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Abstract

Major-ion, chlorofluorocarbon (CFC), oxygen-18, deuterium, tritium and noble-gas data were
used to evaluate water quality, and as environmental tracers to assess apparent ground-water ages
and flow in the Missoula Valley aquifer between the Clark Fork and Bitterroot Rivers. Ground water
was sampled at 10 sites, two with nested shallow-deep well pairs, along two transects of ground-
water flow; water was also sampled from the Clark Fork River. Calcium and bicarbonate were the
dominant ions in all the ground-water samples: total dissolved solids were less than 300 mg/L.
Although the ground water is of excellent quality, constituents associated with human activities
(sodium, chloride, and nitrate) generally increased along flow path. Seasonal variations of oxygen-18
were detected in surface and ground-water samples. Most of the sampled ground water had CFC
concentrations in excess of air-water solubility, rendering the samples unsuitable for age dating;
concentrations are markedly greater in unsewered than in sewered areas suggesting that septic
effluent is a possible source of the excess CFC’s. Tritium was detected in all samples, with
concentrations ranging from 8.7 to 13.1 tritium units; tritium/helium-3 age dating shows that ground
water in the Missoula Valley aquifer is young, with most of the samples (7 of 12) being less than 2
vears old, the oldest age was 4.6 vears. In general, the water age increased downgradient along flow
path. The noble gas helium-4 is present in surprisingly large concentrations given the young age of
the water, and distributed in a pattern opposite of expected flow path trends. Bulk hydraulic
conductivity values determined from the age dating are in agreement with values obtained from
conventional aquifer tests.

Introduction

Intermontane basins of the Northern Rocky Mountains contain aliuvial aquifers that store and
yield large quantities of water. In many basins alluvial aquifers represent the most productive
aquifers and are important sources of municipal and domestic water (Kendy and Tresch, 1996). The
basins also contain perennial streams and associated riparian habitats that are sustained by ground-
water discharges. Population growth in the basins is occurring at an unprecedented rate resulting in
increased demand for water (municipal/domestic) and a shift in land use from agricultural to
residential/urban. The increased demand for water and the land-use shift have created a serious need
for information and techniques to evaluate vulnerable hydrologic systems to assure water supplies,
and to avid degradation of the ground-water resource.

This report presents the results of a study funded in part by the Montana Water Center and
done in conjunction with the Montana Ground-Water Assessment Program at the Montana Bureau
of Mines and Geology. The goals were to evaluate the use of environmentai tracers, specifically
trittum-helium isotopes, chlorofluorocarbons, and oxygen-18 and deuterium to trace ground water
flow in the Missoula Valley aquifer. Some study results formed the basis of a University of Montana
M.S. thesis to use tracers to refine hydraulic parameters used in ground-water management models
for the Missoula Valley aquifer (Pracht, 2001). Previous studies have characterized the physical
hydrogeology, modeled ground-water flow, and evaluated the water quality (McMurtrey and others,
1965: Geldon, 1979; Clark, 1986; Woessner, 198&; Miller, 1991).

Surficial glacial outwash and alluvium forms the Missoula Valley aquifer which 1s the main
source of water for the city of Missoula. The primary objective of the study was to develop a better



understanding the dynamics of ground-water flow through a part of the aquifer that is heavily
utilized, and in a part of the valley that is most susceptible to surface sources of contamination. The
report presents a general description of the study area, the geology, the hydrogeology, and the results
of the environmental tracer and water-quality analyses.
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Description of the Study Area

The city of Missoula, home to about 57,000 people, has the second largest population in the
state and grew by almost 33 percent between 1990 and 2000 (Montana Department of Commerce,
2001). Missoula is situated in the Missoula Valley, a wedge shaped intermontane basin, that is
bounded on the northeast by the Rattlesnake Hills, on the southeast by the Sapphire Mountains and
on the southwest by the Bitterroot Mountains (figure 1). The valley is drained by the west-flowing
Clark Fork River and the north-flowing Bitterroot River. The part of the valley evaluated for this
study lies between the Clark Fork and Bitterroot Rivers; the land use is mostly urban and/or
residential. At the time of study, roughly half of the area was serviced by municipal sewer, with
residences in the other half relving on septic tank systems (figure 2).

The mountains that surround and underlie the Missoula Valley are composed primarily of
metasedimentary rocks of the Belt Supergroup. The basin is filled with up to 2,500 feet of Cenozoic
fill, most of it Tertiary in age (McMurtrey and others, 1965). In the study area the Tertiary sediments
are mantled by Quaternary alluvium and locally by glacial lake silts.

