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LOCATION AND PHYSIOGRAPHIC SETTING

The Christensen Ranch 7.5′ quadrangle is located in Beaverhead and Madison Counties, approximately 16 
km (10 mi) east–southeast of Dillon, Montana. The map area covers parts of the Sweetwater Hills and 
Beaverhead Valley near the southern terminus of the Ruby Range (fig. 1). The Sweetwater Hills are 
characterized by hilly and rugged upland terrain covered by a mix of grassland and sagebrush steppes, 
with some tracts of coniferous woodlands. The exposure of the bedrock geology and overlying 
unconsolidated Tertiary–Quaternary deposits is generally good to excellent. The map area spans a drainage 
divide separating Sweetwater and Stone creeks, which flow to the Jefferson River basin. Elevations range 
from 1,765 m (5,790 ft) along Blacktail Deer Creek to 2,588 m (8,490 ft) at Benson Peak. 

PREVIOUS MAPPING

The Christensen Ranch 7.5′ quadrangle is covered by small-scale mapping by Ruppel and others (1993, 
scale 1:250,000) and Klepper (1950, scale 1:250,000). Large-scale mapping by Okuma (1971, scale 
1:24,000) and James (1990, scale 1:24,000) covered the southeast part of the quadrangle and was focused 
on the metamorphic rocks. Petrological and mapping studies of the Precambrian basement rocks outside 
the Christensen Ranch quadrangle were done by Garihan (1979a,b), Karasevich (1980), Dahl (1979, 
1980), Dahl and Friberg (1980), and Desmarais (1981). The region’s Tertiary stratigraphic framework is 
summarized by Thomas and Sears (2020), Vuke (2020), and references therein.

METHODS 

Geologic Mapping

Field mapping was conducted over approximately 3.5 months in 2023 for the STATEMAP component of 
the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program 
(NCGMP). A 1:24,000-scale topographic base was utilized for field mapping, and geologic contacts were 
refined using high-resolution satellite imagery (ESRI, 2024) and 2024 USGS 3DEP lidar data. Structure 
and observational data were located and measured with a traditional hand transit and an Apple iPhone 14. 
Additional data were compiled from James (1990). Metamorphic foliations represent all types of 
recognizable surfaces of metamorphic origin. In gneiss and metasedimentary rocks, the foliation 
commonly parallels mineral compositional layering. Metamorphic lineations represent mineral alignment, 
fold axes, and the intersection of foliation planes. Igneous foliations are surfaces formed by mineral 
alignment in the groundmass. Field sheets were scanned and georegistered in GIS software. The geologic 
data were subsequently digitized to the Geologic Map Schema (GeMS) geodatabase required by the 
NCGMP. Structure data and geologic contacts were compiled from Okuma (1971) and James (1990). 

Whole-Rock Element Chemistry and U-Pb Geochronology

Rock samples for whole-rock geochemistry and U-Pb geochronology were processed at the MBMG 
mineral separation laboratory. A 100- to 200-g split of the crushed material was prepared for bulk-rock 
geochemical analysis and analyzed by X-ray fluorescence (XRF) and inductively coupled plasma mass 
spectrometry at the Peter Hooper GeoAnalytical Lab, Washington State University. Zircon was isolated 
from rock and sediment samples using standard density and magnetic separation techniques at the MBMG 
mineral separation laboratory and analyzed by laser ablation inductively coupled plasma mass 
spectrometry (LA-ICPMS) at the University of California, Santa Barbara.

Bulk-rock major and trace element geochemical data are plotted in figure 2 (see Mosolf and others, in 
review). U-Pb age spectra are plotted in figure 3 and interpretative ages are provided in table 1. The 
complete U-Pb zircon datasets and analytical methods are reported in Mosolf and others (2023) and 
Brennan and others (2025).

DESCRIPTION OF THE MAP UNITS

The Christensen Ranch geologic map shows rock units exposed at the surface or overlain by thin surficial 
deposits. Surficial sedimentary and mass movement deposits are shown where they are thick and extensive 
enough to be mapped at 1:24,000 scale. Igneous and metamorphic rocks are classified using the 
International Union of Geological Sciences nomenclature (Le Bas and Streckeisen, 1991; Schmid and 
others, 2007). Minerals in igneous and metamorphic rock units are listed in order of decreasing abundance. 
Grain size classification of unconsolidated and consolidated sediment is based on the Wentworth scale 
(Lane, 1947). Multiple lithologies within a rock unit are listed in order of decreasing abundance.

