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INTRODUCTION 

The Murr Peak 7.5′ quadrangle is in the Salish Mountains, about 25 mi (40 km) southwest of 
Kalispell (fig. 1). The northwestern corner of the Flathead Reservation is near the southern 
boundary of the quadrangle. A drainage divide bisects the quadrangle, separating the lower 
Clark Fork and lower Flathead river drainages. Much of the quadrangle is forested and 
unglaciated, located less than a half mile south of the Cordilleran ice sheet margin during the 
last glacial maximum (e.g., Alden, 1953). While the higher elevations can be thickly vegetated, 
a dense network of decommissioned U.S. Forest Service and logging company roads makes 
travel relatively easy within the quadrangle. Outcrops are generally limited to gentle ridgelines 
and active or abandoned quarries. Extensive low-relief erosional surfaces occur at all 
elevations, often trapping thick deposits of non-calcareous loess. Elevations range from 6,770 
ft (2,063 m), at the high point of Murr Peak, to about 3,500 ft (1,065 m), at the low point along 
Briggs Creek. The highstand of Glacial Lake Missoula, at about 4,250 ft (1,295 m; e.g., Alden, 
1953; O’Connor and others, 2020), projects into the quadrangle but shorelines are not apparent.

PREVIOUS MAPPING AND METHODS

Early maps of the quadrangle were completed as part of a geologic study and mineral 
assessment of Lincoln and Flathead Counties (Johns, 1964, 1970, 1:126,720 scale). Harrison 
and others (1986, 1:250,000 scale) later subdivided the Belt Supergroup into formations, using 
a combination of stratigraphic names from the western and eastern edges of the basin. Ryan 
and Buckley (1993, 1:24,000 scale) refined the stratigraphy of the Ravalli Group and mapped 
informal members of the Revett Formation, as part of a larger mapping project of the Flathead 
Reservation (Buckley, 1994, 1:100,000 scale). These maps were never published at full scale, 
but were included as less-detailed figures in other reports (Ryan and Buckley, 1993; Buckley, 
1994). Buckley’s (1994, 1:100,000 scale) unpublished map was later revised by Sears (1991, 
unpublished, 1:100,000 scale). Lange and Zehner (1992, 1:50,000 scale) mapped sparse 
outcrops of Tertiary volcanic rocks and dikes (Tba of this study) in the eastern part of the 
quadrangle. Montejo (2021, 1:24,000 scale) mapped surficial deposits in detail near Hubbart 
Reservoir.

Rock samples collected during the mapping effort for whole-rock geochemistry and U-Pb 
geochronology were processed at the MBMG mineral separation laboratory. A ~100 to 200-g 
split of the crushed material was prepared for bulk-rock geochemical analysis and subsequently 
analyzed by X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry 
(ICP-MS) at the Peter Hooper GeoAnalytical Lab, Washington State University. Zircon was 
isolated from selected samples by standard density and magnetic separation techniques. Zircon 
separates were analyzed by laser ablation inductively coupled plasma mass spectrometry 
(LA-ICP-MS) by Daniel Brennan and Stuart Parker, at the University of California, Santa 
Barbara. All data is reported in Brennan and others (in press) and Mosolf and others (in press).

GEOLOGIC SUMMARY

Deposition of the Revett and St. Regis Formations occurred during the Mesoproterozoic, 
between ca. 1470 and 1430 Ma (Hirtz and others, in press). Sediment types in both formations 
(table 1, fig. 2) have been interpreted as different parts of idealized sheetflood, playa, and 
lacustrine complexes (fig. 4 of Winston, 1986). The Revett Formation was deposited by 
sheetfloods that entered a flat intracratonic playa of the Belt Basin from the west during 
episodic rainstorms (Winston, 2016). Deposition occurred on the toes of nearly flat alluvial 
aprons, forming extensive sand- and mudflats, which slowly migrated across the playa in 
response to punctuated sediment transport events during rainstorms. The St. Regis Formation 
was deposited in a wetter climate, as the intracratonic Belt Sea episodically expanded and 
contracted. During drier periods, deposition occurred as the distal edges of muddy sheetfloods 
filled the playa, creating extensive sand- and mudflats similar to those in the Revett. Once 
flooded, sand was transported along the margin of the shallow intracratonic sea by fair weather 
and storm waves. Mud settled out from the turbid water during calm weather. Predominantly 
east–west oscillatory waves passed through the elastic fluid mud along the lake bottom, 
periodically opening and closing small tension cracks that trapped the overlying sand bedload 
(“crinkle cracks” of Winston and Smith, 2016). Rising and falling lake levels and episodic 
drying of the muddy playa produced the characteristic cycles (“type 1 cycle” of Winston and 
Lyons, 1997) of the St. Regis Formation (fig. 2). Burial, diagenesis, and ultimately greenschist 
metamorphism overprinted the Belt sediments, resulting in the various colors that loosely 
correspond with these cycles.

