoons-
treatment
Butte
operations,
Butte
3-7.
Table ;

	Nd Pr Sm Sc	(mg/kg) (mg/kg) (mg/kg) (mg/kg)	12.169 2.467 2.611 2.444	6.433 1.624 1.599 1.775
	e	(mg/kg)	10.319	8.568
	Gd	(mg/kg)	19.291	15.409
	B	(mg/kg)	12.948	12.881
Is (WVU)	Ce	(mg/kg)	0.889	0.837
oon Solid	٩٨	(mg/kg)	0.17	0.142
nent Lago	Y	(mg/k	0.324	0.288
te Treatm	Щ	(mg/kg)	0.161	0.158
Butte	Tb	(mg/kg)	0.371	0.361
	щ	(mg/kg)	2.486	1.831
	Ηο	(mg/kg)	0.569	0.352
	Ę	(mg/kg)	1.138	1.096
	9	(mg/kg)	1.651	1.662
	Ge	(mg/kg)	<0.032	<0.032
	Comolo ID	טו שוקווופכ	BTL-WTP#2	BTL-WTP#4

		U	mg/kg)		
		S	(mg	-	1
		Sm	(mg/kg)	0.7	0.58
		Pr	(mg/kg)	0.97	1.02
		ΡN	((mg/kg	3.3	3.8
		e	(mg/kg)	5.1	5.2
		Gd	(mg/kg)	0.78	0.89
÷		Э	(mg/kg)	0.16	0.14
earth element and germanium concentra-	(SLIS) si	e	(mg/kg)	9.4	9.9
	t Lagoon Solids (ALS)	γb	(mg/kg)	0.41	0.45
linu ger	entLag	۲	(mg/k	6.9	6.6
ופוופוו מ	Butte Treatment	щ	(mg/kg)	0.07	0.07
ם במוחו ם	Butt	Тb	(mg/kg)	0.12	0.14
010		з	(mg/kg)	0.06	0.07
1011110		위	(mg/kg)	0.16	0.17
וורס וו סמוו		Ъ	(mg/kg)	0.72 0.49	0.46
מווסווס, הר		2	(mg/kg)	0.72	0.79 0.46
מווה טרטונ		Ge	(mg/kg)	<0.5	<0.5
ומאוב ט-ט. בעווב טרכומוטווס, בעווב ווכמוווכווו ומטטווס-רומוב		Common	חושולווופכ	BTL-WTP#2	BTL-WTP#4

						Montana		rces Mill	Resources Mill Operations	SU								
Consider ID	ઝ	Ŋ	Ъ	ч	Э	₽	Ę	7	ď	ප	3	Gd	Ч	PN		Pr	Sm	S
ui aidmec	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	g) (mg/kg)	g) (mg/kg)	g) (mg/kg)	() (mg/kg)	() (mg/kg)	() (mg/kg)	(g) (mg/kg)	_	(mg/kg) (m	(mg/kg) (n	(mg/kg)
Copper Comp Jan-Mar 22	0.9	1.45	0.97	0.3	0.18	0.23	0.13	1.03	8.9	26.9	0.34	1.52	14	11.2		3.12 2	2.14	1.1
Copper Comp Apr-Jun 22	0.5	1.22	0.74	0.23	0.11	0.19	0.09	0.69	6.3	21	0.25	1.2	10.6	8.5		2.38 1	1.58	1
Copper Comp Jul-Sep 22	0.5	1.07	0.65	0.21	0.1	0.17	0.1	0.67	6.8	20.4	0.33	1.26	10	8.2		2.34 1	1.42	1.1
Copper Comp Jan 2023	40.5	1.13	0.8	0.26	0.13	0.19	0.13	0.82	7.8	21.5	0.31	1.19	10.7	8.6		2.39 1	1.58	2
Copper Comp Feb 2023	0.5	1.19	0.74	0.25	0.11	0.19	0.12	0.75	7.9	20.6	0.29	1.19	10.2	8.9		2.34 1	1.48	1.3
Mill Feed Aug 22	1.5	3.58	2.21	0.7	0.29	0.65	0.3	2.15	19.3	72.8	1.13	3.95	37.8	38.6		8.11 5	5.08	10.6
Mill Feed Sept 22	1.3	3.16	1.88	0.67	0.3	0.56	0.28	1.79	19.1	9.69	0.97	3.67	35.8	28.4		7.62 4	4.71	12.3
Mill Feed Oct 22	1.6	3.75	2.25	0.72	0.35	9.0	0.32	2.07	20.3	70.7	0.97	4.19	36.8	27.1		7.77 4	4.95	12
Mill Feed Dec 22	13	3.69	2.14	0.69	0.39	0.59	0.29	2.07	19.6	70.7	0.92	4.01	37.8	27		7.89 4	4.99	115
Moly Comp Sept 22	40.5	0.46	0.28	0.09	0.02	0.08	0.04	0.32	2.4	8.5	0.13	0.45	4.2	3.4		0.91	0.5	4
Moly Comp Oct 22	40.5	0.63	0.29	0.1	0.04	0.1	0.05	0.3	3.4	9.7	0.19	0.48	4.9	4.1		1.09 0	0.91	4
Maly Comp Nov 22	40.5	0.49	0.28	0.1	0.05	0.1	0.04	0.36	3.1	7.7	0.15	0.61	4	3.2		0.86 0	0.65	4
Moly Comp Dec 22	40.5	0.54	0.33	0.1	0.04	0.1	0.05	0.26	2.9	9.2	0.13	0.5	4.7	3.4		1.02 0	0.67	4
Moly Comp Jan 2023	¢0.5	0.52	0.3	0.1	0.04	0.07	0.05	0.31	3	7.2	0.1	0.48	3.8	3.1		0.81 0	0.62	4
Moly Comp Feb 2023	40.5	0.47	0.35	0.12	0.05	0.07	0.05	0.28	3.6	8	0.12	0.49	4.2	3.2		0.88 0	0.68	4
Tailings Aug 22	1.6	3.25	2.19	0.75	0.27	0.56	0.32	2.24	17.7	69.4	0.94	4.05	37.2	Z	6	7.79 4	4.91	10.1
Tailings Sept 22	1.4	3.24	2.01	0.72	0.33	0.56	0.29	2.1	18.6	71.8	0.98	4.17	37.2	27.9		7.99 4	4.67	12.7
Tailings Oct 22	13	3.27	2.15	0.69	0.34	0.59	0.26	1.99	18.6	68.3	0.9	3.86	36.7	25.6		7.65 4	4.55	117
Tailings Nov 22	1.4	3.65	21	0.72	0.32	0.58	0.3	2.16	18.4	71.5	0.97	4.23	37.7	26.5	_	7.97 4	4.73	11
Tailings Dec 22	1.4	3.71	2.01	0.75	0.29	0.62	0.29	2.01	18.9	68.2	1.09	4.12	36.4	27	_	7.78 4	4.95	111
Total Tail Jan 2023	1.5	3	1.84	0.67	0.35	0.52	0.25	1.88	17.4	59.6	0.89	3.33	30.1	24.	1	6.7 4	4.32	13
Total Tail Feb 2023	1.4	3.68	1.99	0.71	0.32	0.63	0.32	2.16	213	65.6	1.11	3.92	33.1	8	2	7.24 4	4.48	9.4
Table 3-10 Butte operations. Horseshoe Bend Water Treatment Plant—rare earth element and germanium concentrations	ons Hor	echoes	Bend W	ater Tre	atment	Plant	rare ea	rth elen	hent and	derman	ium con	centratic	suc					
							HsB /	HsB Aqueous		0								
OI - James		3	6	Er	우	Э	₽	Tm	Y	Чb	Ce	Eu 6	g	el	PN	٩r	Sm	Sc
UI alduec		(hg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L) (I	(Hg/L) (F	(µg/l) (µ	(μg/L) (μ	(μg/L) (μ	(µg/L) ((µg/L)	(µg/L)	(µg/L)	(µg/L)
1st Stage Sludge Decant-HsB-Tot. Rec.	Tot. Rec.	<32.00	0.121	0.061	0.018	⊲0.002	0.014	⊲0.002	0.026	1.316 2	2.743 0	0.02 0.3	0.197 1.	1.808 (0.828	0.202	0.128	0.045
2nd Stage Sludge Decant-HsB-Tot. Rec.	Tot. Rec.	⊲32.00	≤0.004	40.004	⊲0.002	<0.002	<0.002	⊲0.002	<0.004 <	<0.004 <(<0.008 <0	<0.003 <0.	<0.003 <0	<0.003	<0.008	≤0.003	40.004	<0.037

						HsB A	HsB Aqueous										
Commelo ID	Ge	2	Ъ	РH	в	₽	Tm	×	γp	Ce	E	g	г	PN	Pr	Sm	Sc
טו שוקווופנ	(µg/L)	(Hg/L)	(Hg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/l)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
1st Stage Sludge Decant-HsB-Tot. Rec.	⊲32.00	0.121	0.061	0.018	<0.002	0.014	⊲0.002	0.026	1.316	2.743	0.02	0.197	1.808	0.828	0.202	0.128	0.045
2nd Stage Sludge Decant-HsB-Tot. Rec.	<32.00	⊲0.004	⊲0.004	⊲0.002	⊲0.002	⊲0.002	<0.002	<0.004	<0.004	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003	⊲0.004	<0.037
HsB	<32.00	62.192	38.983	12.796	5.278	9.501	5.366	34.967	351.652	304.768	9.815	57.277	80.776	164.058	35.823	41.847	6.322
HsB 5/23/2023	⊲32.00	70.658	44.369	14.906	6.04	10.788	6.134	39.584	394.23	319.955	11.212	65.509	85.25	189.414	38.503	47.197	7.078
HsB Dissolved	⊲32.00	65.868	41.076	13.601	5.4	9.992	5.614	36.281	393.659	309.867	10.636	62.445	82.742	180.573	36.669	45.389	8.782
HsB Plant Influent, BP	⊲32.00	<32.00 217.099 133.113	133.113	43.687	17.519	33.42	18.192	121.43	1283.2	1228.24	35.928	207.669 324.773		573.827	126.198	141.993	27.55
HsB-total recov	NA	89.656	55.09	17.878	7.392	13.544	10.206	67.85	486.803	450.468	18.768	86.212	115.53	340.352	70.865	62.242	14.876
HsB-total recov	NA	117.358 72.801		23.945	9.892	17.746	7.702	51.119	671.703	576.174	14.387	108.924 143.197		269.398	54.407	79.622	9.417
HsB-WTR Stage 1 Diss	23.10	0.233	0.115	0.049	⊲0.002	0.047	0.013	0.043	1.901	8.953	0.064	0.437	5.574	2.301	0.635	0.289	0.061
HsB-WTR Stage 1-Tot. Recov	22.20	0.438	0.246	0.093	0.025	0.08	0.032	0.174	3.06	9.876	0.102	0.627	5.723	2.71	0.741	0.47	0.109
HsB-WTR Stage 1-Tot. Recov, Jan. Comp	16.70	2.439	1.433	0.488	0.183	0.396	0.196	1.232	15.251	24.439	0.45	2.614	10.981	8.826	2.098	1.785	0.352
HsB-WTR Stage 2 Diss	26.80	⊲0.004	≤0.004	⊲0.002	⊲0.002	⊲0.002	<0.002	<0.004	<0.004	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003	⊲0.004	<0.037
HsB-WTR Stage 2 Tot. Recov	29.40	<0.004	<0.004	0.002	⊲0.002	⊲0.002	<0.002	<0.004	0.053	0.102	<0.003	<0.003	0.051	0.037	<0.003	≤0.004	<0.037

Montana	Resources	Mill Ope	rations Stat	tistics	
Cample ID	Coutl	Total	Average	Minimum	Maximum
Sample ID	Couli	REE	REE	REE	REE
Copper Comp Jan-Mar 22	0.81	74.41	4.38	0.13	26.90
Copper Comp Apr-Jun 22	0.78	56.58	3.33	0.09	21.00
Copper Comp Jul-Sep 22	0.80	55.32	3.25	0.10	20.40
Copper Comp Jan 2023	0.82	59.53	3.72	0.13	21.50
Copper Comp Feb 2023	0.88	58.05	3.41	0.11	20.60
Mill Feed Aug 22	0.73	198.75	11.69	0.29	72.80
Mill Feed Sept 22	0.74	192.11	11.30	0.28	69.60
Mill Feed Oct 22	0.74	196.44	11.56	0.32	70.70
Mill Feed Dec 22	0.73	195.57	11.50	0.29	70.70
Moly Comp Sept 22	0.75	21.78	1.45	0.02	8.50
Moly Comp Oct 22	0.85	26.28	1.75	0.04	9.70
Moly Comp Nov 22	0.89	21.69	1.45	0.04	7.70
Moly Comp Dec 22	0.77	23.94	1.60	0.04	9.20
Moly Comp Jan 2023	0.92	20.50	1.37	0.04	7.20
Moly Comp Feb 2023	0.92	22.56	1.50	0.05	8.00
Tailings Aug 22	0.69	189.17	11.13	0.27	69.40
Tailings Sept 22	0.71	196.66	11.57	0.29	71.80
Tailings Oct 22	0.71	188.45	11.09	0.26	68.30
Tailings Nov 22	0.70	194.23	11.43	0.30	71.50
Tailings Dec 22	0.75	190.62	11.21	0.29	68.20
Total Tail Jan 2023	0.76	169.45	9.97	0.25	59.60
Total Tail Feb 2023	0.80	183.86	10.82	0.32	65.60

Table 3-11. Butte operations, Montana Resources mill—Rare earth element and germanium statistics.

Table 3-12. Butte operations, Horseshoe Bend Water Treatment Plant—rare earth element and germanium statistics.

HsB /	Aqueous S	tatistics			
Sample ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couti	(µg/L)	REE	REE	REE
1st Stage Sludge Decant-HsB-Tot. Rec.	0.00	7.53	0.54	0.01	2.74
2nd Stage Sludge Decant-HsB-Tot. Rec.	0.00	0.00	0.00	0.00	0.00
HsB	1.94	1,221.42	76.34	5.28	351.65
HsB 5/23/2023	2.08	1,350.83	84.43	6.04	394.23
HsB Dissolved	2.10	1,308.59	81.79	5.40	393.66
HsB Plant Influent, BP	1.74	4,533.83	283.36	17.52	1283.20
HsB-total recov	2.00	1,907.73	119.23	7.39	486.80
HsB-total recov	1.92	2,227.79	139.24	7.70	671.70
HsB-WTR Stage 1 Diss	0.00	43.82	2.74	0.01	23.10
HsB-WTR Stage 1-Tot. Recov	0.66	46.71	2.75	0.03	22.20
HsB-WTR Stage 1-Tot. Recov, Jan. Comp	1.14	89.86	5.29	0.18	24.44
HsB-WTR Stage 2 Diss	0.00	26.80	26.80	26.80	26.80
HsB-WTR Stage 2 Tot. Recov	0.00	29.65	4.94	0.00	29.40

			HsB:	HsB Sludge									
	Er Ho	З	Tb	Tm	Y	٩٨	e	Eu	ß	La	PN	Pr	Sm
(mg/kg) (mg/kg)	(mg/	kg) (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) (mg/kg)
0.7 0.	0.36 0.16	5 0.05	0.12	0.07	0.43	6.1	11.2	0.18	0.82	6.1	4.1	0.95	0.75
Ħ	18.8 6.76	5 2.42	5.2	2.76	17.4	213	187.5	5.51	31.4	52.3	90.5	20.4	22.9
32.8 19.55	55 6.96	5 2.82	5.22	2.74	17.7	208	191.5	5.52	30.9	49.1	86	19.95	218
29.7 17.9	6.25	5 2.5	4.69	2.67	16.15	197	176.5	5.19	27.4	47.5	81.2	18.4	20.3
20.932 13.029	9 3.227	7 19.122	4.29	1.853	3.119	1.811	12.172	112.699 101.543	101.543	26.149	50.41	11.347	13.14
42.146 25.415	5 6.721	1 40.465	8.381	3.304	6.333	3.391	22.755 284.469 216.956 56.469	284.469	216.956	56.469	124.8	25.537	29.814

Table 3-14. Butte operations, Berkeley Pit-rare earth element and germanium concentrations.