The climate of the Missoula Valley is characterized by warm summers and cool winters with
the wettest months in the winter and spring. At the Missoula airport (altitude 3,200 ft) the average
annual temperature is 44.3° F and average annual precipitation is 13.55 in. (Western Climatic Data
Center data available online at: http://wrcc.sage.dri.edu/). Average monthly temperatures and
monthly rainfall totals for the period of this study are presented on figure 3.

Missoula Valley Aquifer

The city of Missoula is underlain by unconsolidated Pleistocene deposits of the Missoula
Valley aquifer, a designated sole-source aquifer by the U.S. Environmental Protection Agency
(USEPA). Materials in the aquifer were deposited by glacial melt waters and range in size from fine
sand and silt to gravel and cobbles. The aquifer is 100 to 150 feet thick and is bounded below by
relatively impermeable, fine-grained Tertiary sediments (figure 4). Three lithologic units have been
identified throughout most of the aquifer (Woessner, 1988): the top unit (unit one) is 10 to 30 feet
thick, composed of very permeable coarse sand to boulders; the middle unit (unit two) is as much



as 40 feet thick and composed of silt and fine sand and is a Jow permeability horizon within the
aquifer: the basal unit (unit three) is composed of 50 to 100 feet of highly permeable, coarse-grained
sand and gravel (figure 5). Unit three is the most prolific zone in the aquifer, wells reportedly yield
as much as 4,100 gallons per minute (gpm). Few wells penetrate the base of unit three, so the basal
configuration of the aquifer 1s poorly known.

Ground-water in the Missoula Valley aquifer is unconfined, the water table ranges from 10
to 60 feet below the surface. Ground-water flow paths through the aquifer are important because they
also describe paths that would likely be taken by contaminants. The potentiometric surface in June
1999 mimics the slope of the land surface; ground water flows from the Clark Fork River southwest
toward the Bitterroot River and its confluence with the Clark Fork River; the gradient across the
study area was 0.002 (figure 6a). In March 2000, water levels were 5 to 12 feet lower than they were
in June 1999 (figure 6b); wells closer to the Clark Fork River show slightly larger declines. The
general configuration of the potentiometric was similar to that of June 1999 with the same direction
of ground-water flow, although the hydraulic gradient across the study area was slightly smaller.

Leakage from the Clark Fork River is estimated to provide 80 to more than 90 percent of the
recharge to the aquifer (Woessner, 1988; Miller, 1991); other sources include underflow through
Hellgate Canyon, and precipitation. Water leaves the aquifer as discharge to the Bitterroot River,
evapotranspiration, and as pumpage from wells. Water levels fluctuate seasonally and are closely tied
to discharge in the Clark Fork River (figure 7). Annual water-level fluctuations in wells are on the
order of 5 to 10 feet; however, the fluctuations are more pronounced in wells near the Clark Fork
River and become muted downgradient along the flow path.

Sample Collection

Sites forenvironmental tracer sampling were selected on the basis of location, depth, relative
position along flow path, and accessibility. Thirteen monitor wells owned and maintained by the
Missoula Valley Water Quality District were sampled for environmental tracers. The wells are
completed along two transects of ground-water fiow between the Clark Fork and Bitterroot Rivers
and include two nested shallow-deep pairs (figure 8 and table 1).  The first round of samples were
collected in June 1999 for common ions and trace elements, oxygen-18 (**0), deuterium (D),
chlorofluorocarbons (CFC’s), tritium, and helium (and other noble gases). Samples for common
1ons and trace elements were collected from seven of the wells, after field measurements of specific
conductance, pH and temperature had stabilized and at least three well-casing volumes were
removed. Water samples for CFC’s and noble gases were initially collected by lowering 0.25-in
diameter copper tubes in the well, which were allowed to fill with water and then retrieved; a check
valve on the bottom end of the tube prevented water from draining. Upon recovery to the surface the
ends of the copper tube were sealed by metal pinch clamps. Water sampies for tritium were collected
in 1,000 ml glass bottles, samples for **O and D were collected in 250 ml piastic bottles. Monthly
samples for "0 were collected from the Clark Fork River and a nearby well (well 69055') between
June 1999 and December 2000: all the other wells (except well 151200) were sampled in June 1999
for O and D, and again in March 2000 for '*O by the Missoula Valley Water Quality District.

'Unique Ground-Water Information Center (GWIC) well identification number. The
GWIC database is on line at http://mbmggwic.mtech.edu/.