During the Cretaceous to early Eocene Cordilleran (i.e., Sevier) Orogeny, Belt rocks were 
thrust up and out of their basin as part of the Lewis thrust plate (e.g., Sears and Hendrix, 2004; 
Fuentes and others, 2012). This large thrust panel was translated to the northeast by at least 70 
mi (115 km) over younger, flat-lying rocks in its footwall (e.g., Sears and Buckley, 1993; Sears 
and Hendrix, 2004). Minor folding of the brittle Belt rocks produced pervasive joints parallel 
and orthogonal to mapped fold hinges. Fold geometries are irregular and often non-cylindrical. 
Fold hinges are poorly defined, difficult to trace, and seem to change position based on 
stratigraphic level. In drainage bottoms, flat-lying erosional surfaces (pediments) were 
established by the late Eocene to early Oligocene. Near Briggs Creek, basaltic lavas and dacite 
tuffs flowed down a pediment, likely from eruptive centers in the nearby Hog Heaven volcanic 
field (fig. 1; Lange and others, 1994; Scarberry and others, 2023; Scarberry, 2023). Coeval 
extension may have been locally accommodated by cryptic down-to-the-northeast normal 
faults, including the Shroder Creek and unnamed faults of Johns and others (1963), and the 
Little Bitterroot fault of Lange and Zehner (1992). However, the faults lack evidence of 
deformation and are only tentatively inferred from stratigraphic relationships and projected 
contacts, which suggest no more than 500 ft (150 m) of apparent normal offset. An alternative 
interpretation of the Shroder Creek fault as a gentle syncline is permissible, requiring dips of 
only about 2º more than shown on the cross section.

During the Pleistocene, the Cordilleran ice sheet advanced from the north, stopping just short 
of the map area (fig. 1; Alden, 1953). Blowing dust from the ice sheet and the surrounding 
glacial deposits settled on the topography, accumulating as loess in flat and protected areas. 
Glacial Lake Missoula likely flooded the lowlands near the Little Bitterroot River, up to an 
elevation of about 4,250 ft (1,295 m; O’Connor and others, 2020), but apparently left no record 
in the map area. A small glacier in the head of Redmond Creek scoured a cirque, leaving 
behind small moraines and a tarn. Glacial outwash flowed down toward the Little Bitterroot 
River, depositing fluvial gravels on the older Tertiary volcanic rocks at a time when the map 
area was not inundated by Glacial Lake Missoula. In the highlands, above about 4,800 ft (1,460 
m), ongoing freezing and thawing of jointed bedrock resulted in isolated pockets of blockfields 
or felsenmeer. Post-glacial (Holocene) incision advanced upstream from both sides of the 
drainage divide. In the Little Bitterroot River drainage basin near Hubbart Reservoir, 
steep-sided and narrow drainages have been incised into glacial deposits. In the Thompson 
River drainage basin, impressive canyons with waterfalls have been carved into bedrock (e.g., 
Mandy Gulch). Several quarries have modified natural outcrops of the Revett Formation.

DESCRIPTION OF MAP UNITS

Qal  Alluvium (Holocene)—Unconsolidated, poorly sorted to moderately sorted deposits of 
stream-rounded cobbles and gravel. Deposited by modern streams from local Belt 
Supergroup sources (Revett and St. Regis Formations). Unit is inset within older glacial 
deposits and bedrock along Redmond Creek, in the southern part of the map. Mapped 
only where thickness approaches 30 ft (10 m).

Qac  Alluvium and colluvium (Holocene)—Unconsolidated, poorly sorted to moderately 
sorted deposits of angular to subrounded cobbles and pebbles in a tan to pink matrix of 
reworked non-calcareous loess. Deposited in flat valley bottoms by sheetwash and gravity 
processes from adjacent hillsides. Includes minor paludal and fine-grained deposits of 
moderately sorted sand to clay, deposited in marshy areas by sheetwash processes. 
Thickness generally less than 30 ft (10 m).