							Berk	Berkeley Pit									
Ol olomed	11/201/02	ð	Ъ	위	З	đ	Ę	Y	γb	ت ن	Eu	Gd	гı	PN	Pr	Sm	Sc
טו בוקווואנ	טכ (אצ/ גן	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
BP-4 ft, Diss.	NA	208.86	130.79	43.67	18.15	33.47	18.62	114.43	NA	1279.31	35.09	204.97	343.65	565.21	131.14	136.13	NA
BP-4 ft, Tot. Recov.	<32.00	263.17	161.54	56.54	23.22	41.06	23.71	147.19	1100.79	1223.62	40.25	241.62	332.33	579.94	132.2	155.08	24.78
BP-4 REE dissolved	<32.00	263.17	161.54	56.54	23.22	41.06	23.71	147.19	1100.79	1223.62	40.25	241.62	332.33	579.94	132.2	155.08	24.78
BP-4 REE total recov	<32.00	207.34	126.98	44.33	17.71	32.6	18.37	113.24	1031.7	1099.71	32.99	195.16	302.25	548.48	116.26	129.43	21.81
BP-26 ft, Diss.	NA	216.45	137.2	46	18.2	35.55	19.2	119.15	NA	1370.55	36.2	209.35	366.05	587.65	140.55	145.2	NA
BP-26 ft, Tot. Recov.	NA	219.18	137.69	46.28	18.68	35.61	19.49	119.83	NA	1346.76	36.25	210.89	361.8	585.51	138.56	142.51	NA
BP-150 ft, Diss.	NA	216.6	132.35	45.15	17.95	34.25	18.6	117.55	NA	1329.3	36.45	204.95	352.6	577.7	137.55	142.95	NA
BP-150 ft, Tot. Recov.	NA	216.4	137.75	45.15	18.8	34.95	19.45	117.3	NA	1336.35	35.45	210.65	355.95	578.45	137.05	141.3	NA
BP-166 ft	NA	248.18	152.99	50.3	20.56	37.4	21.14	137.67	1440.83	1353.59	40.51	239.52	357.08	649.29	139.05	161.07	32.17
BP-373 REE dissolved	<32.00	250.79	155.4	54.46	22.29	39.1	22.83	141.44	1015.65	1133.13	38.02	228.44	302.61	589.86	123.77	146.97	24.49
BP-373 REE total recov	<32.00	133.84	81.521	28.9	11.71	21.09	11.89	74.081	592.987	647.621	20.87	122.94	173.8	309.81	70.715	80.303	13.88
BP-394-Tot. Rec.	<32.00		244.55 148.72	50.72	20.08	37.47	20.44	128.7	1370.28	1283.46	39.22	27.72	350.15	606.63	135.96	156.92	29.93
BP-398-Tot. Rec.	<32.00	245.2	245.2 149.33	50.03	19.68	37.58	20	126.64	1427.74	1252.14	39.05	227.32	334.58	598	132.99	157.06	27.11
BP-820 ft, Diss.	NA	219.4	132.3	45.9	17.45	33.55	18.65	118.45	NA	1301.1	36.7	206.95	350.3	581.5	133.3	143.8	NA
BP-820 ft, Tot. Recov.	NA	222.31	222.31 141.29	46.46	18.79	35.84	19.89	120.81	NA	1356.56	36.48	214.14	363.2	596.12	139.72	145.41	NA

Duaime and others, 2024

and germanium statistics.					
HsB	Sludge Sta	atistics			
formula ID	Court	Total REE	Average	Minimum	Maximum
Sample ID	Coutl	(mg/kg)	REE	REE	REE
HsB-Stage 1	0.97	32.69	2.04	0.05	11.20
HsB Stage 2	1.68	712.85	41.93	0.60	213.00
HsB-WTP-Stage1, BP, Jan 23	1.61	705.06	44.07	2.74	208.00
HsB-WTP-Stage1 Feb 23	1.64	657.45	41.09	2.50	197.00
HsB 1st stage clarifier, HsB	1.86	397.82	24.86	1.81	112.70
HsB 1st stage clarifier, HsB 5/23/2023	2.11	902.47	56.40	3.30	284.47

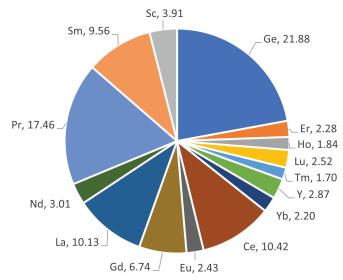
Table 3-15. Butte operations, Horseshoe Bend Water Treatment Plant sludge—rare earth element and germanium statistics.

Table 3-16. Butte operations, Berkeley Pit—rare earth element and germanium statistics.

	Berke	ley Pit Stat	istics		
Sample ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couti	(µg/L)	REE	REE	REE
BP-4 ft, Diss.	0.72	3,263.49	233.11	18.15	1279.31
BP-4 ft,Tot. Recov.	0.72	4,547.04	284.19	23.22	1223.62
BP-4 REE dissolved	1.65	4,547.04	284.19	23.22	1223.62
BP-4 REE total recov	1.65	4,038.35	252.40	17.71	1099.71
BP-26 ft, Diss.	0.70	3,447.30	246.24	18.20	1370.55
BP-26 ft, Tot. Recov.	0.71	3,419.04	244.22	18.68	1346.76
BP-150ft, Diss.	0.71	3,363.95	240.28	17.95	1329.30
BP-150ft, Tot. Recov.	0.71	3,385.00	241.79	18.80	1336.35
BP-166 ft	1.78	5,081.34	317.58	20.56	1440.83
BP-373 REE dissolved	1.69	4,289.24	268.08	22.29	1133.13
BP-373 REE total recov	1.66	2,395.95	149.75	11.71	647.62
BP-394-Tot. Rec.	1.78	4,850.96	303.19	20.08	1370.28
BP-398-Tot. Rec.	1.86	4,844.43	302.78	19.68	1427.74
BP-820ft, Diss.	0.73	3,339.35	238.53	17.45	1301.10
BP-820ft, Tot. Recov.	0.72	3,457.03	246.93	18.79	1356.56

3.2 Anaconda Operations

The town of Anaconda, Montana was founded by Marcus Daly on June 25, 1883 for the purpose of constructing a smelter to process ore being mined in Butte, 26 mi to the east (fig. 3-4, Morris, 1997). The mining company [Anaconda Copper Mining Company (ACM)] operated by Daly and his partners began construction of the first concentrator and smelter on the north side of Warm Springs Creek in 1883; the facility was put into operation in 1884 as the Upper Works. As ore production increased from ACM mines in Butte, Daly built an additional smelter in 1897, which became known as the Lower Works. Byproducts of the smelting process were slimes, slag, tailings, and airborne emissions of gases from the smelter stack. Tailings were sluiced to a series of ponds north of the town of Opportunity (which became known as the Opportunity Ponds), and beginning in 1947, to two ponds just below the concentrator, known as the Anaconda


Ponds (Shovers and others, 1991). The Anaconda Smelter continued to operate until its closure in 1980.

The Anaconda Smelter Superfund site was a big target for this project due to its ease of access and large scale. An estimated 25 million cubic yards of slag now cover the area around the smelter. Most of the waste piles are capped with topsoil, and samples were taken as more were being covered. A preliminary set of eight samples was taken from random points across the uncapped piles. These samples were sent to ALS for assay (fig. 3-5, tables 3-17, 3-18).

The Opportunity Ponds are also nearby and are a repository for 130 million cubic yards of tailings and other wastes from the smelter. Atlantic Richfield (AR) and its contractors provided splits of soil borings taken from various locations across the ponds. From these borings, 13 samples were sent to ALS for assay (tables 3-19, 3-20).

Figure 3-4. An aerial view of the Anaconda Smelter and operations, as well as a pile of the black slag.

Anaconda Slag % REE Composition

Figure 3-5. REE concentration percentages for every sample taken at the Anaconda slag piles. Elements with less than 1% concentration were removed.

		(g								
	Sc	(mg/kg)	9	6.5	6.1	5.5	2	5.2	6	7.1
	Sm	(mg/kg)	3.45	2.75	40	2.83	17.6	2.62	51	2.86
	Pr	(mg/kg)	5.04	45.6	21.1	39.6	2.81	36.3	28.2	46.2
	PN	(mg/kg)	19.5	0.73	0.67	0.76	14.6	0.77	0.93	0.79
	еl	(mg/kg)	27.5	25.9	2.47	20.6	4.03	19.6	3.53	26.8
	Bd	(mg/kg)	2.91	19.7	3.19	16.5	3.19	17.3	4.06	20
	E	(mg/kg)	0.8	5.17	4.48	4.65	0.68	4.31	5.96	5.26
	Сe	(mg/kg)	45.6	3.65	17	3.37	34.2	3.33	23.4	3.66
a Slag	Υb	(mg/kg)	16.2	2.3	1.18	2.71	0.54	0.25	2.16	2.94
Anaconada Slag	Y	(mg/kg)	1.41	0.24	0.45	16.9	15.2	0.46	0.73	1.62
	Tm	(mg/kg)	0.22	0.42	0.37	1.47	1.51	0.52	0.58	16.8
	Тb	(mg/kg)	0.44	0.53	0.2	0.22	0.21	0.21	0.29	0.21
	З	(mg/kg)	0.21	0.23	12.8	0.56	0.22	14.4	3.49	0.6
	Но	(mg/kg)	0.55	16.4	1.18	0.42	1.49	1.45	1.76	0.44
	Er	(mg/kg)	1.6	1.45	2.19	0.23	2.54	1.54	19.6	0.23
	Dy	(mg/kg)	2.65	1.52	0.21	1.64	0.46	2.47	0.31	1.61
	Ge	(mg/kg)	50.1	42.1	88.3	14.5	12.5	9.4	21.9	43
	Ol olomoj	ui aidiibe	AR-Slag 1	AR-Slag 2	AR-Slag 3	AR-Slag 4	AR-Slag 5	AR-Slag 6	AR-Slag 7	AR-Slag 8

Table 3-18. Anaconda operations, Anaconda slag—rare earth	
element and germanium statistics.	

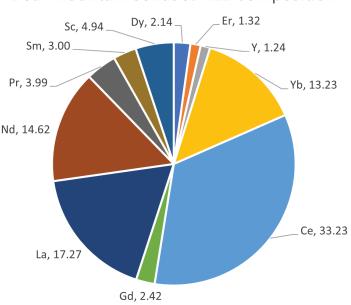
		Anaconda	Slag Statisti	CS	
Sample	Coutl	Total REE	Average	Minimum	Maximum
ID	Couti	(mg/kg)	REE	REE	REE
AR-Slag 1	0.86	184.18	10.83	0.21	50.10
AR-Slag 2	0.85	175.19	10.31	0.23	45.60
AR-Slag 3	0.81	201.89	11.88	0.20	88.30
AR-Slag 4	0.92	132.46	7.79	0.22	39.60
AR-Slag 5	0.95	116.78	6.87	0.21	34.20
AR-Slag 6	0.95	120.13	7.07	0.21	36.30
AR-Slag 7	0.93	176.90	10.41	0.29	51.00
AR-Slag 8	0.87	180.12	10.60	0.21	46.20

Table 3-19. Anaconda operations, Opportunity ponds—rare earth element and germanium statistics.

	Орро	rtunity Pon	ds Statisti	cs	
Sample ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couli	(mg/kg)	REE	REE	REE
BH-01 2.5-3	0.74	208.50	12.26	0.22	72.90
BH-05 10.5-11.0	0.78	181.46	10.67	0.27	61.90
BH-05 11-12	0.84	139.35	8.20	0.25	41.10
BH-07 7.5-8.0	0.84	185.85	10.93	0.21	54.70
BH-08 11.5-12.0	0.74	134.51	7.91	0.15	44.90
BH-08 12.5-13	0.85	127.21	7.48	0.19	37.50
BH-08 13.0-14.0	0.87	120.34	7.08	0.18	36.60
BH-11 5.0-7.0	0.81	127.71	7.51	0.20	43.80
BH-11 7.5-9.0	0.76	198.73	11.69	0.24	69.20
BH-13 11.0-11.5	0.80	224.09	13.18	0.30	76.00
BH-13 11.5-12	0.77	186.23	10.95	0.26	64.70
BH-15 15-16.2	0.73	106.71	6.28	0.14	36.30
BH-17 11-12	0.78	149.38	8.79	0.23	50.30
BH-21 0-5	0.89	166.92	9.82	0.24	55.40
BH-21 5-10	0.87	171.48	10.09	0.21	53.70
BH-21 10-15	0.84	155.68	9.16	0.22	50.10
BH-21 15-20	0.89	139.83	8.23	0.21	43.00
BH-21 20-25	0.81	128.30	7.55	0.22	41.40
BH-21 25-27	0.81	162.91	9.58	0.21	53.20

Table 3-17. Anaconda operations, Anaconda slag—rare earth element and germanium concentrations.

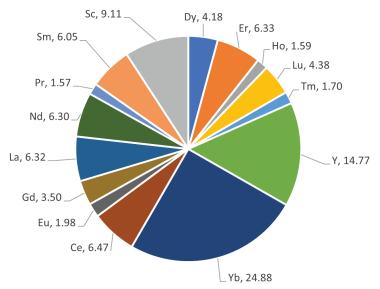
							Oppo	Opportunity Ponds	onds								
Counts ID	g	DV	ц	θН	з	Ъb	Щ	7	ď	e	Э	Вd	q	PN	Pr	Sm	Sc
UI aldmec	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)							
BH-01 2.5-3	3.7	3.05	1.52	0.57	0.26	0.54	0.22	1.6	15.5	72.9	1.2	4.23	37.4	34	8.96	5.85	17
BH-05 10.5-11.0	3.6	3.41	1.73	0.62	0.27	0.58	0.28	1.8	17.1	61.9	1.14	3.69	31.7	26.7	7.27	5.17	14.5
BH-05 11-12	15.8	2.26	1.43	0.51	0.26	0.41	0.25	1.54	14	41.1	0.67	2.59	22	17.7	4.8	3.33	10.7
BH-07 7.5-8.0	14.1	2.44	1.35	0.48	0.21	0.43	0.21	1.4	16.8	54.7	0.86	3.09	38.5	26.2	7.36	4.22	13.5
BH-08 11.5-12.0	7	2.01	1.12	0.4	0.22	0.39	0.15	1.14	11.6	44.9	0.62	2.3	23	18.7	5.26	3.4	12.3
BH-08 12.5-13	14.1	2.22	1.28	0.46	0.22	0.4	0.19	1.33	12.6	37.5	0.76	2.41	18.6	16.5	4.53	3.41	10.7
BH-08 13.0-14.0	9.8	1.98	1.18	0.38	0.2	0.38	0.18	1.23	12.2	36.6	0.75	2.44	18.5	16.9	4.34	3.08	10.2
BH-115.0-7.0	4.6	2.22	1.3	0.47	0.22	0.39	0.2	1.26	14.2	43.8	0.66	2.57	22.4	18.6	4.92	3.2	6.7
BH-117.5-9.0	3.3	3.37	1.75	0.66	0.27	0.61	0.24	1.57	17.6	69.2	1.01	4.01	34.1	30	7.78	5.56	17.7
BH-13 11.0-11.5	4.5	3.96	2.02	0.74	0.39	0.67	0.3	2.12	21.4	76	1.31	4.76	37.3	34	8.92	6.2	19.5
BH-13 11.5-12	3.7	2.86	1.78	0.61	0.26	0.49	0.28	1.6	17.7	64.7	0.94	3.26	32.3	28	7.51	4.84	15.4
BH-15 15-16.2	4.6	1.46	0.84	0.34	0.17	0.26	0.14	0.99	9.5	36.3	0.47	1.66	19.1	15.3	4.23	2.55	8.8
BH-17 11-12	2.9	2.62	1.42	0.44	0.24	0.44	0.23	1.51	14.4	50.3	0.89	3.11	25.7	21.5	5.89	3.99	13.8
BH-210-5	2.3	3.05	1.76	0.65	0.24	0.55	0.28	1.56	19.1	55.4	0.98	3.82	27.9	26.1	6.94	4.89	11.4
BH-215-10	9	2.77	1.62	0.55	0.21	0.49	0.23	1.52	18.7	53.7	1.02	3.65	31	24.3	6.86	4.56	14.3
BH-21 10-15	4.9	2.46	1.42	0.51	0.22	0.39	0.22	1.54	16.9	50.1	0.85	3.09	28.1	22.3	6.11	4.17	12.4
BH-21 15-20	4.4	2.23	1.34	0.5	0.21	0.44	0.22	1.46	16	43	0.72	2.78	25.1	19.7	5.58	3.85	12.3
BH-21 20-25	5.6	2.25	1.14	0.41	0.23	0.36	0.22	1.28	13	41.4	0.8	2.62	21.9	17.7	4.78	3.21	11.4
BH-21 25-27	7.5	2.77	1.7	0.55	0.26	0.49	0.21	1.55	16.6	53.2	0.88	3.19	27	22.7	6.09	4.02	14.2


Table 3-20. Anaconda operations, Opportunity ponds-rare earth element and germanium concentrations.

