
Figure 4. Conceptual hydrogeologic cross section showing relationships among shallow groundwater, the Fort Union Formation, topography,
and streams draining the Beartooth Mountain Front (modified from Slagle, 1986). The water table is dashed where confidence is low.
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Figure 1. Location map showing area of groundwater contours and major structural features within Carbon–Stillwater study area.

BEARTOOTH
MOUNTAINS

Carbon–Stillwater Ground Water Characterization Area

0 10 20 miles5

Location

Scale 1:750,000
Projection: Montana State Plane
Datum: NAD 83

PRYOR
MOUNTAINS

Montana

Canada

Major faults
Streams

Area of shallow
groundwater contours

CRAZY 
MOUNTAINS 

BASIN

! Towns

EXPLANATION

!

!

!

!

!

14

12

10,16 south of 
drainage divide 

4,9

2

7

6

5

133,11,15

8
1

all of Carbon
 County

all of Stillwater
County

Nye

Rapelje

Columbus

Fromberg

Red Lodge

Stillwater Co.

Carbon Co.

Bearcreek

60

50

40

30

20

10

0

n=63n=171 n=117n=9 n=94

R
ep

or
te

d 
w

el
l y

ie
ld

 (g
pm

)

KetTfu Khc KjrTKi

Key

95th
75th

Median
25th

5th

Percentile

Figure 3. Distribution of driller-reported well yields among Fort Union (Tfu), intrusive rock 
(TKi), Hell Creek (Khc), Judith River (Kjr), and Eagle Sandstone (Ket) aquifers. Most bedrock 
wells yield less than 20 gpm.

Figure 2. The location of previous water resource investigations. 
Numbers in the figure relate to numbers in the References section. 
The size of number relates to the areal extent of the investigation 
(i.e. # 4 covers Carbon County whereas #13 was a municipal water 
supply investigation for the town of Bearcreek).
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Figure 5. Hydrographs from the Bearpaw confining unit (Kb) and Judith 
River aquifer (Kjr) show minor seasonal fluctuations from 2002 to 2004 
(6-digit GWIC identification numbers).

Figure 6. Hydrographs from the Fort Union (Tfu) and Hell Creek (Khc) aquifers show similar seasonal 
fluctuations from 2002 to 2006 (6-digit GWIC identification numbers).
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Figure 7. Hydrographs from the Fort Union (Tfu) aquifer show similar timing but different magnitude of 
seasonal fluctuations when compared to unconsolidated sediments (Qsc, diamonds and blue line) from 
2002 to 2006. The similar response in each year suggests irrigation canal leakage is an important source 
of groundwater recharge in this area (6-digit GWIC identification numbers).  
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Figure 8. Hydrographs from the Fort Union (Tfu) and Hell Creek (Khc) aquifers show little or no 
seasonal fluctuation from 2002 to 2005 (6-digit GWIC identification numbers).
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Tan- to yellowish-gray sandstone, sandy claystone, clay-
stone, shale, and coal. Coalbeds are mostly found 
between the Beartooth Mountain Front and Yellowstone 
River. The Linley Conglomerate is a reddish-brown to 
gray-brown interbedded, conglomerate, coarse-grained 
sandstone, siltstone, and mudstone. The formation 
thickens as much as 5,000 ft near the Beartooth 
Mountain Front.

Widely used aquifer contains saturated, laterally 
discontinuous sandstone and coal that yield water to 
wells, seeps, and springs. Wells completed in the Linley 
Conglomerate produce poorly and drillers’ logs often 
discribe drill cuttings as “granite.” Well drillers report a 
median yield of 11 gpm with a median DWE and TD of 
64 and 150 ft, respectively. 

Intrusive Rocks
Local Aquifer

82

Hell Creek 
Aquifer

412

Bearpaw Shale
Confining Unit

200

Judith River
Aquifer

315

Sliderock Mountain stratovolcanic rocks, and diorite
or diorite porphyry combined with Tertiary or Late Creta-
ceous age felsic rocks. 

Intrusive rocks are not generally extensive enough to be 
considered regional aquifers, but locally do yield water to 
wells, seeps, and springs from saturated fractures. Well 
drillers report a median yield of 15 gpm with a median 
DWE and TD of 60 and 85 ft, respectively.

Interbedded, light-brownish-gray, cliff-forming, fine-
grained, thin- to thick-bedded sandstone; gray mud-
stones and fissile shale. Sandstone beds are generally
thicker east of the Clarks Fork of the Yellowstone 
River than to the west. Total thickness ranges from 350 
to 1,000 ft.