Quaternary–Tertiary Sedimentary Deposits

Older Quaternary alluvial fans (Qafo) and debris flow deposits (QTdf) rest on poorly consolidated Tertiary 
sedimentary deposits along the western range front. Siliceous hydrothermal deposits (QTsi) coincide with 
the Carter Creek fault, possibly postdating fault movement. Extensive alluvial stream deposits (Qal) have 
formed in stream catchments in the Sweetwater Hills, including Hoffman, Carter, Bachelor, and Stone 
creeks. Small landslide deposits (Qls) occur throughout the map area. A substantial open cut pit and 
associated tailings (m) associated with the Regal Mine occur along the Sweetwater Road in the central part 
of the map area; talc mining was active at the time of this study.

m Land modified by mining—Land disturbed by open-cut talc mine and associated tailings.

Qal Alluvium (Quaternary: Holocene)—Unconsolidated, poorly sorted cobbles, gravel, sand, and 
silt along Stone Creek and tributary drainages. Thickness as much as 10 m (33 ft).

Qaf Alluvial fan deposit (Quaternary: Holocene and Pleistocene?)—Unconsolidated, poorly sorted 
cobbles, gravel, sand, and silt forming a fan-shaped deposit in the southern part of the map area. 
Thickness as much as 30 m (100 ft).

Qls Landslide deposit (Quaternary: Holocene and Pleistocene?)—Unstratified, poorly sorted rock 
fragments deposited by slumps, slides, rock falls, and debris flows. Typically characterized by 
hummocky topography, subdued landslide scarps, and rock talus. Variable thickness, generally 
less than 30 m (100 ft).

 Alluvial fan deposit, older (Pleistocene)—Unconsolidated, poorly sorted, cobbles, gravel, sand, 
and silt forming broad incised surfaces along the range front above the level of modern streams. 
Deposited as coalescent alluvial fan channels and debris flow fans. Variable thickness, with a 
maximum of at least 10 m (30 ft).

QTdf Debris-flow deposit (Pleistocene? and Miocene?)—Poorly sorted gravel and sand with angular 
to subrounded cobbles and boulders up to 3 m (10 ft) in length. Clasts are predominantly Archean 
crystalline basement rock. Interpreted to be debris flow deposits formed on a slope dipping gently 
to the northwest away from the range front. Thickness up to 10 m (30 ft).

QTsi Siliceous hydrothermal deposits (Quaternary and Pliocene?)—Brown masses of jasperoid up 
to 400 m (1,300 ft) wide coinciding with the Carter Creek fault zone. 

Tertiary Volcano-Sedimentary Deposits

Tertiary sedimentary deposits of the Sixmile Creek Formation (Bozeman Group) were mapped on the 
northwest flank of the Sweetwater Hills, unconformably overlying the Archean basement rocks and cut 
by the Ruby Range western border fault. The poorly lithified deposits generally consist of interbedded 
tuffaceous sandstone and conglomerate beds (fig. 4A; Thomas and Sears, 2020).  Scattered outcroppings 
of basalt in the northern part of the quadrangle (Tb) are possibly equivalent to the Timber Hill Basalt 
member (approximately 6 Ma; Fritz and others, 2007), or a Pliocene basalt northeast of the map area 
(approximately 4 Ma; Marvin and others, 1974).

Tb Basalt, undivided (Miocene to Pliocene?)—Small outcroppings of aphanitic basalt containing 
sparse olivine phenocrysts (<1 percent). Occurs as scattered outcrops in the northern half of the 
quadrangle. Thickness unknown.

Tsc  Sixmile Creek Formation (Miocene to Pliocene?)—Pale orange to gray, poorly consolidated, 
interbedded tuffaceous to quartz-rich silt, sand, gravel, and conglomerate. Conglomerate intervals 
are poorly sorted, massive to cross-bedded, clast- to matrix-supported with cobbles and boulders 
mostly derived from Archean basement rocks. Poorly lithified intervals consist of thin- to 
thick-bedded, massive to cross-stratified silt, sand, and gravel with occasional tuff interbeds. The 
unit is locally calcareous along the trace of the Ruby Range western border fault. The base is not 
exposed but estimated to be up to 305 m (1,000 ft) thick. A tuffaceous sequence near Guntner 
Place (section 28, T. 7 S., R 7 W.) yielded U-Pb zircon max depositional ages of 10.7 ± 0.1 Ma 
and 10.5 ± 0.1 Ma (table 1). 