3.3 Beal Mountain Mine

The Beal Mountain Mine is located at the headwaters of German Gulch Creek in the Pioneer Mountains, in Silver Bow County, Montana (fig. 3-6). The mine began extracting gold and silver ore in 1988. The mine consisted of two open pits, and since its closure in 1999 has left behind several waste rock piles and a large heap leach pad. The heap leach pad covers approximately 77 acres and stores an estimated 14,807,100 tons of spent ore (Tetra Tech, 2010). The waste rock piles have since been covered to prevent the generation of acid mine drainage. The leach pad has been covered but still generates drainage that is treated at an onsite water treatment plant. Due to the varied forms of mine waste and its water treatment plant, the site was targeted for rare earth element sampling. Several samples have been collected from the water treatment plant, including aqueous and sludge samples. MBMG field crew collected three samples from the water treatment plant, and one sample from a drain designed to catch water from a waste rock pile. The sampling was conducted on August 2nd, 2023. Data from collected samples are in figures 3-7 and 3-8, and tables 3-21 through 3-24.

Figure 3-6. Inside the Beal Mountain Water Treatment plant.



Beal Mountain Solids % REE Composition

Figure 3-8. REE concentration percentages for every aqueous sample taken at Beal Mountain. Elements with less than 1% concentration were removed.

Figure 3-7. REE concentration percentages for every solid sample taken at Beal Mountain. Elements with less than 1% concentration were removed.

Beal Mountain Aqueous % REE Composition

					Be	al Mou	ntain (A	Beal Mountain (Aqueous)	5)								
Cample ID	g	2	ᆸ	우	З	Tb	д	7	٩Y	٣	æ	gd	P	PN	Pr	Sm	Sc
sample ID	(µg/L)	(hg/L) (hg/L) (hg/L)	_	(µg/L)	(µg/l)	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(אפ/ר) (אפ/ר) (אפ/ר) (אפ/ר) (אפ/ר) (אפ/ר) (אפ/ר) (אפ/ר) (אפ/ר)	(µg/L)	(µg/L)	(Hg/L)	(µg/L)	(Hg/L)	(µg/l)	(µg/L)
Beal Effluent-Diss	<32.00	<32.00 <0.004 <0.004 <0.002	<0.004		<0.002	<0.002	<0.002	<0.002 <0.002 <0.004 <0.004 <0.008 <0.003 <0.003 <0.003 <0.003 <0.008	<0.004	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003	<0.004 <	⊲0.037
Beal Effluent-TR	<32.00	<32.00 <0.004 <0.004 <0.002	<0.004	_	<0.002	<0.002	<0.002	<0.002 <0.002 <0.002 <0.004 <0.004 <0.008 <0.008 <0.003 <0.003 <0.003 <0.003 <0.008	<0.004	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003	<0.004 <	⊲0.037
Beal Influent-Diss	<32.00	<32.00 0.119 0.148 0.041	0.148		0.111	0.028	0.043	0.366	0.485	0.13 0.063	0.063	0.092 0.091 0.152	0.091		0.04	0.194	0.169
Beal Influent-TR	<32.00 0.105	0.105	0.169 0.046	0.046	0.11	0.025	0.048	0.348	0.547	0.148	0.065	0.11	0.093	0.141	0.041	0.171	0.146
Beal Reject-Diss	<32.00	<32.00 0.188 0.305 0.077	0.305	_	0.219	0.038	0.086	0.763	1.106	0.269	0.076	0.152	0.132 0.254		0.052	0.276	0.324
Beal Reject-Tot. Rec.	<32.00	<32.00 0.176 0.313 0.067	0.313		0.223	0.033	0.079	0.033 0.079 0.762 1.099	1.099	0.257 0.076 0.121 0.128 0.177 0.047	0.076	0.121	0.128	0.177	0.047	0.225	0.355
Horizontal Drain-HD-9, Diss <32.00 <0.004 <0.004 <0.002	<32.00	<0.004	<0.004		0.002	<0.002	<0.002	0.002 <0.002 <0.002 <0.004 <0.004 <0.008 <0.008 <0.003 <0.003 <0.003 <0.008 <0.008	<0.004	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003		0.095
Horizontal Drain-HD-9, TR	<32.00 <0.004 <0.004 <0.002	<0.004	<0.004		0.002	<0.002	<0.002	0.002 <0.002 <0.002 <0.002 <0.004 0.005 <0.008 <0.003 <0.003 <0.003 <0.008 <0.008 <0.004	0.005	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003		0.092
Horizontal Drain-HD-9, TR	<32.00 <0.004 <0.004 <0.002	<0.004	<0.004		<0.002	<0.002	<0.002	<0.002 <0.002 <0.004 <0.004 <0.008 <0.003 <0.003 <0.003 <0.003 <0.008 <0.008 <0.004	<0.004	<0.008	<0.003	<0.003	<0.003	<0.008	<0.003		0.119
Waste Rock Drain-Diss	<32.00	<32.00 0.019 0.012 0.004	0.012		<0.002	0.002	<0.002	0.002 <0.002 0.007 0.266		0.057 0.006		0.022	0.271	0.1	0.027	0.014	0.053
Waste Rock Drain-TR	<32.00	<32.00 0.034 0.024 0.009	0.024		0.005	0.007	0.004	0.005 0.007 0.004 0.018 0.306 0.131 0.017 0.039 0.254 0.141 0.034 0.047 0.043	0.306	0.131	0.017	0.039	0.254	0.141	0.034	0.047	0.043

Table 3-21. Beal Mountain, aqueous samples—rare earth element and germanium concentrations.

						Beal N	lountain l	Mine (Sol	(Solids)								
01 olome2	g	2	Ъ	Р	з	đ	щ	۲	γp	٣	3	Gd	Р	PN	Pr	Sm	Х
עו בוקווואכ	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)						
Beal Spent Ore A	1.4	3.67	2.26	0.74	0.35	0.64	0.32	2.14	22.8	54.8	0.9	4.03	28.1	24.5	6.57	4.97	8
Beal Spent Ore B	1.5	3.68	2.29	0.76	0.33	0.64	0.35	2.14	22.7	59.5	1.02	4.29	31.3	25.8	7.15	5.35	9
																	l

Table 3-24. Beal Mountain, solid samples—rare earth element and germanium concentrations.

			A		
Beal	Mountain	(Aqueous)	Statistics		
Sample ID	Coutl	Total REE	Average	Minimum	Maximum
Sumple ID	couti	(µg/L)	REE	REE	REE
Beal Effluent-Diss	0.00	0.00	0.00	0.00	0.00
Beal Effluent-TR	2.99	0.00	0.00	0.00	0.00
Beal Influent-Diss	3.06	2.27	0.14	0.03	0.49
Beal Influent-TR	2.99	2.31	0.14	0.03	0.55
Beal Reject-Diss	3.02	4.32	0.27	0.04	1.11
Beal Reject-Tot. Rec.	2.99	4.14	0.26	0.03	1.10
Horizontal Drain-HD-9, Diss	0.00	0.10			
Horizontal Drain-HD-9, TR	0.00	0.10	0.03	0.00	0.09
Horizontal Drain-HD-9, TR	0.00	0.12	0.12	0.12	0.12
Waste Rock Drain-Diss	0.00	0.86	0.06	0.00	0.27
Waste Rock Drain-TR	3.55	1.11	0.07	0.00	0.31

Table 3-22. Beal Mountain, aqueous samples—rare earth element and germanium statistics.

Table 3-23. Beal Mountain,	solid samples-rare	e earth element and	germanium statistics.
Table e Let Bear meandant,	oona oannpioo iait		gonnannann oladolloo.

Beal N	/lountain N	/line (Solid	s) Statistics		
famala ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couti	(mg/kg)	REE	REE	REE
Beal Spent Ore A	0.94	166.19	9.78	0.32	54.80
Beal Spent Ore B	0.89	177.80	10.46	0.33	59.50

3.4 Golden Sunlight Mine

The Golden Sunlight mine sits just northeast of Whitehall, Montana (fig. 3-9) and is owned by the Barrick Gold Corporation (Barrick Gold Corporation, 2022). Mine operations began in 1975, with open pit operations shutting down in 2019. In its 40 yr of production, Golden Sunlight extracted over 3 million oz of gold and generated 23 million tons of tailings. In 2022 a new flotation plant was constructed and is currently reprocessing 2 million tons of tailings a year. Their current tailings reserve and the tailings from the new flotation plant were sampled on January 18, 2023 (fig. 3-10, tables 3-25, 3-26).

Figure 3-9. The pit at the Golden Sunlight Mine.

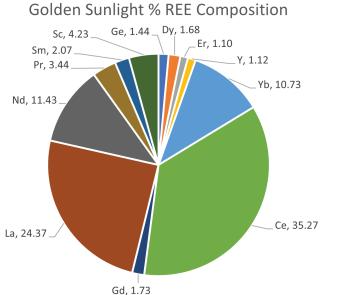


Figure 3-10. REE concentration percentages for every sample taken at Golden Sunlight, including germanium. Elements with less than 1% concentration were removed.

Table 3-25. Golden Sunlight-rare earth e	element and germanium statistics.
--	-----------------------------------

	Go	lden Sunlig	ght Statistic	s	
Comple ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couti	(mg/kg)	REE	REE	REE
GS-Feed-1	0.68	289.70	17.04	0.42	102.50
GS-Feed-2	0.69	279.66	16.45	0.44	98.50
GS-Tailings-1	0.70	279.55	16.44	0.41	98.40
GS-Tailings-2	0.69	269.60	15.86	0.41	95.10

Table 3-26. Golden Sunlight—rare earth element and germanium concentrations.

mg/kg)

mg/kg)

â 10.2

/gu م

> â 9

mg/kg 4 \mathbf{m}

mg/kg) 4.77

mg/kg) 1.24 1.33 1.33 1.17

(mg/kg) ņ ŝ 4

mg/kg 30.9 29.9 30.3 σ

me/ke)

mg/kg) 0.42 0.44 0.41 0.41

mg/kg 0.84

mg/kg

mg/J

mg/J 6

mg/kg)

ഋ

Sample ID

0.46 0.44 0.46 圮

1.04 1.06

3.03 2.99 88 R

4.97

4

4.8

3

P

3 mg

운

Ъ

3.16

3.16 3.11

Golden Sunlight

102. 98 86 ц S

Z 69

Sc

Sm

PQ /g/u 33 31. 32. В.

g

3

교

12.5 10.6 11.7

5.67 5.82 12

82

ŝ

9.08

ŋ

2 6

8

8

m

0.67 0.7

> --

m

4.39 4.65

3.9 4.2

GS-Tailings-1

GS-Feed-2 GS-Feed-1

4

GS-Tailings-

0.7

ď

2 ങ

4 ず

5.1

5.89

9.42 9.77

aj 8

(mg/kg)

mg/kg) 15.25 15.45

mg/kg)

mg/kg)

mg/kg)

mg/kg)

mg/kg)

mg/kg)

mg/kg) 269 283 280 285 274 278

me/ke)

me/ke) 1.74 1.861.98

(me/ke)

me/ke)

me/ke) 4.38 4,48 4.62

mø/kg) 13.25

â 17.45

mg/

(mg/kg)

0.5

Solvay Slag #1 Solvay Slag #2

22 ß 2 ង 2 2

LO LO

83

164 172 51 173

18.2

\$

m

50.4

91.6 91.8

S

8.4 7.9 8.5 8.6

15.8 16.2

00 9 σ

19.15

51.6

12.35

12.1 11.7

88 8 2

N 2 N

8 1.9 1.9

13.75 14.05 80

m m

4.42 4,67

С

す

ä

17.75

Å 0.5

Solvay Slag #6

18

0.7

Solvay Slag #5

Solvay Slag #4

1.881.92

11.9 4

> 2.66 2.74

1.921.95

14.2 14.1

17.85

Å0.5 Å 0.5 Å0.5

18 18

Solvay Slag #3

12

З

2

8

18.55

3.35 3.24 3.44

52.2

8.2 8.3

15.95

88.4 92.1

18.55

3.51 ŝ m

50.3

51

11.95

1.82

ŝ

ß

20.2

15.4

00 88

ŝ 165

168.

ย

3.5 Solvay Phosphate Plant

The Solvay plant was constructed in 1950 as a facility to produce elemental phosphorus (EPA, 2018). The plant was built on a 1.25-mi² site just outside of Ramsay, Montana. When Solvay closed its doors in 1997, a 500,000-gal tank of phosphorus sludge was left behind. Cleanup of the site began in 2004, with a facility to process the leftover sludge being constructed in 2020. The new facility operated using the Mud Still process and as of 2022 was still actively recovering phosphorus.

AR purchased some of the slag material and transported it offsite, where the MBMG collected samples on January 13, 2023. Six samples were collected (fig. 3-11, tables 3-27, 3-28).

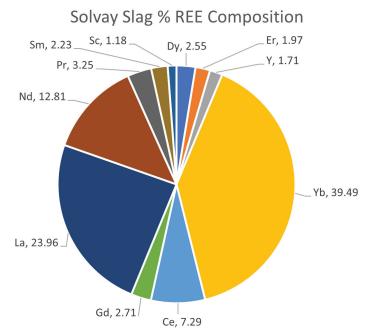


Figure 3-11. REE concentration percentages for every sample taken at the Solvay slag piles. Elements with less than 1% concentration were removed.

Table 3-27. Solvay/Stauffer, Solvay slag—rare earth element and
germanium statistics.

	S	olvay Slag S	Statistics				
Sample ID	Coutl	Total REE	Average	Minimum	Maximum		
Sample ID	Couti	(mg/kg)	REE	REE	REE		
Solvay Slag #1 5.57 693.39 40.79 0.50 269.00							
Solvay Slag #2	5.70	722.22	45.14	1.86	283.00		
Solvay Slag #3	5.66	718.93	44.93	1.95	280.00		
Solvay Slag #4	5.68	730.20	45.64	1.92	285.00		
Solvay Slag #5	5.71	702.09	41.30	0.70	274.00		
Solvay Slag #6	5.67	710.28	44.39	1.82	278.00		

		Sm	1-11-11-1
		Pr	$ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\$
		PN	1
		La	1
		Gd	1-11-11-1
		Eu	1
		e Ce	1
ntrations	ag	γb	Variation of the Annual Variation
m conce	Solvay Sl	Y	1
Jermaniu		Tm	1 1 1 1 1
element and germanium concentrations		ЧL	1
arth elem		Э	Variation of the A
-rare ea		Ч	Variation of the American
vay slag-		Ę	ALL ALLAN
uffer, Sol		λ	Variation of the American
lvay/Staı		Ge	And the state of t
Table 3-28. Solvay/Stauffer, Solvay slag—rare earth		Comula ID	

1	9

3.6 Philipsburg Mining District

The Philipsburg mining district began in the 1860s after quartz was discovered in the area. In the 1880s, rich veins of silver were also discovered and began a renewed rush (Phillipsburg, 2024). In addition to silver and zinc, battery grade manganese dioxide was also mined. The Philipsburg area is home to dozens of mining claims, including the prominent Granite Mountain and Speckled Trout mines. Philipsburg remained a relatively active mining community until the 1980s, when declining prices caused a majority of mines to shut down. On July 13, 2023, 37 samples were collected from around the mining district and sent to both WVU and ALS laboratories for assay. The assay results can be found in figure 3-12 and tables 3-29 through 3-34.