Laterally continuous aquifer with saturated sandstone 
that yields water to wells. Well drillers report a median 
yield of 10 gpm with median DWE and TD of 50 and 
110 ft, respectively. Hell Creek aquifer wells are 
generally near the outcrop and relatively few wells 
penetrating overlying units to access the aquifer.

Dark-gray, fissile, thin, mostly greenish-gray shale.
Bentonite beds, near the middle; thin sandstone
beds at the top. Thins from approximately 800 ft in the 
eastern part of the study area to 100 ft in the west.

Laterally continuous, but not an aquifer except near 
outcrop where sandstone may yield poor-quality water 
to properly constructed wells. Well drillers report a 
median yield of 15 gpm with a median DWE and TD of 
40 and 70 ft, respectively. 

Fort Union
Aquifer

606

Brownish-gray, sandy shale and light-brown to pale
yellowish-brown clayey, very-fine- to fine-grained
lenticular sandstone beds up to 10 ft thick. Contains 
greenish and maroon-gray mudstones, and poor quality 
coal. Sandstone generally occurs near top. Total 
thickness from 700 to 1,000 ft.

Laterally continuous aquifer with sandstone yielding 
groundwater to wells. Well drillers report a median 
yield of 10 gpm with a median DWE and TD of 60 and 
125 ft, respectively.  

Brownish-gray, fissile, shale and minor clayey 
sandstone. Total thickness ranges from 100 to 300 ft. 

Laterally continuous, but not an aquifer, except near 
outcrop where sandstone may yield water to wells. 

Claggett 
Shale 
Confining Unit

66

Eagle Sandstone
Aquifer

150

Light-gray, brownish-gray to pale orange, very fine- to
medium-grained sandstone with interbedded brownish-
gray to medium dark gray shale, sandy shale, siltstone and 
sandstone. Telegraph Creek sandstones thicken upward 
becoming cliff- and ridge-forming Eagle Sandstone. Total 
thickness from 300 to 450 ft.

Laterally continuous aquifer with sandstone yielding 
water to wells, seeps, and springs. Well drillers report a 
median yield of 12 gpm with median DWE and TD of 90 
and 200 ft, respectively. Wells often penetrate through the 
Claggett confining unit to access the Eagle Sandstone 
aquifer. However, most wells are located near the outcrop.

Montana Group

<1

Bearpaw Shale through Telegraph Creek Formation un-
divided. Occurs in T. 6 S., R. 18 E., and T. 7 S., R. 18 E.
only. Aquifer potential unknown.

Colorado
Group
Confining Unit

95

Niobrara Formation through Thermopolis Shale; Fall
River Sandstone.

Laterally continuous but not an aquifer except near 
outcrop where sandstone beds may yield water to wells. 

Kootenai Aquifer*        

Madison Aquifer*        
Jurassic through Pennsylvanian aquifers; non-aquifers*   
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Alluvial sand and gravel, found in recent river valleys
and on abandoned floodplains (terraces). Also includes 
terraces deposited by glacial meltwater streams.

Sediments,
coarse-grained

466

Sediments, 
fine-grained

189

Sandy silt or clay deposited as slope wash or glacial till.
Includes modern lake, older lake, and landslide deposits. 
Not an aquifer.
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Inventoried spring

Inventoried bedrock well with measured 
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At some locations, water levels were 
measured twice as indicated by two 
water-level altitudes.
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driller-reported water level in feet 
above mean sea level.
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 The Tertiary Fort Union Formation is a regional 
source of groundwater; however, it mainly exists in the 
southern part of the map area. Water-bearing materials 
(sandstone or coal) in the Fort Union Formation can be 
laterally discontinuous, causing difficulty predicting 
drilling depths. In areas topographically separated from the 
Front, well depths can vary across short distances. The 
older Cretaceous formations alternate between shale and 
sandstone. The Hell Creek aquifer (Hell Creek, Lance and 
Fox Hills Formations combined), the Judith River aquifer 
(Judith River Formation), and Eagle Sandstone aquifer 
(Eagle Sandstone and Telegraph Creek Formation com-
bined) are the other main bedrock aquifers. These units 
underlie most of the map area, but are generally only 
accessed where they are exposed at, or close to the surface. 
Confining units include the Bearpaw Shale, Claggett Shale, 
and Colorado/Montana groups; however, near the outcrop 
these units do yield small amounts of water to wells. 
Jurassic through Cambrian rocks crop out in small areas 
near the Front; these outcrops are nearly vertical. Due to 
the limited outcrops in the map area and their vertical 
nature, wells completed in Jurassic through Cambrian age 
rocks were not used in map construction (see Hydrostrati-
graphic column).
 Figure 3 summarizes the driller-reported yields 
from wells completed in bedrock aquifers. Median yields 
range from 10 to 15 gallons per minute (gpm). Reported 
yields from Hell Creek and intrusive rock aquifers have the 
largest range, whereas yields from the Eagle Sandstone and 
Judith River aquifers have the smallest range.
 The main sources of aquifer recharge are infiltration 
of precipitation, stream losses, and irrigation. Most 