Qc  Colluvium (Holocene)—Unconsolidated, angular to subangular basalt gravel and 
boulders. Forms scattered lag on gentle hillslopes below basalt outcrops. Deposited by 
rockfall and topple, with reworking by sheetwash and gravity processes. Thickness 
generally less than 30 ft (10 m).

Qta  Talus deposit (Holocene)—Unconsolidated deposits of poorly sorted angular boulders. 
Deposited by rockfall in fan-shaped rubble piles beneath steep slopes and cliffs. 
Thickness is likely less than 50 ft (15 m). 

Qls  Landslide deposit (Holocene?)—Mass-wasting deposit that consists of large, unsorted 
boulders and a fine-grained matrix. Deposit consists of a headwall breakaway zone of 
toppled bedrock, a smooth to hummocky slope with large rotated blocks, and a 
hummocky toe of poorly sorted boulders and finer-grained debris. Variable thickness, 
likely less than 100 ft (30 m).

Qp  Paludal deposit (Holocene to Pleistocene)—Unconsolidated silt, clay, and organic 
sediments accumulated in an ephemeral pond or marsh. Sediment deposited by settling 
ouf of standing water and by accumulation of organic material. Occurs only in the small 
tarn at the head of Redmond Creek in the southwestern part of the map area. Likely rests 
unconformably on glacially scoured bedrock, dammed behind a small moraine. Thickness 
is likely less than 30 ft (10 m).

Qg  Glacial deposit (Pleistocene)—Unconsolidated glacial till deposits of poorly sorted 
subangular boulders, cobbles, pebbles, sand, and tan loess with lesser glacial outwash 
deposits of subrounded boulders, cobbles, pebbles, and sand. Boulders rarely have glacial 
striations and grooves. Rests unconformably on glacially scoured bedrock, draping 
bedrock benches and forming small moraines below the cirque at the head of Redmond 
Creek in the southwestern part of the map area. Thickness likely less than 100 ft (30 m).

QTgr  Gravel (Pleistocene to Oligocene?)—Unconsolidated deposits of poorly sorted 
subangular to rounded pebbles, cobbles, and boulders in a silty-sand matrix. Forms a thin 
lag deposit that thickens towards the valley bottom. Correlative with glacial outwash 
deposits (Qg) near the headwaters of Redmond Creek, based on shared clast provenance 
with local bedrock sources (Ysr, Yr). Deposited by glacial outwash streams draining 
Redmond Creek. Inferred Pleistocene age. Rests on ash-fall tuff and tuffaceous 
sedimentary rock (Ttu) along the drainage canal that diverts Briggs Creek into Hubbart 
Reservoir. Gravels near this basal contact are more consolidated, making it possible that 
fluvial gravels as old as Oligocene may be included in the lower part of the unit. Where 
the basal contact is exposed, the unit is about 25 ft (8 m) thick.

Tba  Basalt (Oligocene to late Eocene)—Black basalt (49.1–50.7 wt. percent SiO2; Lange 
and Zehner, 1992; Mosolf and others, in press) that weathers tan to light reddish-brown. 
Mostly aphanitc, with uncommon vugs, vesicles, amygdules, and columnar joints. 
Columnar joints are inclined up to about 40º from vertical, yet the basal contact is flat and 
consistently at an elevation of around 4,080 ft (1,245 m), suggesting deposition as a flow 
with irregular cooling margins. Basal contact with the underlying Revett Formation is 
covered but is near the same elevation as a pediment with a ferricrete lag. An Oligocene 
to late Eocene age is based on a whole-rock K-Ar date of 33.8 ± 1.6 Ma (Lange and 
others, 1994). Paleomagnetic data from this unit suggest minor clockwise rotation and 
flattening since emplacement (Sheriff, 1989). Correlative with the Hog Heaven volcanic 
field (fig. 1), which is centered about 8 mi (13 km) to the east (Lange and others, 1994; 
Scarberry and others, 2023). Thickness is about 50–60 ft (15–18 m).