(wvu)—ומופ פמונוו פופווופווו מווט טפוווומוווטווו אמוואווכא		ı german	IUITI SLAUS	sucs.	
Philip:	sburg Area	Philipsburg Area Solids (WVU) Statistics	/U) Statisti	ics	
Comolo ID	100	Total REE	Average	Minimum Maximum	Maximum
ou alduler	COULI	(mg/kg)	REE	REE	REE
2% Mine 1	0.98	39.10	2.44	0.07	12.33
2% Mine 2	0.75	72.94	4.56	0.12	27.57
2% Mine 3	0.80	32.16	2.01	0.06	11.49
Cadgie Taylor Mine 1	1.47	32.66	1.92	0.10	7.48
Cadgie Taylor Mine 2	1.01	40.17	2.51	0.11	12.38
Cadgie Taylor Mine 3	1.15	33.87	2.12	0.07	9.52
Cadgie Taylor Mine 4	1.35	26.13	1.63	0.07	6.80
Mountain Boy Mine 1	0.99	74.94	4.41	0.09	41.61
Mountain Boy Mine 2	1.75	24.29	1.52	0.07	4.69
Porter Mine 1	1.10	23.00	1.35	0.02	5.38
Porter Mine 2	1.28	13.87	0.87	0.02	3.44
Porter Mine 3	1.23	45.80	2.69	0.02	26.59
Shapleigh Mine 1	0.93	26.51	1.66	0.04	7.91
Shapleigh Mine 2	0.67	33.99	2.12	0.08	13.43
Shapleigh Mine 3	1.06	39.42	2.46	0.07	11.72
Shapleigh Mine 4	1.19	28.39	1.77	0.05	7.20

Table 30. Philipsburg mining district, Philipsburg area solids (WVU)—rare earth element and germanium concentrations.

			-		-				5								
						Philip	Philipsburg Area Solids	solids	(NVN)								
Ol alame2	Ge	Dy	Er	Ч	Γ	Tb	Tm	Y	٩٨	లి	Eu	Gd	Р	ΡN	Pr	Sm	Sc
סמווואוב וה	(mg/kg)	(mg/k) ((mg/kg)														
2% Mine 1	<0.032	1.061	0.603	0.348	1.113	0.217	0.073	0.146	0.091	0.542	5.387	12.328	6.064	5.445	1.438	1.232	3.016
2% Mine 2	<0.032	1.833	1.002	0.661	2.046	0.336	0.12	0.297	0.119	0.787	5.911	27.565	13.564	11.856	2.988	2.048	1.807
2% Mine 3	<0.032	0.833	0.45	0.407	0.873	0.157	0.056	0.106	0.061	0.423	3.346	11.485	5.388	4.599	1.205	1.073	1.699
Cadgie Taylor Mine 1	0.991	1.1	0.759	0.303	1.088	0.226	0.111	0.146	0.102	0.759	6.208	7.481	3.052	4.244	0.988	1.059	4.043
Cadgie Taylor Mine 2	<0.032	1.264	0.751	0.54	1.519	0.251	0.113	0.177	0.111	0.697	4.844	12.381	4.812	6.161	1.477	1.474	3.596
Cadgie Taylor Mine 3	<0.032	1.011	0.588	0.182	1.049	0.2	0.072	0.14	0.081	0.514	5.888	9.518	3.569	4.112	0.969	0.921	5.052
Cadgie Taylor Mine 4	<0.032	0.954	0.55	0.244	0.907	0.172	0.067	0.113	0.075	0.53	4.737	6.802	3.091	3.729	0.948	0.772	2.438
Mountain Boy Mine 1	41.607	1.147	0.749	1.206	1.12	0.238	0.094	0.177	0.092	0.664	2.493	10.354	5.525	5.556	1.3	1.187	1.429
Mountain Boy Mine 2	<0.032	1.035	0.552	0.263	0.993	0.2	0.066	0.148	0.074	0.448	4.511	4.689	2.219	3.049	0.714	0.797	4.527
Porter Mine 1	5.383	0.482	0.251	0.105	0.424	0.089	0.023	0.056	0.029	0.194	2.609	4.89	2.466	2.243	0.678	0.492	2.585
Porter Mine 2	<0.032	0.377	0.197	0.089	0.333	0.065	0.021	0.025	0.028	0.175	2.476	3.438	1.538	1.616	0.426	0.392	2.673
Porter Mine 3	26.591	0.456	0.197	0.151	0.676	0.075	0.018	0.053	0.031	0.193	2.583	4.927	2.479	2.997	0.775	0.713	2.886
Shapleigh Mine 1	<0.032	0.661	0.366	0.102	0.474	0.115	0.041	0.067	0.046	0.309	3.951	7.912	3.293	2.726	0.717	0.494	5.24
Shaple igh Mine 2	<0.032	0.867	0.542	0.91	0.943	0.17	0.077	0.114	0.076	0.494	1.841	13.426	5.063	5.217	1.283	0.981	1.981
Shapleigh Mine 3	<0.032	0.939	0.586	0.362	1.299	0.205	0.065	0.138	0.077	0.5	4.614	11.721	5.324	6.698	1.587	1.47	3.83
Shaple igh Mine 4	<0.032	0.882	0.438	0.169	0.782	0.164	0.045	0.104	0.059	0.343	4.598	7.196	3.15	3.109	0.861	0.71	5.778

Table 3-29. Philipsburg mining district, Philipsburg Area solids (WVU)—rare earth element and germanium statistics.

JS.	
tior	
tra	
en	
DC DC	
8	
anium cond	
ш,	
E E	
ler	2
element and d	,
an	
ñt	
me	
<u>e</u>	
he	
art	
0 D	
Ī	
(ALS)-	
Ā	
) S	
olic	
s S	
a area sc	
a D	
n	
dsc	
hilir	
Ę	
Ċ.	•
stric	
ij	
minina di)
ini	
5	
nro	
ds	
dili	
Ч	
<u>.</u>	
с- С-	
<u>e</u>	
abl	
Ë	

	 ת	200				/! ン) 5			,								
						Philip	Philipsburg Area Solids		(ALS)								
Clamelo ID	g	2	Er	Р	в	Tb	Tm	Y	q	e C	Э	8	Р	PN	Pr	Sm	Sc
sample ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	<u> </u>	mg/kg) ((mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	B	(mg/kg)
2% Mine 1	5.5	0.5	0.32	0.1	0.04	0.09	0.03	0.26	3.1	8.2	0.11	0.6	4.5	3.5	0.92	0.68	1
2% Mine 2	14.2	0.6	0.26	0.14	0.04	0.1	0.05	0.32	3.5	13.6	0.18	0.66	6.4	5.6	1.45	1.18	1
2% Mine 3	8.5	0.42	0.21	0.07	0.04	0.06	0.03	0.2	2.1	7.1	0.12	0.43	3.7	3.1	0.77	0.5	4
A Igonquin 1	3.5	2.6	1.58	0.55	0.27	0.43	0.25	17	15.8	46.8	0.78	3.14	225	20.5	5.41	4.07	5
A Igonquin 2	0.5	1.73	0.98	0.33	0.14	0.25	0.16	1.12	10.5	26	0.37	1.63	13.2	11.2	3.12	2.21	2
Antinoli Tailings Hole 1	2.3	1.66	0.96	0.32	0.16	0.29	0.16	10.1	1.12	22.1	0.6	1.86	12.9	11.9	3.37	2.28	2
Antinoli Tailings Hole 2	2.5	2.01	1.36	0.48	0.22	0.33	0.22	12.6	1.38	27.4	0.83	2.49	16	14	3.85	3.14	2
Antinoli Tailings Hole 3	3	2.05	1.12	0.41	0.18	0.32	0.23	10.8	1.2	26	0.72	2.24	15.2	13.6	3.59	2.19	2
Antinoli Tailings Hole 4	2.3	2.38	1.46	0.51	0.25	0.42	0.24	14.9	1.55	36.1	0.81	2.67	20.5	17.8	4.88	3.6	4
Antinoli Tailings Hole 5	2.9	2.44	1.42	0.52	0.21	0.38	0.23	14.4	1.42	34.5	1.01	2.56	19.1	16.8	4.64	3.63	5
Antinoli Tailings Hole 6	2.7	2.59	1.58	0.53	0.25	0.42	0.26	15	1.66	46.9	0.96	2.94	26.4	21.5	5.79	4.24	5
Antinoli Tailings Hole 7	2.7	2.23	1.3	0.46	0.23	0.38	0.19	13.8	1.31	30	0.81	2.24	17.3	15.1	4.2	3.05	ŝ
Antinoli Tailings Hole 8	2.6	2.36	1.42	0.52	0.25	0.39	0.2	13.9	1.45	36.5	0.78	2.64	20.1	16.8	4.83	3.01	7
Antinoli Tailings Hole 9	2.5	2.21	1.26	0.45	0.23	0.35	0.21	12	1.42	25.5	0.76	2.2	14.2	13.2	3.71	2.8	2
Antinoli Tailings Hole 10	3.1	2.8	7.64	0.57	0.23	0.5	0.24	17.9	1.69	42.4	1.05	3.11	23.3	19.4	5.39	4.03	4
Cadgie Taylor Mine 1	0.6	0.63	0.39	0.14	0.07	0.1	0.08	0.42	4.3	4.2	0.09	0.55	2	2.5	0.53	0.52	2
Cadgie Taylor Mine 2	0.9	0.71	0.49	0.16	0.06	0.13	0.07	0.45	4.5	5.9	0.15	0.64	2.7	3	0.69	0.91	2
Cadgie Tay lor Mine 3	<0.5	0.56	0.34	0.1	0.06	0.08	0.04	0.35	3.4	5.6	0.13	0.52	2.4	2.6	0.65	0.64	2
Cadgie Taylor Mine 4	<0.5	0.36	0.18	0.08	0.03	0.05	0.03	0.26	2.2	3.2	0.09	0.35	1.6	1.5	0.37	0.43	1
GraniteMine	3.7	2.66	1.49	0.52	0.24	0.42	0.23	1.84	14.8	56.7	1.04	3.01	30.9	23.8	6.9	4.36	∞
Manganese Mill 1	4.6	2.9	1.64	0.61	0.26	0.52	0.28	1.74	17.6	48.2	1.03	3.13	25.5	21.1	6.23	4.23	7
Manganese Mill 2	4.8	2.62	152	0.6	0.25	0.43	0.25	1.56	16.5	41.5	0.78	2.68	21.4	17.4	5.13	3.3	9
Mountain Boy Mine 1	0.9	0.5	0.31	0.1	0.05	0.09	0.05	0.26	3.5	4.5	0.13	0.46	2.5	2.3	0.48	0.56	1
Mountain Boy Mine 2	1.8	0.41	0.22	0.07	0.04	0.04	0.04	0.24	2	29	0.06	0.35	1.4	1.4	0.34	0.36	1
Porter Mine 1	<0.5	0.23	0.12	0.04	0.01	0.03	0.02	0.13	1.1	3.5	0.06	0.19	1.9	1.4	0.37	0.34	1
Porter Mine 2	1.3	0.2	0.13	0.04	0.02	0.02	0.01	0.12	1	23	0.03	0.18	1.2	1.1	0.23	0.22	1
Porter Mine 3	0.6	0.14	0.08	0.03	0.01	0.02	0.01	0.1	0.9	21	0.02	0.24	1.1	0.9	0.23	0.28	₽
Shapleigh Mine 1	5.7	0.39	0.22	0.09	0.04	0.08	0.04	0.26	2.5	5.3	0.11	0.43	2.7	2.4	0.7	0.56	1
Shapleigh Mine 2	0.7	0.17	0.11	0.03	0.01	0.03	0.02	0.12	0.9	27	0.04	0.18	1.5	1.2	0.35	0.28	1
Shapleigh Mine 3	4.2	0.45	0.31	0.1	0.05	0.07	0.03	0.26	2.6	5.7	0.11	0.45	2	2.7	0.66	0.58	1
Shapleigh Mine 4	1.2	0.49	0.24	0.1	0.03	0.07	0.03	0.23	2.8	5.3	0.1	0.45	2.2	2.7	0.61	0.64	2
Silver Mill1	3.6	2.43	1.48	0.53	0.25	0.44	0.24	1.56	14.4	39.9	0.64	2.84	20	17	4.68	3.25	4
Silver Mil12	4	1.55	0.97	0.32	0.15	0.28	0.18	1.06	9.6	28	0.37	2.04	14.6	12	3.35	2.42	3
Speckled Trout 1	6.9	2.36	1.3	0.5	0.2	0.44	0.21	1.46	13	43.3	0.78	2.68	22.9	18.3	5.19	3.78	9
Speckled Trout 2	14.6	3.52	2.02	0.74	0.28	0.6	0.32	2	19	58.3	1.07	3.78	27.5	Я	7.09	4.82	5
Speckled Trout 3	0.7	1.31	0.8	0.27	0.16	0.19	0.15	1.01	7.7	21.8	0.3	1.23	11	8.8	2.52	1.79	2
Speckled Trout 4	12.5	1.9	0.91	0.39	0.18	0.33	0.18	1.11	9.4	44.3	0.56	2.28	21.2	16.4	5.12	3.37	4

Sample ID 2% Mine 1 2% Mine 2	Coutl 0.88	Solids (Al Total REE		cs Minimum	Maximum
2% Mine 1			Average	wiinimum	Wayimim
	0 00		DEE		
		(mg/kg)	REE	REE	REE
2% Mine 2		28.45	1.78	0.03	8.20
	0.72	48.28	3.02	0.04	14.20
2% Mine 3	0.81	27.35	1.71	0.03	8.50
Algonquin 1	0.84	134.88	7.93	0.25	46.80
Algonquin 2	0.90	75.44	4.44	0.14	26.00
Antinoli Tailings Hole 1	3.32	74.08	4.36	0.16	22.10
Antinoli Tailings Hole 2	3.15	90.81	5.34	0.22	27.40
Antinoli Tailings Hole 3	3.55	84.85	4.99	0.18	26.00
Antinoli Tailings Hole 4	2.96	114.37	6.73	0.24	36.10
Antinoli Tailings Hole 5	1.61	111.16	6.54	0.21	34.50
Antinoli Tailings Hole 6	1.45	138.72	8.16	0.25	46.90
Antinoli Tailings Hole 7	3.08	98.30	5.78	0.19	30.00
Antinoli Tailings Hole 8	1.65	114.75	6.75	0.20	36.50
Antinoli Tailings Hole 9	4.52	85.00	5.00	0.21	25.50
Antinoli Tailings Hole 10	1.86	131.35	7.73	0.23	42.40
Cadgie Taylor Mine 1	1.63	19.12	1.12	0.07	4.30
Cadgie Taylor Mine 2	1.35	23.46	1.38	0.06	5.90
Cadgie Taylor Mine 3	1.16	19.47	1.22	0.04	5.60
Cadgie Taylor Mine 4	1.22	11.73	0.73	0.03	3.20
Granite Mine	0.74	160.61	9.45	0.23	56.70
Manganese Mill 1	0.88	146.57	8.62	0.26	48.20
Manganese Mill 2	0.89	126.72	7.45	0.25	41.50
Mountain Boy Mine 1	1.38	17.69	1.04	0.05	4.50
Mountain Boy Mine 2	1.26	12.67	0.75	0.04	2.90
Porter Mine 1	0.79	10.44	0.65	0.01	3.50
Porter Mine 2	1.00	9.10	0.54	0.01	2.30
Porter Mine 3	0.92	6.76	0.42	0.01	2.10
Shapleigh Mine 1	0.99	22.52	1.32	0.04	5.70
Shapleigh Mine 2	0.85	9.34	0.55		2.70
Shapleigh Mine 3	1.02	21.27	1.25		5.70
Shapleigh Mine 4	1.12	19.19	1.13		5.30
Silver Mill 1	0.86	117.24	6.90	0.24	39.90
Silver Mill 2	0.83	83.89	4.93	0.15	28.00
Speckled Trout 1	0.79	129.30	7.61	0.20	43.30
Speckled Trout 2	0.83	175.64	10.33	0.28	58.30
Speckled Trout 3	0.82	61.73	3.63	0.15	21.80
Speckled Trout 4	0.64	124.13	7.30		

Table 3-32. Philipsburg mining district, Philipsburg area solids (ALS)—rare earth element and germanium statistics.

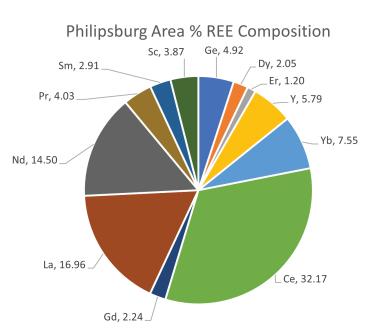


Figure 3-12. REE concentration percentages for every sample taken in the Philipsburg area. Elements with less than 1% concentration were removed.