Precambrian Metamorphic and Intrusive Rocks

The Ruby Range is underlain by three belts of Precambrian metamorphic rock, including the Elk Gulch 
Suite, the Dillon Gneiss, and the Christensen Ranch Metasedimentary Suite. The Elk Gulch Suite is not 
exposed in the map area, but is assumed to be the structurally deepest metamorphic assemblage in the 
region, consisting of gneiss, migmatite, and amphibolite. Minimum emplacement ages of gneissic 
intervals span approximately 2.79–2.72 Ga in the south-adjacent Elk Gulch quadrangle (Mosolf, 2025). 
The Dillon Gneiss (Adg) forms the crest of the Ruby Range and is mostly massive-to-foliated granitic 
gneiss with subordinate amphibolite and metasedimentary intercalations. The gneissic sequences are 
enriched in incompatible elements with minimum emplacement ages of 2.8–2.5 Ga (figs. 2, 3; Mosolf, 
2025). The Elk Gulch Suite and Dillon Gneiss are difficult to differentiate in the field; the former tends to 
be more mafic and richer in plagioclase (Garihan, 1979b). The Christensen Ranch Metasedimentary Suite 
(XAcr; fig. 4B) is a complex sequence of metasedimentary rock distinguished by intertonguing marble 
and schist intervals assumed to be younger than the Elk Gulch Suite and Dillon Gneiss (James, 1990). 
Complexly deformed iron formation (XAci; fig. 4C) occurs at several structural levels in the 
metasedimentary sequence. Amphibolite (XAam) screens and sheets are interleaved throughout the 
basement assemblages but are only mapped in areas thick enough to be shown at 1:24,000 scale. 
Pegmatite (XAp and XApt) and ultramafic rock (XAum) intrude the older Precambrian rocks locally. 
Northwest-striking diabase dikes generally crosscut the basement metamorphic fabrics and parallel 
northwest-striking fractures and faults. 

Yd Diabase (Mesoproterozoic?)—Diabase dikes are approximately 1–30 m (3–100 ft) thick with 
continuous lengths exceeding 8.5 km (5.3 mi). Diabase is recessive and weathers to spheroidal 
boulders, commonly creating topographic sags. The rock is frequently altered to secondary 
minerals, but original diabasic and gabbroic textures are well preserved. Primary minerals appear 
to have been plagioclase and pyroxene, with minor amounts of quartz, magnetite, and ilmenite. 
Secondary minerals include actinolite, chlorite, and sericite. Wooden and others (1978) described 
the diabase in the Ruby Range as low potassium tholeiite with a whole-rock Rb-Sr age of 1.4 Ga. 

XAtp Tourmaline granite (Early Proterozoic (?) or Late Archean(?))—Small bodies of undeformed 
pegmatite up to 65 m (200 ft) wide consisting of interlocking grains of perthitic microcline, 
twinned plagioclase (oligoclase–albite), and quartz, and variable amounts of diagnostic 
tourmaline. Pegmatite bodies are commonly zoned with a rose quartz core. Locally crosscut by 
diabase dikes (James, 1990; Wooden and others, 1978). U-Pb zircon dating yielded a complex age 
spectrum with a maximum emplacement age of approximately 1.88 Ga, and a single crystal date 
of 1.12 Ga (fig. 3). 

XAp Pegmatite sheets and dikes (Early Proterozoic (?) or Late Archean(?))—Pegmatite sheets and 
dikes up to tens of meters wide with continuous lengths exceeding 1 km (0.6 mi). Typically 
consist of coarse-grained alkali feldspar and quartz with minor amounts of albite–oligoclase and 
rare muscovite, tourmaline, and garnet. Most bodies show cataclastic deformation and are locally 
foliated parallel to the country rock. Dike swarms were mapped as bodies over 300 m (984 ft) 
wide and 3 km (1.9 mi) long.

XAam Amphibolite (Archean or Early Proterozoic)—Black and white, massive- to well-foliated, 
sheet-like bodies primarily composed of fine- to coarse-grained hornblende, plagioclase, and 
quartz. Amphibolite occurs as two compositional varieties: gneiss containing 40–50 percent 
hornblende in alternating hornblende-rich and quartz–plagioclase-rich layers; or hornblendite with 
accessory plagioclase and quartz. The presence of garnet varies locally from approximately 0 to 
25 percent. Amphibolite is intercalated with the other basement assemblages, ranging in size from 
centimeter-scale lenses to sheets tens of meters thick. 