recharge occurs in the spring and 
summer during snowmelt runoff 
and storm events. Precipitation is 
most abundant along the Front and 
in the uplands surrounding the 
Lake Basin subarea. Irrigation 
canals provide significant recharge 
to bedrock and overlying alluvial 
aquifers along Rock Creek near 
Red Lodge. Aquifer discharge is 
primarily to streams, springs, 
evapotranspiration, and wells. 
Groundwater generally flows from 
high-altitude recharge areas toward 
low-altitude discharge areas. 
 South of the Yellowstone 
River, several upland areas are 
topographically separated from the 
high-altitude recharge area along 
the Front. Wells in these areas are 
recharged locally, generally yield 

less, and are more sensitive to land-use changes or climatic variability (fig. 4). The figure shows shallow groundwater 
in the Fort Union aquifer where the water table generally mimics topography; locally, impermeable layers create a 
perched water table. Discharge from the perched system forms an intermittent spring. The cross section in figure 4 
includes two topographic highs separated from the Front. The groundwater surface is probably mounded beneath these 
areas of local recharge, but there are no data to estimate water-level elevations. 
 Groundwater contours generally mimic topography, with groundwater divides coincident with major topo-
graphic ridges and river bottoms. South of the Yellowstone River, the potentiometric surface slopes north, northeast, 
and east away from the Front toward the major river valleys. North of the Yellowstone River, the potentiometric surface 
slopes either southward to the Yellowstone River Valley or from all directions into the Lake Basin. Depth to water in 
wells varies from about 250 ft in the uplands to about 10 ft below land surface in the river valleys.
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 Water levels in wells fluctuate in response to changes in aquifer storage. The magnitude of the fluctuation 
depends on the balance between recharge and discharge, as well as aquifer storativity. Water levels rise when recharge 
exceeds discharge and decline when the opposite occurs. Representative hydrographs show different patterns through-
out the map area. Lake Basin subarea hydrographs from wells completed in the Judith River aquifer and Bearpaw Shale 
confining unit show little seasonal change (fig. 5), suggesting recharge equals discharge. South of the Yellowstone 
River, hydrographs from wells completed in Fort Union and Hell Creek aquifers show approximate seasonal fluctua-
tions with similar timing (fig. 6). Water levels rise during the spring in response to precipitation/runoff, and drop in the 
fall because of decreased recharge and evapotranspiration. Domestic well pumping may contribute to the somewhat 
erratic shape of some hydrographs. Hydrographs in the Red Lodge area (fig. 7) show more consistent seasonal fluctua-
tions compared to the hydrographs in figure 6. The hydrographs shown in figure 6 are from water wells northwest of 
Red Lodge in areas topographically separated from the Front; these wells show little influence from irrigation.
 Water levels in bedrock aquifers near Red Lodge show a uniform response, suggesting recharge is strongly 
controlled by leakage from overlying alluvial aquifers and irrigation canals. Figure 7 shows two hydrographs from Fort 
Union aquifer wells on opposite sides of Rock Creek, and a shallow well completed in unconsolidated Quaternary 
alluvium. The timing and magnitude of water-level change for each well is consistent during the period of record. 
However, the magnitude of annual fluctuation varies; the alluvial well shown in figure 7 fluctuates as much as 35 ft 
annually, whereas the east bench Fort Union well fluctuates about 12 ft, and the west bench Fort Union well fluctuates 
about 7 ft per year. In contrast, water-level fluctuations in two Fort Union and one Hell Creek wells east of the Clarks 
Fork of the Yellowstone show little or no seasonal fluctuation (fig. 8). These wells are located away from irrigation 
canals and in a dry part of the study area.  