Table 3-33. Philipsburg mining district	, Ted Antonioli—rare earth element
and germanium statistics.	

Te	d Antoloni	li Philipsbu	irg Sites Sta	atistics	
Sample ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couti	(mg/kg)	REE	REE	REE
BJ-1	0.47	343.52	20.21	0.33	154.00
B1	0.81	67.36	3.96	0.11	22.30
ER-1	0.82	35.34	2.08	0.05	11.90
ER-2	0.80	38.88	2.29	0.05	13.50
ER-3	0.91	23.57	1.47	0.03	7.80
Marjae Mine	0.48	138.50	8.15	0.13	58.30
Mayflower Mine	1.53	66.77	3.93	0.10	16.40

Table 3-34. Philipsburg mining district, Ted Antonioli—rare e	psburg m	ining dis	strict, Teo	d Antonic	ii-rare (earth ele	⊧ment an	id germa	earth element and germanium concentrations.	ncentrati	ions.						
						Te	ed Antolo	nli Philip:	Ted Antolonli Philipsburg Sites	S							
Sample ID	, ", ,	DV , , , ,	Er , ,	Ho	e E E	ть ,	Tm ,	Υ.,	yb , ", ,	، ت د	Eu		E	PN .	Pr .	Sm , , , ,	, Sc
	(mg/kg)	(mg/kg) (mg/kg)	(mg/kg) (i	mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg)
BJ-1	1.1	3.76	2.15	0.75	0.33	0.64	0.33	2.22	24.2	154	1.13	4.57	80.2	41.8	13.6	6.37	6.37
	2	1.21	0.83	0.26	0.12	0.17	0.11	0.82	7.2	22.3	0.27	1.38	12	9.5	2.64	1.55	5
ER-1	0.6	0.66	0.42	0.15	0.05	0.12	0.06	0.36	4.1	11.9	0.28	0.75	6.9	4.7	1.4	0.89	2
ER-2	0.5	0.79	0.42	0.16	0.05	0.13	0.05	0.42	4.5	13.5	0.42	0.96	7.2	5.1	1.49	1.19	2
ER-3	<0.5	0.49	0.26	0.1	0.03	0.09	0.03	0.28	2.9	7.8	0.28	0.54	4.6	3.5	0.95	0.72	1
Marjae Mine	2.1	1.39	0.77	0.28	0.13	0.3	0.13	0.89	8.2	58.3	0.75	1.97	34.6	17.3	5.44	2.95	3
Mayflower Mine	0.8	1.29	0.81	0.32	0.1	0.21	0.1	0.65	13.5	15.6	0.53	1.72	16.4	9.4	2.5	1.84	1

3.7 Basin Mining District

The Basin mining district is located in Jefferson County, Montana and encompasses a 77-mi² area around the town of Basin. Mining started in the 1870s and continued through the 1960s (EPA, 2017a). Contamination of the watershed by mine wastes resulted in a Superfund listing in 1999. With mines such as the Crystal and the Bullion within the district already being monitored by the MBMG, the area was an easy addition to the ARL project. Three water samples were collected from the area; assay results are presented in tables 3-35 and 3-36.

element and germanium statistics.	tatistics.				
cu	ystal & Bul	Crystal & Bullion Mines Statistics	Statistics		
Comolo ID	Court I	Totol DCC	Average	Average Minimum Maximum	Maximum
טו שוקווופט	COULI		REE	REE	REE
Crystal Mine Dissolved	1.55	26.89	1.68	0.09	7.12
Crystal Mine TR	1.56	22.19	1.39	0.07	5.90
Upper Bullion Dissolved	1.59	126.22	7.89	0.51	33.27
Upper Bullion TR	1.62	165.44	10.34	0.65	43.53
Lower Bullion TR	1.75	161.75	10.11	0.51	41.02

Table 3-35. Basin/Ten Mile watersheds, Crystal and Bullion mines—rare earth

Table 3-36. Basin/Ten Mile watersheds, Crystal and Bullion mines—rare earth element and germanium concentrations.

						Crystal	Crystal & Bullion Mines	on Min	es								
Cample ID	Ge	Ŋ	Er	운	Е	Tb	T	7	٩٨	٣	E	B	г	ΡN	Pr	Sm	Sc
	(hg/r) (hg/r) (hg/r) (hg/r)	(µg/L)	(µg/l)	(µg/L)	(J/BH)	(hg/L)	(µg/L)	(hg/l)	(µg/L)	(hg/l)	(µg/L)	(hg/l)	(hg/l)	(אפאר)	(µg/L)	(hg/L)	(hg/L)
Crystal Mine Dissolved <32.00 1.128 0.741 0.259	<32.00	1.128	0.741	0.259	0.1	0.178	0.11	0.689	6.465	7.118	0.103	1.038	4.143	0.1 0.178 0.11 0.689 6.465 7.118 0.103 1.038 4.143 3.166 0.834 0.732	0.834	0.732	0.085
Crystal Mine TR	<32.00 0.871 0.578 0.198	0.871	0.578	0.198	0.077	0.134	0.084	0.528	5.613	5.895	0.083	0.827	3.459	0.077 0.134 0.084 0.528 5.613 5.895 0.083 0.827 3.459 2.505 0.69 0.586	0.69	0.586	0.065
Jpper Bullion Dissolved <32.00 5.352 3.462 1.173	<32.00	5.352	3.462	1.173	0.509	0.849	0.509 0.849 0.521 3.352 26.88 33.27 0.846	3.352	26.88	33.27	0.846	5.31	14.2	14.2 19.05 4.491 4.339 2.612	4.491	4.339	2.612
Jpper Bullion TR	<32.00 6.795 4.395 1.494	6.795	4.395	1.494	0.646	1.084	0.661	4.215	36.69	43.53	1.054	6.783	18.43	0.646 1.084 0.661 4.215 36.69 43.53 1.054 6.783 18.43 24.82 5.841 5.584 3.411	5.841	5.584	3.411
Lower Bullion TR	<32.00 5.906 3.753 1.217	5.906	3.753	1.217	0.51	0.912	0.53	3.529	40.39	41.02	0.926	6.134	18.38	0.51 0.912 0.53 3.529 40.39 41.02 0.926 6.134 18.38 23.69 5.456 5.263 4.138	5.456	5.263	4.138

Montana Bureau of Mines and Geology Open-File Report 769

3.8 Black Eagle Smelter

The Black Eagle Smelter, also known as the AMC Smelter and Refinery, is a 427-acre superfund site located in Black Eagle across the Missouri River from Great Falls, Montana. Construction of the first smelter was completed in 1893 by the Boston and Montana Consolidated Copper and Silver Mining Company. Primary products from the smelter and mill included copper, zinc, arsenic, and cadmium. In 1910 the Anaconda Copper Mining Company acquired the property. Zinc smelting and refining activates continued until the early 1970s. In 1977 AR purchased the Anaconda Copper Mining Company and continued to refine copper and zinc onsite until the plant's closure in 1980 (EPA, 2017d). Eighty years of operations generated millions of tons of slag and tailings, many of which were dumped into the Missouri River until 1915, when waste started being deposited onsite. The smokestacks ejected lead, arsenic, and other metals, depositing them on the site and the surrounding neighborhoods. In 2011 the EPA placed the AMC Smelter and Refinery on the Superfund National Priority list (EPA, 2017d).

The Black Eagle Smelter site was identified as an area of interest for rare earth element sampling by the MBMG, and sampling was conducted in March 2023. Groundwater samples were collected from wells at various depths across the site with the assistance of AR's contractor Woodard & Curran. Several groundwater seeps on the site were targeted, but were frozen. A second sampling effort in May 2023 collected samples from the seeps, along with some additional wells of interest. Data from collected samples are shown in tables 3-37 and 3-38. Table 3-37. Black Eagle Smelter/Great Falls—rare earth element and germanium statistics.

and germanium		ack Eagle S	tatistics		
		Total REE		Minimum	Maximum
Sample ID	Coutl	(µg/L)	REE	REE	REE
BH-02Am	3.71	87.08	5.44	0.11	57.90
BH-02Am-TR	9.22	97.19	6.07	0.15	62.18
BH-02 AM	8.00	89.70	5.61	0.06	39.04
BH-02 AM-TR.	9.71	107.20	6.70	0.05	43.00
BH-04s	5.73	182.70	11.42	0.20	89.26
BH-04s-TR	4.65	213.29	13.33	0.23	99.22
BH-08d	0.00	1.68	0.14	0.00	0.92
BH-08d-TR	0.00	1.82	0.15	0.00	0.99
BH-09S	7.53	7.12	0.45	0.01	3.84
BH-09S-TR	7.21	7.30	0.46	0.00	3.90
BH-12d	0.00	2.41	0.16	0.00	1.24
BH-12d-TR	0.00	2.99	0.20	0.00	1.55
BH-04	4.67	161.86	10.12	0.07	86.73
BH-04-TR	3.71	176.75	11.05	0.27	87.60
BH-18s	0.00	0.60	0.05	0.00	0.42
BH-18s-TR	0.00	0.59	0.05	0.00	0.40
EDS	0.00	5.05	0.34	0.00	2.82
EDS-TR	2.84	10.56	0.66	0.01	3.76
FED Seep B	0.00	0.06	0.03	0.02	0.04
FED Seep B-TR	0.00	0.46	0.05	0.00	0.14
FED Seep C	0.00	0.18	0.09	0.08	0.10
FED Seep C-TR	0.00	0.77	0.08	0.01	0.18
MW-11	0.00	0.83	0.07	0.00	0.41
MW-11-TR	0.00	0.89	0.07	0.00	0.42
NBS	0.00	0.12	0.06	0.05	0.07
NBS- TR	0.00	0.60	0.07	0.01	0.19
P-11	4.32	13.73	0.86	0.02	7.17
P-11-TR	4.17	13.06	0.82	0.02	6.69
PS-07	4.61	90.94	5.68	0.26	36.83
PS-07-TR	4.62	91.74	5.73	0.25	36.92
PS-07	4.57	85.08	5.32	0.21	35.33
PS-07-TR.	4.61	85.72	5.36	0.22	35.69
PS-08	0.00	0.40	0.10	0.01	0.26
PS-08-TR	0.00	0.45	0.07	0.00	0.24
PS-11	4.40	11.69	0.73	0.02	6.11
PS-11-TR	4.11	12.90	0.81	0.02	6.51
PS-18	0.00	0.80	0.07	0.01	0.34
PS-18-TR	0.00	1.13	0.09	0.00	0.41
PS-18	0.00	0.79	0.09	0.01	0.40
PS-18-TR.	0.00	0.84	0.09	0.01	0.41

ú	
ü	
rati	
ent	
nce	
S	
nium cor	
ani	
srm.	
it and gerr	
and	
nt	
me	
ele	
£	
ea	
are	
s—rare earth elem	
alls	
ц	
ea	
Ő	
lter	
me	
e S	
agl	
Б Ш	
ac	
<u>Ш</u>	
-38	
е 3	
abl	
Ë	Ĺ

	Я	(µg/L)	0.107	0.145	<0.037	<0.037	<0.037	<0.037	0.093	0.09	0.123	0.115	0.079	0.109	0.067	0.371	0.066	0.061	0.06	0.473	0.041	0.046	0.096	0.082	0.104	0.11	0.073	0.107	0.126	0.12	0.263	0.247	0.211	0.218	0.261	0.239	0.154	0.14	0.179	0.169	0.136	0.121
	┝	_	\vdash	-	-	-																						_	\rightarrow	-	\rightarrow	_							<u> </u>	\vdash		└─
	Sm	(µg/L)	1.043	1.342	0.746	0.86	2.164	3.119	40.004	40.004	0.097	0.112	0.008	0.019	3.03	3.528	⊴0.004	40.004	0.046	0.271	40.004	0.004	⊲0.004	0.024	⊲0.004		40.004	0.01	0.124	0.131	3.594	3.702	3.21	3.311	⊲0.004	40.004	0.079	0.101	60.004	40.004	≤0.004	40 US
	Pr	(µg/L)	0.854	1.068	0.497	0.72	2.375	3.24	0.02	0.026	0.13	0.134	0.029	0.043	3.049	3.694	<0.003	<0.003	0.071	0.272	<0.003	0.009	<0.003	0.025	0.015	0.016	<0.003	0.008	0.186	0.185	1.996	1.993	1.821	1.854	<0.003	0.003	0.165	0.194	0.011	0.019	<0.003	<0.003
	PN	(µg/l)	4.3	5.561	3.149	3.891	11.335	14.844	0.094	0.121	0.613	0.632	0.159	0.204	14.524	16.796	0.015	0.019	0.32	1.215	⊲0.008	0.075	⊲0.008	0.148	0.075	0.089	⊲0.008	0.071	0.819	0.83	12.132	12.266	10.97	11.035	⊲0.008	0.02	0.653	0.799	0.043	0.096	0.042	0.059
	٩	(µg/L)	4.06	5.02	2.795	3.835	10.041	13.005	0.117	0.144	0.964	0.992	0.155	0.209	11.929	14.494	0.013	0.018	0.894	1.56	<0.003	0.072	<0.003	0.091	0.108	0.119	<0.003	0.058	2.234	2.075	5.196	5.285	4.901	4.725	0.014	0.036	1.977	2.178	0.07	0.125	0.068	0000
	8	(µg/L)	2.809	3.161	1.77	1.908	4.727	5.718	0.03	0.033	0.23	0.242	0.045	0.06	5.916		0.008	600.0	0.11	0.369	<0.003	0.011	<0.003	0.027	0.021		<0.003	0.015	0.308	0.319	6.233	6.313	5.621	5.646	<0.003	<0.003	0.255	0.313	600.0	0.025	0.008	0 01 0
	B	(µg/L)	\vdash	0.429	0.192	0.22	0.721	0.902	<0.003	<0.003	0.025		<0.003	<0.003	0.967	1.043	<0.003	<0.003	0.013	0.073	<0.003	<0.003	<0.003		<0.003		<0.003		+	-	+	1.242	1.095	1.117	<0.003	<0.003	0.028	0.034	<0.003	<0.003	<0.003	2000/
	e	(µg/L)	6.093	-+	4.149	6.312	17.594	25.045	0.921	• 66.0	0.589			1.547	22.091	29.138	0.012	0.015	0.455	1.874	<0.008	0.144 <	<0.008		0.029			-	\rightarrow	_	\rightarrow		10.64	10.621	0.031	0.044	1.546	1.799	├──	0.214 4	0.105	⊢
, 	ę	μg/l) (57.896	_	39.039	40.802	89.256	99.219 2	0.329	0.337	3.836		0.569	0.646	86.731 2	87.6 2	0.416	0.4	2.817	3.763	0.023 <	0.092	> 670.0	0.166	0.412			-+	\rightarrow	6.689		-	35.325	35.692	0.092	0.105	6.114	6.505	0.338	0.405	0.4	0.406
Black Eagle	~	μg/L) (1.604	-	0.847	0.9	1.707 8	1.928	0.019	0.018	0.087		0.032	0.035	3 609 8	2.024	0.024	0.028	0.046	0.109	<0.004	<0.004	<0.004		0.017		<0.004	_	\rightarrow		-+	1.882	1.679	1.717	<0.004	<0.004	0.131	0.154	0.012	0.015	0.007	0000
	щ	(J/gH)	0.295	-	-	0.107	0.262	0.306	40.002	⊴0.002	0.008	0.008	0.005	0.005	0.367	0.387	0.003	0.002	0.002	0.013	≪0.002 ↓	⊲0.002 ↓	⊲0.002 ↓		<0.002	_	40.002		0.015	-	\rightarrow	_	0.293	0.299	<0.002 ◆	⊲0.002 ↓	0.021	0.025	⊴0.002	0.002	<0.002	800
	Ъb	(µg/L)	0.442	0.52	0.184	0.205	0.572	0.713	0.003	0.002	0.021	0.021	0.004	0.007	0.822	0.846		⊲0.002	0.01	0.043	⊲0.002	⊲0.002	<0.002		0.002		\vdash		\rightarrow	-	\rightarrow	0.868	0.772	0.785	<0.002	⊲0.002	0.034	0.037	40.002	0.003	<0.002	cu uv
	з	μg/l)	0.225	0.242	0.06	0.053	0.2	0.227	⊲0.002	⊲0.002	0.005		0.003	0.003	0.295	0.267	≪0.002 <	<0.002 <	2	0.01	≪0.002 <	⊲0.002 ∢	⊲0.002 ∢		⊲0.002		⊲0.002 <				\rightarrow	_	0.259	0.259	<0.002	≪0.002 <	0.021	0.024	<0.002 ◆	⊲0.002	<0.002	, cm 0/
	오	µg/L) ((0.882 (0.475	0.487 (1.061	1.196 (0.006 <	0.006 <	0.042 (0.044 (0.01 (0.012 (1.224 (1.308 (0.004 <	0.005 <	0.02 <	0.056	≪0.002 <	⊲0.002 <	⊲0.002 <	⊲0.002 <	0.006 <	0.006 <	⊲0.002 <		-	0.077 (1.047 (-	0.961 (0.99	<0.002 <	⊲0.002 <	0.066 (0.076 (0.005 <	0.006 <	<0.002 <	200 0V
	齿	(µg/l)	2.643 (-	1.564 (1.625 (3.126	3.604	0.021 (0.024 (0.134 (0.035	0.036 (3.574	3.661	0.018 (0.02 (0.077	0.166 (≪0.004 <		⊲0.004 <		0.021 (_			-	-	-+	_	2.599 (<0.002 <	⊲0.004 <	0.197 (0.234 (0.012 (0.02	0.008 <	0.010
	2	(µg/L) (3.477			2.273	4.562	<u> </u>	0.027	0.033	0.219		0.042	0.055	5.357				0.111	0.296	<0.004 <	0.005 <	<0.004 <		0.023			-	\rightarrow		+	- 1	4.72	4.81	<0.004 <	<0.004 <	0.244	0.29	0.016	0.027	0.013	⊢
D D	ფ	(hg/L)				43.00	33.00	35.00	-	<32.00	<32.00		<32.00	<32.00	<32.00					<32.00	<32.00		<32.00 <		<32.00	<32.00		<32.00		_		_	<32.00	<32.00	<32.00 <	<32.00 <	<32.00	<32.00	<u> </u>	<32.00	<32.00	
	4	D		ñ	BH-02 AM	BH-02 AM-TR.	BH-04s	BH-04s-TR	BH-08d	BH-08d-TR	Sed-Ha	ЯĽ.	BH-12d	BH-12d-TR		BH-04-TR	BH-18s	BH-18s-TR	EDS	EDS-TR	FED Seep B	FED Seep B-TR	FED Seep C	FED Seep C-TR	MW-11	MW-11-TR	NBS	R		Я		PS-07-TR	PS-07	PS-07-TR.	PS-08	PS-08-TR	PS-11	PS-11-TR	PS-18	PS-18-TR		Ē