XAum Ultramafic rocks (Late Archean or Early Proterozoic)—Intrusive pods or lenses of ultramafic 
rock up to tens of meters wide (Heinrich, 1960, 1963). Ultramafic rock is dark green or black, 
fine- to coarse-grained, and primarily massive to schistose. Weathering surfaces are commonly 
studded with resistant poikilitic orthopyroxene grains up to a few centimeters in diameter. 
Protolith rocks likely ranged from harzburgite to pyroxenite, but most occurrences have been 
modified extensively by serpentinization and post-emplacement metamorphism. 

XAci Iron formation, Christensen Ranch Metasedimentary Suite (Early Proterozoic or Late 
Archean)—Black to dark gray iron formation that creates resistant ridges locally but more 
commonly weathers to recessive, reddish brown soils. Typically occurs as a dark, high-density 
rock composed of layered magnetite and quartz that is commonly discontinuous and complexly 
folded. Beds range in thickness from less than 0.3 m (1 ft) up to 10 m (33 ft) thick and are 
commonly intercalated with mica schist and quartzite but can also be found within dolomitic 
marble. Layered structure gives the unit a streaky or gneissic appearance. Occurs at multiple 
structural levels throughout the Christensen Ranch Metasedimentary Suite. The structural 
thickness exceeds 400 m (1,300 ft). 

XAcr Christensen Ranch Metasedimentary Suite, undivided (Early Proterozoic or Late 
Archean)—A complex sequence of marble, schist, and quartzite that is intercalated with gneiss 
and amphibolite. Variable exposure made delineating the metasedimentary units challenging at 
1:24,000 scale; therefore, the metasediments were mapped as a single unit (XAcr). See James 
(1990) and Okuma (1971) for detailed mapping of the subunits. Previous U-Pb monazite dating of 
schist, amphibolite, and gneiss yielded peak metamorphic ages spanning approximately 1.81–1.75 
Ga (Jones, 2008; Cramer, 2015). 

Undifferentiated metasedimentary rocks (Late Archean or Early Proterozoic)—Complex 
assemblage of quartz–mica schist and quartzose gneiss; calc–silicate gneiss and schist; and 
anthophyllite schist locally intercalated with amphibolite and quartzite. Generally recessive 
and not well exposed throughout the map area. Thickness unknown.

Marble (Late Archean to Early Proterozoic)—White, gray, orange-brown, medium to coarsely 
crystalline dolomitic and calcitic marble that forms outcrops commonly covered with bright 
orange lichen. Contains light-colored diopside, tremolite, and scarce graphite; conspicuous 
dark green blebs of serpentine and phlogopite are characteristic of some intervals. Marble 
forms massive- to well-foliated successions that appear conformable; however, the original 
stratigraphic order has likely been disrupted by bedding-plane faults and possible nappe 
development. In the southern part of the map area, marble layers are isoclinally folded into the 
older gneissic assemblages. Thicker intervals of pure marble are dominantly dolomitic in 
composition and commonly host talc deposits occurring as seams and pods. Structural 
thickness exceeds 400 m (1,313 ft). 

Ag Granite Gneiss (Late Archean)—Brown, medium-grained, moderately well-foliated rock 
composed of finely perthitic microcline, plagioclase, and quartz, with lesser biotite and green 
hornblende. Accessory minerals include apatite, allanite, magnetite, zircon, and garnet. The 
granite gneiss appears to be developed in or engulfing quartzite-bearing strata along the range 
front in the southwest part of the map area. Locally, the rock is strongly sheared and mylonitic, 
otherwise physically indistinguishable from older quartzofeldspathic gneisses. The age of the 
gneiss is not constrained but is considered age equivalent to the other gneiss units (James, 1990). 
Thickness unknown. 

Adg Dillon Gneiss (Archean)—Gray to reddish brown, massive- to well-foliated, medium- to 
coarse-grained, locally garnetiferous gneiss of granitic composition that typically forms large, 
rounded outcrops. Potassium feldspar is the most abundant mineral, intergrown with oligoclase 
and quartz in nearly equal proportions. Subordinate mineral constituents include biotite, 
muscovite, garnet, and fibrous sillimanite. Massive to weakly foliated gneiss often grades into a 
strongly banded gneiss with a greater abundance of darker minerals, including biotite, garnet, and 
occasional hornblende. The Dillon Gneiss includes subordinate layers and pods of amphibolite, 
narrow ribbons of infolded marble, thin layers of pelitic gneisses and schists, and ultramafic rock. 
Originally named the “Dillon Granite Gneiss” (Heinrich, 1960) and subsequently referred to as 
“Quartzofeldspathic Gneiss” by James (1990). Stotter (2019) suggested the assemblage be 
renamed the “Dillon Gneiss,” which is the name adopted on this map. U-Pb zircon dating yielded 
a minimum emplacement age of approximately 2.74 Ga (fig. 3, table 1) in the map area.