Map use
 This map presents the distribution of MBMG inventoried wells, generalized surface geology, and groundwater 
altitude within 200 ft of the land surface. The map intends to give the user a regional overview of groundwater occur-
rence and altitude, and aid with initial conceptual models for large-scale investigations. Groundwater contours shown 
here are intended to be accurate within one contour interval.  Contours may be less accurate in areas with high topo-
graphic relief. 
 Figures 3, 5, 6, 7, and 8 show descriptive statistics of driller-reported yields per aquifer, and representative 
hydrographs for areas along the Front and from the Lake Basin subarea. Water-well drillers measure yields using 
different methods, which can lead to errors. Groundwater contours portray conditions from August 2001 to November 
2005 within 200 ft of the land surface. Water-well and borehole records are continuously submitted to GWIC; up-to-
date information can be accessed to supplement the data presented here at http://mbmggwic.mtech.edu. This map is not 
intended to be used at scales larger than 1:150,000.
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 Author’s Note: This map is part of the Montana Bureau of Mines and Geology (MBMG) Ground Water
Assessment Atlas for the Carbon–Stillwater area. It is intended to stand alone and describe a single hydrogeologic 
aspect of the study area, although many of the area’s hydrogeologic features are interrelated. For an integrated view of 
the hydrogeology of the Carbon–Stillwater area, the reader is referred to other maps and reports of Montana Ground 
Water Assessment Atlas 6.

Introduction 
 This map portrays the shallow potentiometric surface of bedrock units in the Carbon–Stillwater MBMG Ground 
Water Characterization Program (GWCP) study area from 2001 to 2005. The potentiometric surface represents the 
altitude to which water will rise in wells. Generally, the potentiometric surface is a subdued representation of topography 
where the highest groundwater altitudes coincide with topographic highs and the lowest groundwater altitudes with 
topographic lows. Groundwater flows downgradient from potentiometric high altitudes to potentiometric low altitudes.
 Most water wells in the area are completed in bedrock aquifers or unconsolidated alluvium associated with the 
major drainages. Residents of Carbon and Stillwater counties rely heavily on shallow groundwater for domestic use; 90 
percent of wells are completed within 200 ft of the land surface and approximately 97 percent are completed within 400 
ft of land surface. This area is within the Rocky Mountain and Northern Great Plains physiographic provinces and split 
by the Yellowstone River. The southern part is bounded by the Beartooth Mountain Front (the Front), the Big Horn 
Basin, and the Pryor Mountains. North of the Yellowstone River is the internally drained Lake Basin subarea. The 
Yellowstone River and its tributaries—Clarks Fork of the Yellowstone, Red Lodge Creek, Rock Creek, Rosebud Creek, 
and the Stillwater River—have incised into bedrock and deposit alluvium in their valley bottoms. Cold winters and hot 
summers characterize the climate; typically, April, May, and June are the wettest months. During this study, the popula-
tion of Carbon and Stillwater counties was 9,921 and 9,481, respectively. Cities and towns (from largest in population to 
smallest) in Carbon and Stillwater counties are Red Lodge, Columbus, Bridger, Joliet, and Fromberg (Montana Depart-
ment of Commerce, 2013).

Map Construction
 The potentiometric surface was mapped by contouring measured water-level altitudes collected by Montana 
Bureau of Mines and Geology researchers. Water-level measurements were obtained from: (1) the GWCP Carbon-
Stillwater study and (2) the MBMG 319 study of the Lake Basin subarea between June 2001 and November 2005 
(Carstarphen and others, 2007). Most wells inventoried were less than 200 ft deep; however, some were as deep as 400 
ft. Supplemental water-level data from previous investigations were used where they provide additional detail; driller-
reported water levels were used where measured data were sparse. Driller-reported water-level data were obtained from 
the Ground Water Information Center (GWIC). Additionally, GWIC land-surface altitudes of spring sites were used to 
construct the potentiometric surface. 
 Solid black symbols represent inventoried wells with measured water levels, whereas hollow black circles repre-
sent supplemental GWIC wells. Solid black circles with an asterisk following the water-level elevation represent inven-
toried wells where a water-level measurement could not be obtained. In this case, the land-surface altitude and driller-
reported water levels were used to estimate the water-level elevation. Inventory site locations were determined with 
handheld GPS units and are generally accurate to within 50 ft. Land-surface altitudes at inventoried wells were inter-
preted from U.S. Geological Survey 1:24,000 topographic maps and are generally accurate to 10 ft (20 ft contour inter-
val). Water-level measurements were made using electric or steel tapes; the accuracy of most measurements is 0.01 ft. 
Map contour accuracy is affected by data distribution, field measurement errors, accuracy of well locations, and errors in 
interpretation. The groundwater altitude portrayed here is expected to be accurate within one-half the contour interval 
(50 ft).
 County and township boundaries, major streams and roads, population centers, and major irrigation ditches were 
obtained from the Natural Resources Information System (NRIS) at http://nris.mt.gov. Surface geology was obtained 
from Berg and others (1999), Lopez (2000a, 2000b, 2000c, 2001, 2005), and Wilde and Porter (2000, 2001). USGS 
topographic maps were obtained from NRIS. Map construction was completed by hand-contouring water levels from 
primary and supplemental datasets. Where the density of inventoried wells is high (i.e., within Red Lodge city limits), 
some data symbols were eliminated to improve map readability. Water-level data used to complete this map are available 
from the MBMG Ground Water Information Center.