3.9 Columbus/Stillwater Mine Smelter

Two ore types from the Stillwater Complex, located south of Columbus near the town of Nye, have been shipped to Columbus for processing. Chromite ore was processed and shipped to a site near the rail line from the late 1950s to early 1960s; ore containing platinum group metals from both the Stillwater Mine and the East Boulder Mine was sent to the Stillwater smelting complex in Columbus for processing beginning in 1990 (Sibanye, 2024).

3.9.1 Columbus/Mouat

Columbus is home to the 4.5-acre Mouat Industries Superfund cleanup site. Mouat Industries processed chromite ore from the Stillwater Mining Complex from 1957 to 1962 (EPA, 2017c). The mine waste, containing sodium chromate and sodium dichromate, leached into the soil and groundwater. Sodium dichromate spills also occurred as part of facility operations, further contaminating the site. Cleanup began in 1990 and was completed in 2008. Groundwater samples were collected on July 19, 2023 (tables 3-39, 3-40.

3.9.2 Stillwater Mine Smelter

Columbus, Montana is home to the Columbus metallurgical complex, which is a smelting and refining facility for the Stillwater mine (fig. 3-13). The facility has been processing platinum group elements (PGMs) since its opening in 1990, with over 1 million oz being produced in 2022 (Stillwater, 2024). The site receives ore from the East Boulder and the Stillwater mines, both located on the JM-Reef. With the high REE content in the JM-Reef and the large amount of ore being processed, this site was an optimal reconnaissance sampling location. Samples were taken on June 13, 2023 from the incoming concentrate as well as the slag that is produced as waste. Assay results of the Stillwater smelter samples and Mouat samples can be found in figure 3-14 and tables 3-41 and 3-42.

Figure 3-13. The inside of the Sibanye–Stillwater Columbus smelter concentrate receiving area.

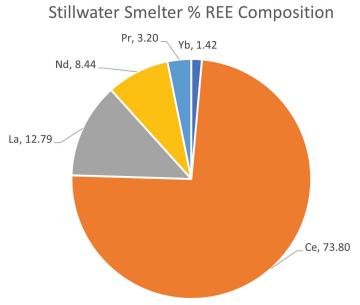


Figure 3-14. REE concentration percentages for every solid sample taken from the Stillwater smelter. Elements with less than 1% concentration were removed.

Table 3-39. Columbus/MOAUT monitoring wells—rare earth
element and germanium statistics.

		MOAU	F Statistics		
Sample	Coutl	Total REE	Average	Minimum	Maximum
ID	Couti	(µg/L)	REE	REE	REE
MO-9	0.00	0.28	0.06	0.01	0.15
MO-25	0.00	0.15	0.07	0.01	0.14
MO-26	0.00	0.21	0.10	0.04	0.17
RMIS-2	0.00	0.22	0.07	0.01	0.14

s.	
stic	
stati	
Ĕ	
anic	
erm.	
ğ	
t an	
nen	
elen	
rth	
ear	
rare	
nelter	
Sn	
ater	
tillw	
Ś	
ome	
Chr	
SNO	
qmn	
C0	
tail/	
Fish	
ye/ł	
Z.	
3-4	
ble	
Tabl	

				_	
	Sc	(mg/kg)	9	13	
	Sm	(mg/kg)	3.19	0.43	
	Ъr	(mg/kg)	255	22.1	
	PN	(mg/kg)	673	58.6	
	La	(mg/kg)	1025	84.1	
	Gd	(mg/kg)	0.6	0.29	
	Eu	(mg/kg)	0.19	0.13	
	e C	(mg/kg)	5880	518	
elter	γb	(mg/kg)	109	13.9	
-Sm	Y	(mg/kg)	0.58	0.33	
Stillwater	Tm	(mg/kg)	0.06	0.04	
	Tb	(mg/kg)	0.33	0.07	
	Lu	(mg/kg)	0.08	0.06	
	Ηo	(mg/kg)	0.15	0.08	
	Er	(mg/kg)	0.39	0.32	
	Dy	(mg/kg)	0.7	0.41	
	Ge	(mg/kg)	2.4	1	
	Cample ID	טו בוקווואכ	Slag-Stillwater Mine	Stillwater Mill Conc.	

Table 3-42. Nye/Fishtail/Columbus Chrome, Stillwater Smelter—rare earth element and germanium statistics.

	Stillwate	Stillwater Smelter Statistics	Statistics		
Comolo ID	(out	Total REE Average	Average	Minimum	Maximum
סון שוקווופט	COULI	(mg/kg)	REE	REE	REE
Slag-Stillwater Mine	0.13	7,956.67	468.04	0.06	5880.00
Stillwater Mill Conc.	0.14	712.86	41.93	0.04	518.00

3.10 Zortman–Landusky

The Zortman and Landusky mines are two open pit mining operations encompassing 1,200 acres within the Little Rocky Mountains (fig. 3-15, Mitchell, 2004). The area has been mined since 1890, when rich gold and silver veins were discovered. Mining ceased in 1998 and the cleanup efforts began to try and stop the pollution of groundwater and surface water to the Fort Belknap reservation and surrounding areas. In 1999 the plant operator went bankrupt, and the cleanup fell to the State and Federal governments. Sampling included 18 samples: 3 from waste piles and 15 aqueous and sludge samples from the water treatment plants. These samples were sent to ALS and WVU for assay; the results are presented in figures 3-16 and 3-17 and tables 3-43 through 3-48.

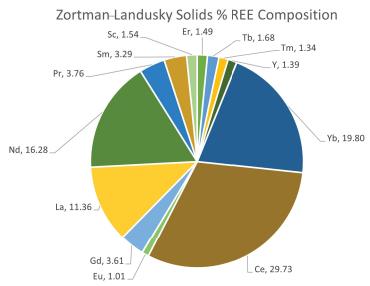


Figure 3-16. REE concentration percentages for every solid sample taken at Zortman–Landusky that was analyzed by ALS. Elements with less than 1% concentration were removed.

Figure 3-17. REE concentration percentages for every aqueous sample taken at Zortman–Landusky. Elements with less than 1% concentration were removed.

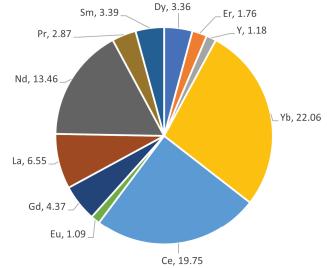

germaniani statistics.							
Zortma	n-Landusk	y Aqueous	Statistics				
Sample ID	Coutl	Total REE	Average	Minimum	Maximum		
Sample ID	Couti	(µg/L)	REE	REE	REE		
BioPlant Influent	2.25	3,984.94	249.06	8.62	1166.02		
BioPlant Discharge	0.00	5.32	0.38	0.00	1.99		
BioPlant Sludge Decant	0.96	159.92	10.00	0.10	59.04		
Landusky WTP Influent	2.47	564.39	35.27	1.40	154.37		
Landusky WTP Effluent	0.00	1.62	0.12	0.00	0.49		
Landusky WTP Sludge Decant 2.44 5.38 0.36 0.01 1.52							
Swift Influent	2.11	825.41	51.59	0.92	247.13		
Swift Effluent	0.00	0.81	0.06	0.00	0.23		
Swift Sludge Decant	0.00	0.06	0.01	0.01	0.02		
Zortman WTP Influent	1.31	935.97	58.50	1.37	280.07		
Zortman WTP Effluent	1.28	3.22	0.21	0.01	0.91		

Table 3-43. Zortman–Landusky, aqueous samples—Rare earth element and germanium statistics.

Figure 3-15. The discharge from the Zortman–Landusky bioplant.

Zortman-Landusky Aqueous % REE Composition

Table 3-44. Zortman-Landusky, aqueous samplesrare eart	usky, aqı	ueous s	amples-	-rare ea	arth elen	th element and germanium concentrations.	l germa	nium co	oncentra	ations.							
						Zortman	Zortman-Landusky Aqueous	ky Aqueo	sno								
Comolo ID	Ge	Dy	Ŀ	он	э	Tb	Tm	Å	γb	e	Eu	ß	La	PN	٩r	Sm	Sc
	(µg/L)	(µg/l)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/l)	(µg/L)
BioPlant Influent	<32.00	<32.00 180.862 93.198	93.198	33.89	8.618	31.631	10.809	60.561	1166.02	917.603	58.712	234.317	206.69	656.667	136.892	178.139	10.328
Bio Plant Discharge	<32.00	0.061	0.031	0.012	<0.002	<0.002	0.003	0.013	0.81	1.986	0.022	0.126	1.162	0.772	0.19	0.081	0.046
BioPlant Sludge Decant	<32.00	3.005	1.379	0.541	0.104	0.57	0.143	0.767	25.943	59.038	1.267	5.463	25.671	25.509	6.116	4.238	0.167
Landusky WTP Influent	<32.00	24.379	13.226	4.611	1.431	4.206	1.67	10.095	154.365	115.029	8.252	30.894	50.1	66 0.66	19.899	25.737	1.401
Landusky WTP Effluent	<32.00	<32.00 0.059	0.032	0.011	<0.002	<0.002	0.003	0.023	0.492	0.34	0.019	0.076	0.179	0.269	0.058	0.06	<0.037
Landusky WTP Sludge Decant	<32.00	0.219	0.117	0.043	0.013	0.012	0.015	0.088	1.52	1.108	0.074	0.284	0.52	0.938	0.189	0.24	<0.037
Swift Influent	<32.00	<32.00 31.186 18.338		6.471	1.818	5.238	2.156	11.729	2.156 11.729 247.127	191.844	9.119	40.41	92.176	92.176 116.413	24.737	25.724	0.921
Swift Effluent	<32.00	0.02	0.011	0.004	<0.002	<0.002	<0.002	0.006	0.228	0.203	0.005	0.03	0.115	0.104	0.024	0.017	0.045
Swift Sludge Decant	<32.00	<0.004	<0.004	⊲0.002	<0.002	<0.002	<0.002	<0.004	0.013	0.021	<0.003	<0.003	0.012	0.01	<0.003	<0.004	<0.037
Zortman WTP Influent	<32.00	<32.00 26.611 13.545	13.545	4.859	1.369	4.713	1.673	10.007	1.673 10.007 154.624 280.073	280.073	9.435	35.605	142.975	35.605 142.975 168.908	39.936	34.724	6.909
Zortman WTP Effluent	<32.00	0.1	0.051	0.021	0.008	<0.002	0.009	0.037	0.494	0.906	0.043	0.135	0.553	0.521	0.131	0.161	0.052

Table 3-45. Zortman-Landusky, solids samples (WVU)-rare earth element and germanium concentrations.

	any, adir		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				ביות מכיו			נו מנוסויס.							
					2	Zortman-Landusky Solids	andusky	Solids (V	(NNI)								
CI alome 2	შ	Dy	Er	Р	Э	đ	д	×	γb	e U	E	8	еI	PN	Pr	Sm	Х
	(mg/kg)	(mg/kg)	(mg/kg) (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/k) ((mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BioPlant Carbon	19.689	7.751	7.751 4.167	2.591	11.19	1.569	0.511	1.246	0.534	3.086	51.695	215.371	71.69	51518	13.073	10.173	19.773
BioPlant Sludge	<0.032	<0.032 190.518 96.531 66.669 255.	96.531	66.669	272	39.011	9.547	34.672	12.345	69.012	1349.64	796.354	289.068	835.452	154.983	196.58	17.904
L-83	16.147	16.147 53.899	28.708 18.785	18.785	71.584	10.58	3.158	9.698	3.658	21.458	342.031	378.504	183.769	254.102	55.604	62.427	10.139
L-91 Vent	<0.032	3.628 2.207		1.397	5.426	0.747	0.339	0.47	0.324	1.907	18.678	289.59	58.228	28.64	6.805	5.751	14.342
Landusky WTP Sludge	23.812	23.812 102.148 53.668	53.668	35.41	133.97	19.62	5.721	18.043	6.672	38.329	705.258	559.029	250.103 432.125 87.549	432.125	87.549	113.822	6.068
Swift Sludge	<0.032		49.542 29.358	14.933	68.253	10.668	2.93	8.541	3.5	18.366	438.41	403.507	190.621	207.52	43.627	44.732	2.839
Zortman WTP Sludge	<0.032	89.822	45.3	31.457 122.892	122.892	16.658	4.807	16.127	5.731	32.938	554.936	32.938 554.936 1040.42 505.944		579.1	140.527 120.449		38.259

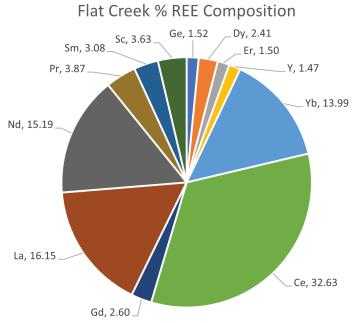
Zortman-	Landusky S	iolids (WV	J) Statistic	s	
famala ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couti	(mg/kg)	REE	REE	REE
BioPlant Carbon	0.54	485.63	28.57	0.51	215.37
BioPlant Sludge	2.78	4,413.56	275.85	9.55	1349.64
L-83	1.69	1,524.25	89.66	3.16	378.50
L-91 Vent	0.19	438.48	27.40	0.32	289.59
Landusky WTP Sludge	2.14	2,591.35	152.43	5.72	705.26
Swift Sludge	1.70	1,537.35	96.08	2.84	438.41
Zortman WTP Sludge	1.20	3,345.37	209.09	4.81	1040.42

Table 3-46. Zortman–Landusky, solids samples (WVU)—rare earth element and germanium statistics.