STRUCTURAL GEOLOGY

Precambrian Deformation

A penetrative foliation is generally parallel to compositional and migmatic layering (fig. 5A), and appears 
to be penetrative across the Dillon Gneiss and Christensen Ranch Metasedimentary Suite assemblages. 
Prevalent isoclinal folding is generally axial planar to the main metamorphic foliation and plunges 
northeasterly, paralleling mineral and intersection lineations (fig. 5B). Early folding and the primary 
metamorphic foliation were subsequently deformed by at least two generations of folds, including the 
map-scale Dillon synform. Several northwest-trending fault systems transect the quadrangle, comprising 
the Hoffman Gulch and Carter Creek faults. Both were active in Precambrian time with left-lateral 
displacements up to 1.3 km (0.8 mi). Shearing and mylonization of Archean granitic gneiss (Ag) records 
tectonic deformation as early as 2.7 Ga (James, 1990). Weakly deformed pegmatite (XAp and XAtp) 
suggests early Precambrian deformation continued in the Early Proterozoic(?). Diabase dikes (Yd) 
generally crosscut the older deformational fabrics and structures, constraining early Precambrian 
deformation and metamorphism before approximately 1.7–1.4 Ga. Previously published geochronology 
ages (e.g., Jones, 2008; Cramer, 2015; Harms and Baldwin, 2020) and U-Pb zircon data from this study 
(fig. 3) generally support field relationships, recording magmatic and tectonothermal activity ca. 2.8–2.7 
Ga; 2.5–2.4 Ga (Beaverhead/Tendoy orogeny); and 1.8–1.7 Ga (Big Sky orogeny). 

Cordilleran Thrust Belt Deformation

Paleozoic–Mesozoic strata that unconformably rest on the crystalline basement in the northern Ruby 
Range were deformed by Late Cretaceous folds and faults (Tysdal, 1976; Gavillot and others, 2024; 
Parker and Gavillot, 2024). In the southern part of the range, the Phanerozoic cover was exhumed and 
completely eroded during crustal shortening, exposing the Precambrian basement rocks in the Christensen 
Ranch quadrangle. Cordilleran structures were not readily identified in the map area, but the older 
northwest-striking Precambrian faults were possibly reactivated as contractional structures during crustal 
shortening. Low-temperature thermochronology data from the northern part of the Ruby Range suggest 
that rapid cooling and inferred tectonic exhumation of the basement rocks were underway by 
approximately 80 Ma (Carrapa and others, 2019).

Cenozoic Extensional Deformation

Northwest-trending faults break the Ruby Range into structural blocks that have a prolonged 
deformational history spanning the Precambrian to Cenozoic (Schmidt and Garihan, 1983; James, 1990). 
Several of the faults were extensionally reactivated in the Ruby Range during Tertiary time and have 
remained active to the Quaternary (e.g., Stickney and Bartholomew, 1987). Extensive hydrothermal 
silicification has occurred along the Carter Creek fault during or after Tertiary–Quaternary movement on 
the fault. The Hoffman Gulch and Carter Creek faults appear structurally linked to the Sweetwater fault 
(Mosolf and Sears, 2024), which is assumed to be Quaternary-active with a poorly constrained fault slip 
rate of approximately 0.03–0.04 mm/yr (0.001–0.002 in/yr; Stickney and Bartholomew, 1987; Ostenaa 
and Wood, 1990; Fritz and Sears, 1993). 

The northeast-striking Ruby Range western border fault was previously mapped as a 24-mi-long (38 km) 
Quaternary fault with a poorly constrained slip estimate of <0.2 mm/yr, similar to other seismogenic 
faults in southwest Montana (Stickney and others, 2000). The basement rocks appear truncated by the 
fault but clear evidence of Quaternary displacement along the range front is not readily observable. Deep 
incision and a lack of fault scarps formed in the Tertiary–Quaternary sedimentary deposits onlapping the 
fault suggest that little displacement has occurred in the past 130,000 years (this map; Gavillot and others, 
2024). Fault intersections are concealed by the Tertiary–Quaternary cover, but recent seismicity 
immediately outside the quadrangle (M 4.1, 2024) suggests strike-slip movement has continued on the 
northwest-trending faults, post-dating the Ruby Range western border fault.