Ttu  Tuff and tuffaceous sedimentary rock (Oligocene to late Eocene)—Tan to yellowish 
tan, poorly welded ash-flow tuff of dacite composition (66.8 wt. percent SiO2; Lange and 
others, 1994). Quartz, plagioclase, sanidine, and biotite phenocrysts are common. 
Correlative with units “Ta” of Montejo (2021) and “Trts” of Scarberry (2023), which are 
better exposed in the neighboring Hubbart Reservoir 7.5′ quadrangle. Lower contact is an 
inferred unconformity, resting on lower Revett Formation. Unconformable upper contact 
with Pleistocene or older gravels (QTgr) is exposed along the drainage canal that diverts 
Briggs Creek into Hubbart Reservoir, where the unit is at least 50 ft (15 m) thick. 

BELT SUPERGROUP

The Belt Supergroup is a very thick succession of low-grade metasedimentary rocks that have 
well-preserved primary sedimentary structures. Formations are defined by the characteristics of 
their sedimentary rock protoliths, with gradational contacts between formations. For accuracy 
and clarity, the descriptions on this map sometimes refer to the inferred primary grain sizes 
(sand, silt, clay) of the sedimentary rock protolith rather than the general metamorphic rock types 
(quartzite, siltite, argillite). Graded layers less than about 1 in (3 cm) thick are termed couplets; 
layers approximately 1–4 in (3–10 cm) thick are termed couples. Layers greater than 4 in (10 
cm) thick are termed beds; greater than about a foot (30 cm) are termed thick beds. 

Common associations of primary grain sizes, layer scales, bed geometry (bedforms), and 
sedimentary structures define sediment types (e.g., Winston and Link, 1993; Winston, 2016). 
Associations of key sediment types provide the most diagnostic description for formations of the 
Belt Supergroup. Unit descriptions include associations of key sediment types, which are 
summarized in table 1. The general proportions of sediment types can be used to accurately 
identify formations and infer depositional environment (fig. 2).

Ysr  St. Regis Formation (Mesoproterozoic)—Alternating 15 to 50 ft-thick (5 to 15 m) 
intervals of gray to purple, dark gray weathering, mudcracked, very fine sand to clay 
couplets and gray to green, tan weathering, lenticular, fine or very fine sand to clay 
couples (table 1; fig. 2; “type 1 cycle” of Winston and Lyons, 1997). Mudcracked couplets 
range from about ¼–1½ in (½–4 cm) thick, with common polygonal desiccation cracks 
and mud chips with upturned cusps. Lenticular couples range from about ¼–4 in (½–10 
cm) thick. Isolated, aligned to intersecting spindle-shaped, sand-filled subaqueous 
shrinkage cracks (“crinkle cracks” of Winston and Smith, 2016) are common. Lenticular 
couples range from indistinct, wavy continuous layers with subtle grading to distinct 
rippled layers of white, well-sorted fine quartz sand with rare dolomitic cement. Rippled 
sand layers are recessive and tan-brown weathering, ranging from discontinuous layers of 
isolated crests to continuous beds of climbing symmetric ripple sets. Mud chip breccia 
lags, about ½–4 in (1–10 cm) thick, often mark the top of the mudcracked couplet to 
lenticular couple cycles (“type 1 cycle” of Winston and Lyons, 1997). Interbedded tabular 
couples and beds of flat-laminated sand, massive silt, and graded silt (table 2) are also 
common, particularly near the lower part of the unit. Unit forms resistant outcrops due to 
the general lack of partings in the siltite and argillite. Lower contact is gradational, placed 
below the lowest lenticular couple interval. Upper contact is not exposed in the map area. 
U-Pb dating of zircon yielded a maximum depositional age of 1468 ± 10 Ma (table 2, fig. 3, 
Brennan and others, in press), which overlaps with results from the Ravalli Group in Glacier 
National Park (Hirtz and others, 2024). Apparent thickness is at least 2,500 ft (760 m).