Table 3-47. Zortman–Landusky, solids samples (ALS)—rare earth element and germanium statistics.

Zortman-	Landusky	Solids (ALS) Statistics			
Sample ID	Coutl	Total REE	Average	Minimum	Maximum	
Sample ID	Couti	(mg/kg)	REE	REE	REE	
BioPlant Carbon	0.93	159.54	9.97	0.20	54.70	
L-83	1.68	504.66	29.69	0.97	127.00	
L-91-Vent	0.78	72.83	4.28	0.14	25.70	
Landusky WTP Sludge	2.22	1,880.39	110.61	1.30	513.00	
Swift Sludge 1.92 449.39 26.43 0.33 281.00						
Zortman WTP Sludge	1.15	2,010.35	118.26	0.70	643.00	
ZL-Slag (12' deep Alabama pit)	1.21	143.71	8.98	0.18	45.30	
ZL-Sludge-1	1.03	1,070.13	62.95	1.30	373.00	
ZL-Sludge-2	0.88	863.48	53.97	0.60	317.00	
ZL-Sludge-3	0.79	786.60	46.27	0.50	324.00	

					14	Zortman-Landusky Solids (ALS)	andusky	Solids ((SLA)								
Ol of another of the second of	g	ρλ	Ъ	Ч	з	đ	Ш	Y	٩X	Ce	E	g	г	PN	Pr	Sm	Sc
OI AID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/k	(mg/kg)								
Bio Plant Carbon	⊲0.5	3.28	1.65	0.69	0.2	0.59	0.28	1.56	23.1	54.7	1.24	4.53	27.3	23.5	6.26	4.66	6
L-83	2	17.2	9.05	3.44	0.97	3.08	1.18	7.55	115.5	127	5.89	20.9	63.3	85.2	19.6	19.8	3
L-91-Vent	1.7	1.28	0.74	0.27	0.14	0.22	0.14	0.94	7.7	25.7	0.58	1.19	14.6	10.7	3.01	1.92	2
Landusky WTP Sludge	1.3	79	41.7	15.65	4.66	14	5.48	34	513	392	26.5	97.4	171	329	68.1	84.6	3
Swift Sludge	1.5	3.68	2.29	0.76	0.33	0.64	2.38	13.4	281	59.5	1.02	4.29	31.3	25.8	7.15	5.35	9
Zortman WTP Sludge	0.7	53	26.1	10.3	2.89	9.81	3.45	21.4	322	643	18.9	70	304	353	89	71.8	11
ZL-Slag (12' deep Alabama pit)	⊲0.5	3.46	1.76	0.72	0.18	0.64	0.22	1.29	28	45.3	1.13	5	19.8	22.9	5.35	4.46	3.5
ZL-Sludge-1	1.3	27.6	14.4	5.52	1.76	5.05	1.95	11.5	169	373	10.05	35.3	126.5	180.5	42.2	39.1	25.4
ZL-Sludge-2	0.6	20.5	10.85	4.12	1.48	96.4	89.6	9.78	12	317	7.95	25.6	74.8	134	29.9	⊲0.5	28.9
ZL-Sludge-3	0.5	17.75	9.76	3.61	1.37	3.25	1.48	8.64	101	324	7.14	22.4	69.7	128	28.1	29.4	30.5


3.11 Flat Creek

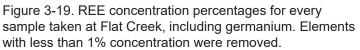

The Flat Creek–Iron Mountain mine is located near Superior, Montana in Mineral County. The mine operated for 27 years, with stints from 1909 to 1930 and 1947 to 1953. During the mine's operation it produced 7,535,084 lbs of zinc, 5,385,741 lbs of lead, 5,274 lbs of copper, and 389,355 fine oz of silver (Mineral Independent, 2016). The mine was originally operated by The Iron Mountain Mine and Mill, with ownership switching to ASARCO. In the year 2000, heavy rains following a 9,000-acre forest fire caused mine waste and tailings to flow into Flat Creek. Following the contamination of Flat Creek, ASARCO filed for bankruptcy in 2009 and the site was added to the Superfund list, with cleanup beginning in 2013. On June 22, 2023, 21 solid samples were collected and sent to ALS for assay (fig. 3-18). The assay results can be found in tables 3-49 and 3-50. Figure 3-19 shows REE percentages based on the average of concentrations for all 21 samples collected.

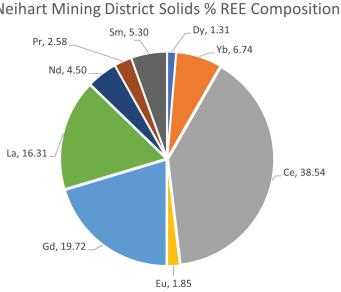
Figure 3-18. Reclamation of the contaminated soil in Flat Creek, Superior, Montana.

Table 3-48. Zortman–Landusky, solids samples (ALS)—rare earth element and germanium concentrations.

	Fla	at Creek Sta	atistics		
Sample ID	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couli	(mg/kg)	REE	REE	REE
#1 FC Unit #16	0.98	220.32	12.96	0.48	72.20
#2 FC Unit #16	0.95	191.16	11.24	0.43	62.80
#3 FC Unit #16	0.92	182.87	10.76	0.40	61.00
#4 FC Unit #16	0.93	185.41	10.91	0.42	61.50
#5 FC Rep	0.94	190.06	11.18	0.41	62.60
#6 FC Rep	1.06	204.82	12.05	0.48	62.10
#7 FC Rep	0.93	204.11	12.01	0.41	68.10
#8 FC Rep	0.96	210.96	12.41	0.46	70.00
#9 FC Rep	0.94	216.21	12.72	0.47	71.40
#10 FC Rep	0.88	212.69	12.51	0.42	72.40
#11 FC Rep	1.00	211.30	12.43	0.54	67.30
#12 FC WRD Adit	0.98	188.72	11.10	0.41	60.10
#13 FC WRD Adit	1.01	190.88	11.23	0.46	61.10
#14 FC WRD Adit	1.01	180.24	10.60	0.40	57.90
#15 FC WRD Adit	1.01	239.19	14.07	0.54	77.50
#16 FC WRD Adit	1.02	191.64	11.27	0.43	61.00
#17 FC WT	1.05	174.79	10.28	0.36	55.40
#18 FC WT	0.96	176.71	10.39	0.35	58.50
#19 FC WT	0.96	203.14	11.95	0.39	68.40
#20 FC WT	0.97	191.70	11.28	0.37	63.10

Table 3-49. Flat Creek tailings-rare earth element and germanium	
statistics.	

							ш	Flat Creek									
Comple ID	g	2	Ъ	우	Ξ	₽	щ	Y	ď	പ	Eu	B	Ч	PN	Pr	Sm	Sc
odilipie in	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) ((mg/kg) ((mg/kg)	(mg/kg) (mg/kg)	(mg/kg)						
#1 FC Unit #16	2.8	5.58	3.36	1.14	0.48	0.83	0.5	3.52	32.3	72.2	1.06	5.33	35.9	32.8	8.37	7.15	7
#2 FC Unit #16	3.6	4.49	2.97	1	0.43	0.82	0.44	2.74	26.8	62.8	0.93	4.84	31.8	28.1	7.29	6.11	6
#3 FC Unit #16	2.7	4.15	2.72	0.88	0.4	0.71	0.46	2.54	23.1	61	1.18	4.69	30.8	28.2	7.18	6.16	9
#4 FC Unit #16	3.6	4.42	2.85	0.88	0.46	0.7	0.42	2.72	24.6	61.5	1.15	4.36	30.6	27.9	7.32	5.93	9
#5 FC Rep	2.8	4.53	2.79	0.88	0.42	0.7	0.41	2.75	24.9	62.6	0.97	4.96	31.7	29.3	7.49	5.86	7
#6 FC Rep	3	5.42	3.4	1.1	0.48	0.86	0.53	3.29	31	62.1	1.24	5.56	31	29.9	7.49	6.45	12
#7 FC Rep	3.2	4.65	2.89	0.93	0.44	0.82	0.41	2.85	27.1	68.1	0.92	4.99	34.6	31	7.83	6.38	7
#8 FC Rep	2.5	4.84	3.23	0.96	0.46	0.79	0.52	2.86	29.5	70	1.08	5.38	34.7	32.3	8.13	6.71	7
#9 FC Rep	2.8	5.24	3.28	1.06	0.52	0.8	0.47	3.16	29.4	71.4	1.08	5.19	37.1	32.5	8.3	6.91	7
#10 FC Rep	2.9	4.58	2.94	0.97	0.42	0.78	0.46	3.1	26.8	72.4	1.05	5.07	35.7	32.2	8.41	6.91	8
#11 FC Rep	3.3	5.5	3.21	1.13	0.55	0.87	0.54	3.35	31.7	67.3	0.97	5.52	34.3	30.5	8.06	6.5	8
#12 FC WRD Adit	4.9	4.55	2.74	1	0.43	0.83	0.41	2.84	27.5	60.1	1.3	5.12	29.1	29.4	7.28	5.22	6
#13 FC WRD Adit	4.1	4.35	2.86	0.93	0.5	0.74	0.46	2.97	26.2	61.1	1.46	5.26	29.9	29	7.52	5.53	8
#14 FC WRD Adit	2.5	4.52	2.82	1	0.47	0.78	0.4	2.82	27.1	57.9	0.88	4.96	28	26.9	7	5.19	7
#15 FC WRD Adit	2.5	5.97	3.61	1.32	0.54	0.99	0.54	3.74	36	77.5	1	6.51	37.8	36.5	9.5	7.17	8
#16 FC WRD Adit	4	4.96	2.99	1.02	0.45	0.81	0.43	2.98	27.8	61	1.04	5.13	29.7	29.7	7.19	5.44	7
#17 FC WT	3.3	4.5	2.67	0.9	0.36	0.75	0.42	2.59	25.6	55.4	1.9	5.06	27.2	27	6.79	5.35	5
#18 FC WT	1.2	4.22	2.49	0.91	0.35	0.74	0.35	2.41	24.5	58.5	1.01	4.7	27.1	27.3	6.87	5.06	6
#19 FC WT	2.4	4.66	2.78	1	0.39	0.81	0.39	2.55	26.4	68.4	2.06	5.7	33.2	32.8	8.05	6.55	5
#20 FC WT	2	4.56	2.88	0.96	0.43	0.75	0.37	2.64	26.5	63.1	1.24	4.99	30.6	29.4	7.51	5.77	8


Table 3-50. Flat Creek tailings-rare earth element and germanium concentrations.

3.12 Neihart Mining District (Barkers/Hughesville)

The Neihart mining district, located in the Little Belt Mountains, encompasses 9,000 acres around Neihart, MT (Barkers/Hughesville; fig. 3-20). Mining initially began in the 1890s with the discovery of silver and lead rich ores. Over \$17 million of silver and other minerals were extracted from 96 known mines until the end of mining in the area in 1945 (Western Mining History, 2024a). Acid drainage from the mines polluted nearby creeks and groundwater. This site was added to the Superfund list in September 2001. The excessive amount of mine waste made it a target for the ARL project; EPA and U.S. Forest Service helped with site access. On September 25, 2023, 24 solid samples and 7 aqueous samples were collected from the district. The samples were sent to WVU and ALS for assay. The assay results can be found in tables 3-51 through 3-54. Figures 3-21 and 3-22 show the average REE concentration for solid and aqueous samples, respectively.

Figure 3-20. A large waste rock dump on the mountains near Neihart. Montana.

Neihart Mining District Aqueous % REE Composition

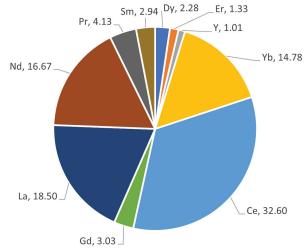


Figure 3-21. REE concentration percentages for every solid sample taken in the Neihart Mining District. Elements with less than 1% concentration were removed.

Figure 3-22. REE concentration percentages for every aqueous sample taken in the Neihart Mining District. Elements with less than 1% concentration were removed.

Neihart Mining District Solids % REE Composition

				2	Jeihart	Mining	Neihart Mining District Aqueous	Aqueot	S								
Ol olomoo	ଞ	2	Ъ	Я	Ξ	₽	Tm	~	ď	e	З	8	La	pN	Pr	Sm	Sc
adilible ID	(µg/L)	(µg/L)	(µg/l)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/l)	(µg/L)	(µg/L)	(µg/l)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Broadwater Mine	<32.00 0.005	0.005	0.005	<0.002	<0.002	<0.002	<0.002	<0.004	0.207	0.041	<0.003	0.006	0.057	0.01	0.004	<0.004	0.049
Broadwater Mine-TR	<32.00 0.006	0.006	0.006	0.006 <0.002	<0.002	<0.002	<0.002 <0.004	<0.004	0.208	0.035	<0.003	0.005	0.059	0.022	0.005	<0.004	<0.037
Compromise Shaft	<32.00	0.01	<32.00 0.01 0.007 0.003	0.003	<0.002	<0.002	<0.002	0.005	0.222	0.089	<0.003	0.009	0.09	0.03	0.005	<0.004	0.049
Compromise Shaft-TR	<32.00	0.029	<32.00 0.029 0.022 0.007		0.002	0.004	0.002	0.014	0.417	0.216	0.007	0.032	0.163	0.097	0.022	0.014	<0.037
Dacotah Mine	<32.00	1.608	<32.00 1.608 0.879 0.3	22	0.097	0.272	0.105	0.626	10.7	9.82	0.575	1.944	3.983	7.2	1.452	1.607	0.75
Dacotah Mine-TR	<32.00	1.682	<32.00 1.682 0.945 0.3	35	0.097	0.29	0.112	0.666	11.4	10.271	0.615	2.077	4.117	7.462	1.541	1.679	0.646
Florence Mine	<32.00	<0.004	<32.00 <0.004 <0.004 <0.002	<0.002	<0.002	<0.002	<0.002 <0.004	<0.004	0.033	0.043	<0.003	0.004	0.023	0.014	0.004	<0.004	<0.037
Florence Mine-TR	<32.00	0.006	<32.00 0.006 <0.004 <0.002	<0.002	<0.002	<0.002	<0.002 <0.004	<0.004	0.047	0.072	<0.003	0.007	0.041	0.033	0.008	0.006	<0.037
Lower Rebellion	<32.00 0.605	0.605	0.325	0.13	0.062	0.128	0.057	0.246	3.218	2.604	0.255	0.78	1.944	2.105	0.48	0.775	0.073
Lower Rebellion-TR	<32.00 0.273	0.273	0.138	0.053	0.013	0.049	0.016	0.085	2.348	2.036	0.095	0.43	1.654	1.333	0.323	0.278	0.038
Silver Dyke Adit	<32.00 10.89	10.89	6.406	2.204	0.739	1.857	0.801	4.89	76.62	167.41	3.425	14.25	91.927	77.993	19.82	13.38	1.096
Silver Dyke Adit-TR	<32.00 14.49	14.49	8.595	2.875	1.017	2.519	1.069	6.647	87.49	235.95	5.064	19.7	139.6	122.1	30.5	20.53	7.277
Upper Rebelloin	<32.00 0.115 0.061	0.115	0.061	0.021	0.007	0.021	0.008	0.045	0.86	0.821	0.048	0.191	0.425	0.496	0.105	0.119	0.038
Upper Rebelloin-TR	<32.00	0.427	<32.00 0.427 0.205 0.076 0.025	0.076		0.082	0.082 0.026 0.177 1.977	0.177	1.977	2.521	0.206	0.206 0.681	0.959	1.889	0.394	0.604	0.538

Table 3-52. Barkers/Hughesville, aqueous samples—rare earth
element and germanium statistics.

Neiha	rt Mining I	District Aqu	ueous Stat	istics	
Completio	Coutl	Total REE	Average	Minimum	Maximum
Sample ID	Couli	(µg/L)	REE	REE	REE
Broadwater Mine	0.00	0.38	0.04	0.00	0.21
Broadwater Mine-TR	0.00	0.35	0.04	0.01	0.21
Compromise Shaft	0.00	0.52	0.05	0.00	0.22
Compromise Shaft-TR	2.54	1.05	0.07	0.00	0.42
Dacotah Mine	2.05	41.94	2.62	0.10	10.70
Dacotah Mine-TR	2.07	43.94	2.75	0.10	11.40
Florence Mine	0.00	0.12	0.02	0.00	0.04
Florence Mine-TR	0.00	0.22	0.03	0.01	0.07
Lower Rebellion	2.33	13.79	0.86	0.06	3.22
Lower Rebellion-TR	2.00	9.16	0.57	0.01	2.35
Silver Dyke Adit	1.04	493.72	30.86	0.74	167.41
Silver Dyke Adit-TR	1.00	705.41	44.09	1.02	235.95
Upper Rebelloin	1.87	3.38	0.21	0.01	0.86
Upper Rebelloin-TR	1.81	10.79	0.67	0.03	2.52

Table 3-51. Barkers/Hughesville, aqueous samples—rare earth element and germanium concentrations.