TALC DEPOSITS

Talc deposits occur throughout the map area and have been mined sporadically for decades (Berg, 1979).  
Talc and associated chlorite formed through hydrothermally driven, constant-volume replacement
of the dolomitic marbles in the Christensen Ranch Suite (XAcr; Underwood and others, 2014). Talc is 
generally cryptocrystalline, varying from opaque to translucent, and its color ranges from white to pale 
green or olive gray (James, 1990). Its contact with the country rock is typically sharp, forming elongated 
bodies that parallel foliation planes. The Regal Mine, formerly known as the Keystone Mine, is the site of 
the largest talc body in the map area and was actively mined as an open pit at the time of this report. The 
Regal orebody is up to 60 m (200 ft) thick and dips 30–75° northward near the axis of a tightly refolded 
synform. A steeply dipping, northwest-trending brecciated fault zone bounds the eastern extent of the 
main ore body (Berg, 1979). A near-vertical Proterozoic diabase dike (Yd) 18–30 m (60–100 ft) thick is 
exposed near the western end of the deposit and is the inferred heat source for the hydrothermal cells that 
produced the orebody (Underwood and others, 2014).
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Figure 1. Location and physiographic setting of the map area. Geologic elements were modified 
from Ruppel and others (1993), Vuke and others (2007), and mapping in this study. 

Figure 2. Whole-rock geochemical data. (A) Total alkali silica classification diagram of 
normalized values after Le Bas and others (1986). (B) Chondrite-normalized rare earth 
element plot after Sun and McDonough (1989). Data are color coded by formation; plots 
share the legend in (A). 
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Figure 3. Kernel density estimate (KDE) plots of the 207Pb corrected 206Pb/238U (<1,400 Ma) and 
207Pb/206Pb (>1,400 Ma) zircon age data. KDE bandwidths and bin widths are 20 m.y. A 20 
percent discordance filter was applied to the data. Significant peaks and maximum depositional 
ages are labeled. 

Figure 4. (A) Interbedded gravel and tuffaceous sandstone of the Tertiary Sixmile Creek 
Formation (Tsc) exposed in the Carter Creek drainage. (B) Layered and foliated dolomitic 
marble of the Christensen Ranch Suite (XAcr). (C) Banded and folded quartzite and iron 
formation (XAci). Rock hammer for scale.
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Note. Zircon separates were prepared at MBMG and analyzed by LA-ICPMS at the University of California, Santa Barbara.
Latitudes and longitudes are in the 1984 World Geodetic Survey (WGS84) datum. See Mosolf and Kylander-Clark (2023) 
and Brennan and others (in review) for full datasets and interpretations.
Method: MDA 206/238  max depositional age, weighted mean of youngest 206Pb/238U dates
 MEA 207/206 minimum emplacement age determined by weighted mean of oldest 207Pb/206Pb dates

WM 206/238 weighted mean of select 206Pb/238U dates interpreted to be emplacement age
aNumerator is the number of spots used for age calculation; the denominator is the total number of spots analyzed.
bMSWD is the Mean Square Weighted Deviation.

Sample Lithology Unit Latitude
(°N) 

Longitude
(°W) Method Age

(Ma) 2σ

Table 1. U-Pb zircon geochronology.

# Spot
analysesa MSWDb

KM20CR01 tuff Tsc 45.1933 -112.4650 16/35 WM 206/238 10.5 0.1 2.1
JM23CR02 tuffaceous sandstone Tsc 45.1933 -112.4646 26/120 MDA 206/238 10.7 0.1 1.6
JM23CR03 tourmaline granite XAtp 45.1608 -112.4481 4/50 WM 207/206 1,882 47 2.6
JM23CR01 quartzofeldspathic gneiss Adg 45.1617 -112.4031 30/60 MEA 207/206 2,772 23 6.1
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Figure 5. Stereonet plots of metamorphic lineation and foliation data. (A) Metamorphic 
foliation data plotted as poles to planes. A cylindrical best of the data yielded a plane 
dipping to the southwest with a corresponding pole plunging 45° to the northeast (black 
box), interpreted to be the general axis of folding in the map area. (B) Metamorphic 
lineation data. The mean vector is represented by a white circle plunging 46° to the 
northeast, similar to the fold axis in (A). The lineation and foliation data are plotted on 
lower-hemisphere projection, equal-area stereonets and fit with a Kamb contours. 
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