Yr  Revett Formation (Mesoproterozoic)—Blue-gray to white, rusty to tan weathering, very 
fine sericitic quartzite and siltite (flat-laminated sand and massive silt sediment types; 
table 1, fig. 2) and interbedded gray-blue to gray-purple, dark gray weathering, 
mudcracked, very fine sand/silt to clay couplets (table 1). Quartzite and siltite beds are 
tabular, ranging from about 4 in (10 cm) to 6 ft (2 m) thick. Characteristic blue-gray to 
white, tan weathering, thick quartzite beds have well-rounded, well-sorted fine quartz 
sand; commonly with flat laminations near the base and climbing ripple sets 
(straight-crested and lunate) near the top of beds. Diagenetic banding (fig. 4), thin mud 
drapes, and load structures are common. Couplets are often even and continuous, with 
desiccation cracks and mud chips. Wavy and continuous couplets matching descriptions of 
muddy antidunes described by Winston (2016) are rare, typically occurring near the 
gradational upper contact. Where possible, Formation is divided into informal upper and 
lower parts. The upper part contains bed sets around 30 ft (10 m) thick that alternate 
between flat-laminated sand/massive silt and mudcracked couplet/graded silt sediment 
types (table 2). In the poorly exposed lower part, 1- to 3-ft (1/3-1 m) thick quartzite beds 
are often poorly cemented, with a grainy texture. The upper part corresponds with the 
informal upper and middle Revett of Ryan and Buckley (1993), the lower part with the 
informal lower Revett. Internal contact is placed approximately above the highest thick 
(>3 ft; 1 m), fine-grained quartzite bed and below the lowest thick (>30 ft; 10 m) set of 
mudcracked couplets. U-Pb dating of zircon constrains maximum depositional ages of 
1469 ± 9 Ma for the upper part and 1474 ± 9 Ma for the lower part (table 2, fig. 3, 
Brennan and others, in press), both of which overlap with results from the Ravalli Group 
in Glacier National Park (Hirtz and others, 2024). Thickness of the upper part is about 980 
ft (300 m). Lower part is at least 2,500 ft (760 m) thick. Lower contact is not exposed.
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Figure 4. Example of cross-cutting diagenetic banding and depositional layering 
in the Revett Formation. Horizontal layers generally follow depositional layering 
of the flat-laminated sand sediment type, which are cross-cut by more steeply 
dipping diagenetic bands.
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and couples, with sharp bases,
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interiors, uncommon graded
muddy silt tops, and rare very
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Even to wavy, continuous very 
fine sand/silt to clay couples
and couplets with common
desiccation cracks and mud
chips.

Oscillation-rippled, very fine
sand/silt lenses capped by clay
with common crinkle cracks.

Table 1. Examples of sediment types, with annotated field photos and general rock descriptions. 
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Figure 2. Stratigraphic, vertical, and lateral distribution of sediment types in the study area. (A) Relative proportions 
of sediment types within the St. Regis and Revett formations, based on outcrop observations (n = 481). Massive 
and graded silt sediment types were combined based on their resemblance to one another and relative lack of 
abundance. (B) Generalized stratigraphic column shows typical succession of sediment types from the lower part of 
the St. Regis Formation, measured in Mandy Gulch (see cross-section). Colors represent the general color of the 
rocks. (C) Depositional model of common sediment types within the Ravalli Group, with attention drawn to sediment 
types in the St. Regis and Revett Formations. Modified from Winston (1986). Not drawn to scale.

Sample Sediment type Unit Latitude
 (°N)

Longitude
(°W) 2σ MSWD

SP23MUR04 mudcracked couple
(muddy antidune) Yr (upper)   47.8899   -114.8005 20/120 1468.9 8.7 0.4

SP23MUR09 lenticular couple Ysr   47.9061   -114.8328 16/120 1468.3 9.8 0.4

SP23MUR10 flat-laminated sand Yr (lower)   47.9138   -114.7761 15/119 1474.3 10.1 0.2

Table 2.  U-Pb zircon geochronology.

Reported maximum depositional ages are the weighted mean of 206Pb/238U ages, with <10% discordance, that define the 
youngest graphical peak (fig. 4). MSWD is the Mean Square Weighted Deviation. Zircon separates were prepared at 
MBMG and analyzed by LA-ICP-MS at the University of California, Santa Barbara. Latitudes and longitudes are in the 
1984 World Geodetic Survey (WGS84) datum.
anumerator denotes the number of spot analyses used to calculated the maximum depositional age; denominator 
denotes the total number of concordant analyses in the sample.
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Figure 3. Kernal density estimate (KDE) plots of 
207Pb/206Pb zircon ages with <10% discordance. 
Bandwidths of 20 m.y. and bin widths of 50 m.y. were 
used. Circles show individual age analyses. See table 2 
for more information regarding maximum depositional 
ages. Data reported in Brennan and others (2025).
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