Neihart Min	ing Distric	t Solids Sta	tistics		
Como la ID	Cauti	Total REE	Average	Minimum	Maximum
Sample ID	Coutl	(mg/kg)	REE	REE	REE
Big Seven	0.56	233.37	13.73	0.15	96.80
Broadwater Mine 1	0.78	229.31	13.49	0.27	83.00
Broadwater Mine 2	0.85	192.80	11.34	0.26	66.10
Compromise Shaft	0.86	220.59	12.98	0.30	74.80
Dacotah #1 - Charlie Bennett	0.71	179.04	10.53	0.14	65.40
Dacotah #2 - Charlie Bennett	0.85	226.52	13.32	0.22	78.60
Dacotah #3 - Charlie Bennett	0.76	202.10	11.89	0.22	73.80
Florence Mine - Charlie Bennett	0.63	213.73	12.57	0.18	84.50
Jig Tailings	0.61	198.37	11.67	0.17	78.00
Lower Carpenter Creek Tailings N	0.59	312.03	18.35	0.23	124.00
Lower Carpenter Creek Tailings S	0.63	269.64	15.86	0.27	105.00
Lower Carpenter Creek Tailings W	0.60	247.94	14.58	0.22	97.90
Lower Rebellion 1 of 2	0.73	240.12	14.12	0.27	89.90
Lower Rebellion 2 of 2	0.73	286.28	16.84	0.34	107.50
Neiheart Tailing S - Charlie Bennett	0.63	187.33	11.02	0.17	74.20
Neiheart Tailings N - Charlie Bennett	0.74	211.20	12.42	0.24	78.50
Ripple	0.69	219.79	12.93	0.26	85.00
Silver Dyke Glory Hole	0.52	205.42	12.08	0.17	86.40
Silver Dyke N 2	0.48	277.45	16.32	0.14	118.50
Silver Dyke N1	0.52	256.78	15.10	0.17	105.50
Silver Dyke S1	0.56	177.68	10.45	0.11	69.90
Silver Dyke SW1	0.64	289.43	17.03	0.26	110.50
Upper Carpenter Creek Tailings N	0.62	231.23	13.60	0.23	89.50
Upper Carpenter Creek Tailings S	0.64	289.72	17.04	0.25	111.50
Upper Rebellion	0.67	235.79	13.87	0.22	93.30

					Nei	hart Min.	Neihart Mining District Solids	t Solids									
Clannes	9	2	Ъ	위	З	τp	Ш	7	۲b	e	Э	8	el	PN	Pr	Sm	З
anipicity	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) ((mg/kg) ((mg/kg)	(mg/kg) (mg/kg) ((mg/kg) ((mg/kg) ((mg/kg)	(mg/kg) (mg/kg) ((mg/kg)
Big Seven	1.7	2.22	1.17	0.43	0.15	0.41	0.16	1.11	11.4	96.8	1.17	3.37	47	39	11.1	6.18	10
Broadwater Mine 1	1.2	3.85	1.89	0.74	0.27	0.7	0.29	1.66	18.9	83	1.76	5.05	39.8	39.9	10.55	6.75	13
Broadwater Mine 2	1.3	3.45	1.9	0.67	0.26	0.59	0.27	1.67	18.5	66.1	1.36	4.3	31.8	32.6	8.47	5.56	14
Compromise Shaft	1.5	3.76	1.93	0.73	0.3	0.69	0.3	1.82	19.5	74.8	1.87	5.12	35.2	38.9	9.75	6.42	18
Dacotah #1 - Charlie Bennett	1.4	1.85	1.08	0.36	0.15	0.39	0.14	0.87	9.1	65.4	1.4	3.25	31.1	3	8.55	5	15
Dacotah #2 - Charlie Bennett	1.2	3.52	1.74	0.69	0.22	0.64	0.23	1.37	17.9	78.6	1.91	5.3	35.3	43.3	10.75	6.85	17
Dacotah #3 - Charlie Bennett	1.2	2.99	1.52	0.59	0.22	0.58	0.22	1.26	14.8	73.8	1.63	4.36	33.9	36.6	9.34	6.09	13
Florence Mine - Charlie Bennett	1.2	2.81	1.26	0.51	0.18	0.53	0.19	1.15	13.7	84.5	1.37	4.34	40.5	34.8	9.61	6.08	11
J ig Tailings	1.1	2.4	1.29	0.47	0.19	0.45	0.17	1.19	12.9	78	1.18	3.37	41.2	30.2	8.71	4.55	11
Lower Carpenter Creek Tailings N	1.1	3.49	1.62	0.68	0.23	0.66	0.25	1.39	17.4	124	1.89	5.28	69.6	49.1	13.95	7.39	14
Lower Carpenter Creek Tailings S	1.2	3.43	1.81	0.7	0.28	0.64	0.27	1.68	18.1	105	1.57	4.88	57.3	42.7	11.85	6.23	12
Lower Carpenter Creek Tailings W	1.2	2.84	1.62	0.57	0.23	0.55	0.22	1.38	15.6	97.9	1.43	4.19	53.9	37.8	10.8	5.71	12
Lower Rebellion 1 of 2	1.3	4.01	2	0.77	0.27	0.7	0.29	1.72	20.2	89.9	1.52	5.07	42.3	39.2	10.65	7.22	13
Lower Rebellion 2 of 2	1.3	4.48	2.42	0.89	0.34	0.82	0.34	2.13	23.8	107.5	1.92	6.2	53.3	47.9	13.15	7.79	12
Neiheart Tailing S - Charlie Bennett	2.4	2.45	1.33	0.49	0.17	0.47	0.19	1.12	12	74.2	0.98	3.23	35.5	30.5	8.41	4.89	6
Neiheart Tailings N - Charl ie Bennett	2.3	3.72	2	0.7	0.24	0.68	0.25	1.65	18.2	78.5	1.44	4.81	37.6	34.2	9.43	6.48	6
Ripple	1.4	2.97	1.72	0.64	0.26	0.52	0.26	1.6	17.6	85	0.93	3.22	41.5	36.9	10.25	5.02	10
Silver Dyke Glory Hole	1.2	2.1	1.19	0.4	0.17	0.42	0.17	1.17	11.3	86.4	1.07	3.18	46	29.6	8.64	4.41	80
Silver Dyke N 2	1.1	2.41	1.16	0.45	0.14	0.5	0.15	0.98	13	118.5	1.28	3.94	68.1	39.1	12	5.64	9
Silver Dyke N1	1.1	2.3	1.04	0.45	0.19	0.44	0.17	1	12	105.5	1.34	3.55	62.3	38.8	11.2	5.4	10
Silver Dyke S1	1	1.79	0.76	0.32	0.11	0.35	0.12	0.72	8.5	6.69	1.05	2.69	38.8	27.6	7.88	4.09	12
Silver Dyke SW1	1	3.86	1.92	0.72	0.26	0.68	0.29	1.75	18.8	110.5	1.79	5.1	59.2	45.7	12.85	7.01	18
Upper Carpenter Creek Tailings N	1.2	2.87	1.64	0.58	0.27	0.55	0.23	1.45	14.9	89.5	1.38	4.11	48.2	35.5	10.35	5.5	13
Upper Carpenter Creek Tailings S	1.1	3.72	1.76	0.74	0.25	0.69	0.26	1.67	18.3	111.5	1.92	5.35	59.7	47.2	13.1	7.46	15
Upper Rebellion	1.4	3.09	1.71	0.61	0.22	0.59	0.23	1.42	16.6	98.3	1.24	4.48	41.3	40.6	11.25	6.75	11

Table 3-54. Barkers/Hughesville, solids samples—rare earth element and germanium concentrations.

Montana Bureau of Mines and Geology Open-File Report 769

4.0 SUMMARY

Task 4 year 1 field activities focused on the collection and analysis of solid and aqueous samples based on the initial site list and sites added throughout the year. Samples were collected at 12 of the 23 sites, with a total of 392 samples collected. Much of the sampling occurred at sites with active Superfund and other mine closure monitoring activities; however, some sampling occurred at active mine operations (e.g., Montana Resources active Butte mining operations).

Sample results showed REE present in all of the samples collected; however, concentrations vary considerably between sites and waste sources (figs. 3-23–3-26). REE concentrations were higher in surface-water and groundwater sites where pH values were less than or equal to 4.0. Sludge and solid samples with the highest REE concentrations were from sites treating acid mine water with lime, which concentrated REEs contained in the waste sludge.

Reconnaissance sampling will continue during year 2 of the study, and that data combined with year 1 results will be used to identify sites with elevated REE concentrations for further, more detailed sampling.

5.0 ACKNOWLEDGMENTS

The authors thank the many property owners who made their property available for sample collection, and various companies who also participated. We also thank the many State and Federal agencies who assisted with site access and owner contact.

Special acknowledgement is extended to the Army Research Lab, who provided funding for this project.

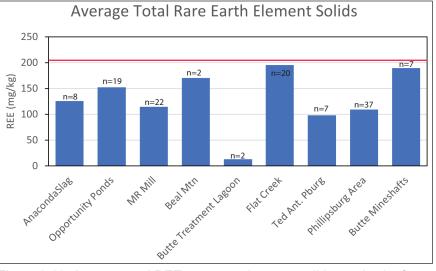


Figure 3-23. Average total REE concentrations per solid sample site for samples below 200 mg/kg. The red line represents the average REE concentration in Earth's crust, which is about 206 mg/kg.

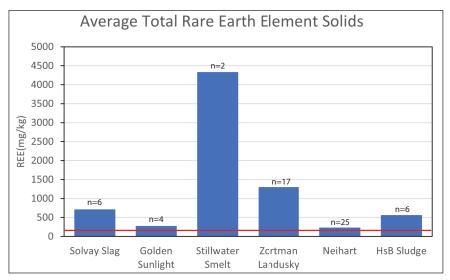


Figure 3-24. Average total REE concentrations per solid sample site for samples below 200 mg/kg. The red line represents the average REE concentration in Earth's crust, which is about 206 mg/kg.

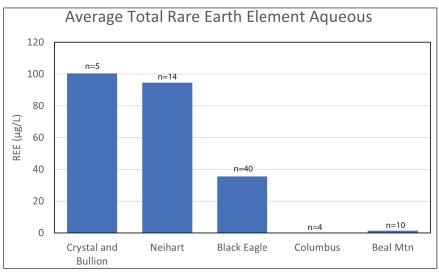
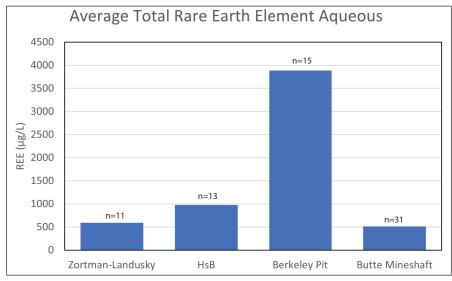
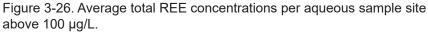




Figure 3-25. Average total REE concentrations per aqueous sample site below 100 μ g/L.

6.0 REFERENCES

- Balaram, V., 2019, Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact: Geoscience Frontiers, v. 10, no. 4, p. 1285–1303, <u>https://doi.org/10.1016/j.gsf.2018.12.005</u>
- Barrick Gold Corporation, 2022, Golden Sunlight's tailings reprocessing project: A model for sustainable closure, available at <u>https://www.barrick.</u> <u>com/English/news/news-details/2022/golden-</u> <u>sunlights-tailings-reprocessing-project-a-model-</u> <u>for-sustainable-closure/default.aspx</u> [Accessed May 6, 2024].
- Duaime, T.E., Kennelly, P.J., and Thale, P.R., 2002, Butte, Montana: Richest hill on Earth, 100 years of underground mining: Montana Bureau of Mines and Geology Miscellaneous Contribution 19, 1 sheet, scale 1:9,000.
- Duaime, T.E., and McGrath, S.F., 2019, Butte, Montana: The Berkeley Pit, changes in water quality and water sampling methods, 1982–2017: Montana Bureau of Mines and Geology Bulletin 138, 64 p.
- Duaime, T.E., McGrath, S.F., Icopini, G.A., and Thale, P.R., 2019, Butte Mine Flooding Operable Unit water-level monitoring and water-quality sampling 2017 consent decree update, Butte, Montana, 1982–2017: Montana Bureau of Mines and Geology Open-File Report 709, 180 p.

- Environmental Protection Agency (EPA), 2017a, Basin Mining Area site profile, available at <u>https://cumulis.epa.gov/supercpad/</u> <u>SiteProfiles/index.cfm?fuseaction=second.</u> <u>Cleanup&id=0801057#bkground</u> [Accessed December 2024].
- Environmental Protection Agency (EPA), 2017b, Carpenter Snow Creek Mining District site profile, available at: <u>https://cumulis.epa.gov/supercpad/SiteProfiles/index.cfm?fuseaction=second.</u> <u>Cleanup&id=0801507#bkground</u> [Accessed December 2024].
- Environmental Protection Agency (EPA), 2017c, Mouat Industries Site Profile, available at <u>https://</u> <u>cumulis.epa.gov/supercpad/cursites/csitinfo.</u> <u>cfm?id=0800384</u> [Accessed December 2024].
- Environmental Protection Agency (EPA), 2017d, ACM smelter and refinery site profile, available at <u>https://cumulis.epa.gov/supercpad/</u> <u>SiteProfiles/index.cfm?fuseaction=second.</u> <u>Cleanup&id=0800402#bkground</u> [Accessed December 2024].
- Environmental Protection Agency (EPA), 2018, Hazardous waste cleanup: Solvay Silver Bow Plant in Butte, Montana, available at: <u>https://19january2021snapshot.epa.gov/hwcorrec-</u> <u>tiveactionsites/hazardous-waste-cleanup-solvay-</u> <u>silver-bow-plant-butte-montana_.html</u> [Accessed December 2024].

Mitchell, Larry, 2004, Zortman & Landusky Mines: HJR 43 water quality impacts: Staff paper presented to the Environmental Quality Council, available at <u>https://archive.legmt.gov/content/</u> <u>publications/environmental/2004zortman.pdf</u>

Morris, Patrick F., 1997, Anaconda, Montana: Copper smelting boom town on the western frontier: Swann Pub, 326 p.

Seredin, V.V., and Dai, S., 2011, Coal deposits as potential alternative sources for lanthanides and yttrium: International Journal of Coal Geology, v. 94, p. 67–93, <u>https://doi.org/10.1016/j.</u> <u>coal.2011.11.001</u>

Sibanye Stillwater, 2024, Stillwater and East Boulder: U.S. PGM Operations, available at <u>https://</u> <u>www.sibanyestillwater.com/business/americas/</u> <u>pgm-operations-americas/stillwater-east-boulder/</u> [Accessed December 2024].

Shovers, B., Flege, M., Martin, D., and Quivik, F., 1991, Butte and Anaconda revisited: An overview of early day mining and smelting in Montana: Montana Bureau of Mines and Geology Special Publication 99, 64 p.

Tetra Tech, 2010, Preliminary leach pad investigation Beal Mountain Mine: available at <u>https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stel-prdb5183263.pdf</u>

Western Mining History, 2024a, Neihart Montana, available at <u>https://westernmininghistory.com/</u> <u>towns/montana/neihart/</u> [Accessed May 6, 2024].

Western Mining History, 2024b, Philipsburg Montana, available at <u>https://westernmininghistory.com/</u> <u>towns/montana/philipsburg/</u> [Accessed May 6, 2024].

Woodford, Kathleen, 2016, History of the Flat Creek-Iron Mountain Mine: Mineral Independent, available at <u>https://vp-mi.com/news/2016/jan/21/ history-of-the-flat-creek-iron-mountain-mine-14/</u> [Accessed December 2024].