Geology
 The Yellowstone River flows west to east, splitting the map area into two geologic settings. South of the Yellow-
stone River the area is structurally complex and contains the Beartooth Mountain Front, faults of the Nye-Bowler Linea-
ment, the Fromberg Fault Zone, and the axis of the Reed Point Syncline (fig. 1). The bedrock units exposed near the 
Front range in age from Tertiary to Cambrian. Tertiary to Upper Cretaceous rocks generally dip southwest towards the 
Front, while Lower Cretaceous through Cambrian rocks are near vertical along the Front. In places, terrace gravel flanks 
the Front and alluvium exists in the modern floodplains (Lopez, 2000a, b, c, 2001, 2005). Terrace gravel along drainages 
south of the Yellowstone River represent changes of stage and drainage patterns resulting from uplift. The thickest 
terrace gravels are near Red Lodge and form prominent benches above Rock Creek. Ritter (1967) and Darlinton (1969) 
have extensively studied the terrace gravel near Red Lodge and along the northern flank of the Front. 
 Generally, bedrock units north of the Yellowstone River are flat-lying, less faulted, and not as structurally com-
plex compared to those in the south (fig. 1). The Lake Basin subarea is a prominent internally drained depression (Reiten 
and others, in prep.) containing Quaternary stream and lake deposits. The topographic depression forming the Lake 
Basin appears to be associated with the Lake Basin Fault Zone. Alluvium is also found in modern floodplains of tributary 
streams to the Yellowstone River; however, it is not as thick as alluvium south of and along the Yellowstone River.
 The Tertiary Fort Union Formation is exposed over much of the southern map area and consists of consolidated 
sandstone, shales, clays, and some coal. Tertiary and Cretaceous intrusive rocks, and the Sliderock Mountain Volca-
nics, also crop out exclusively south of the Yellowstone River near the upper reaches of Stillwater River and Fishtail 
Creek. Upper Cretaceous rocks alternate between shale and sandstone formations, while Lower Cretaceous rocks 
consist of shales and siltstones of the Colorado Group. Unconsolidated Quaternary terrace gravel and graded fluvial 
sand and gravel (alluvium) occur in and surrounding the floodplains of major drainages. The geologic setting and 
hydrogeologic framework of the Carbon-Stillwater study area is described in detail in MBMG Ground Water Assess-
ment Atlas 6, Map 2 (in prep.).

Hydrogeology
 This plate represents a regional shallow potentiometric surface based on data observed in aquifers and aquitards 
(confining units); undoubtedly, local variations exist. Detailed hydrogeologic studies have been completed in the area 
investigating topics such as surface-water/groundwater interactions near municipal water supplies (Rose, 2000, 2000a), 
groundwater chemistry along the Clarks Fork River (Levings, 1986), and groundwater quantity in Stillwater and Rosebud 
watersheds (Kuzara and others, 2012). Figure 2 shows the location and areal extent of the previous investigations.
Groundwater is an important source for domestic, stock, and municipal use in the study area. The bedrock aquifer system 
contains alternating aquifers and aquitards. Groundwater can be obtained from the bedrock units throughout the study area. 
However, bedrock locations near alluvial valleys or irrigated lands provide better yields than do locations away from 
irrigation or surface-water influences. Wells located in upland island areas topographically separated from the Front gener-
ally yield less; groundwater contours in these areas are drawn as approximate (i.e. T. 5 S., R. 19 E. or T. 4 S., R. 20 E.).
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