[}
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Subsequent samples for noble gases (obtained in December 1999 and from selected wells in
August 2001) were collected using in-well diffusion samplers consisting of 1-in long lengths of
copper tubing (0.25-in diameter). Each tube had one end sealed and the other end covered by a semi-
permeable membrane; the membrane was permeable to gases but not to water. The diffusion
samplers were lowered into the wells opposite the well screens and allowed to equilibrate with the
dissolved gases in the ground water—generally for a period of about one week. Upon retrieval to the
surface the open end of the copper tube was immediately sealed with a specially designed clamp to
create a cold weld. Noble gas analyses results from the water samples and diffusion samplers were
found to be comparable.

The tritium, CFC, and noble gas samples were analyzed by the University of Utah Noble Gas
Laboratory. Tritium was determined using the helium ingrowth method (Clarke and others, 1976).
Noble gasses (*He,*He, Ar, Kr, Ne) and reactive gases (O,, N,) were determined by mass
spectrometer. The University of Waterloo Environmental Isotope Laboratory analyzed the '*O and
D samples by mass spectrometry. Analyses of common ions and trace metals were performed by the
Montana Bureau of Mines and Geology's (MBMG) Analytical Laboratory. Water-quality data from
the wells not sampled by MBMG were obtained from the Missoula Valley Water Quality District
(MVWQD).

Discussion of the Results

Major lons and Trace Metals

Water may be characterized by the type and concentrations of its dissolved constituents.
Ground water in the Missoula Valley aquifer has a very consistent chemical make-up and is of very
high quality (table 2). All of the sampled ground-water is a calcium-bicarbonate type; there is little
variability in water samples (figure 9). The water is safe to drink and suitable for other uses based
on USEPA drinking water standards for natural constituents: all total dissolved solids concentrations
were less than 300 milligrams per liter (mg/L).

Although the overall composition of the water is consistent and of high quality, total
dissolved solids and the concentrations of several constituents commonly associated with human
activities increase downgradient along flow path. Figure 10 shows the distribution of specific
conductance, used as a proxy for total dissolved solids; concentrations in wells near the Bitterroot
River are more than 100 microsiemens per centimeter at 25°C (uS/cm) greater than those in
upgradient wells near the Clark Fork River. Similarly, the concentrations of sodium, chloride, and
nitrate generally increase downgradient in wells located further from the Clark Fork River (figures
11-13).

Water-quality data from the nested well pairs show that there are subtle yet regular
differences in water quality with depth. Concentrations of sodium, chloride, and nitrate are all greater
in the shallow wells. The increases are consistent with these constituents originating from the land
surface. The most likely source of the elevated sodium and chloride is runoff from de-icing
chemicals applied to streets, sidewalks and parking lots MVWQD, 1997), and effluent from septic
tanks (Woessner and others, 1995; MVWQD, 1996); likely sources of elevated nitrate include
fertilizers applied to lawns and effluent from septic tanks.

The distribution of arsenic shows a different pattern than that of sodium, chloride and nitrate.
Arsenic concentrations ranged from below the detection limit to 2.4 micrograms per liter (ug/L), with



samples from the upgradient part of the aquifer near the Clark Fork River having larger
concentrations than samples from downgradient part of the aquifer (figure 14). Additionally, in
samples from the nested well pair closest to the river (Well Pair A, figure 8), arsenic was not
detected in the sample from the deep well. A sample collected in June 1999 from the Clark Fork
River above Missoula (USGS gaging station 12340500) had an arsenic concentration of 2.2 ug/L
(USGS online hydrologic data for Montana: http://mt.water.usgs.gov/), similar to that of the highest
concentration measured in the ground water. Arsenic in the Clark Fork Riveris known to be elevated
due 1o historic mining activity upstream of Missoula. The results suggest that arsenic in the aquifer
1s derived from the Clark Fork River water that recharges the aquifer.

Oxygen-18 and Deuterium

Oxygen-18 ("*0O) and deuterium (*H, or D) are the main isotopes that comprise the water
molecule. Isotopic analyses are useful in hydrologic studies because waters of different ages,
recharge areas, or hydrologic history are often isotopically distinctive which allows them to be used
to show hydrologic connections. Variables such as temperature, altitude, distance from the ocean,
and latitude have an influence on the 1sotopic composition of precipitation. Because the isotopic
composition of ground water generally reflects the average isotopic composition of precipitation in
arecharge area, spatial and temporal variations in the isotopic content of precipitation can be useful
in evaluating ground-water recharge sources.

The *O and D concentraticns are reported as & values, which represent the difference in parts
per thousand (per mill, %c) between the ratios of '*O/°O (or D/H) of the water samples and that of
standard mean ocean water (SMOW); 6 values are calculated by:

(in %0) = (R e/ Repow - 11000

where "R" is the ratio of the heavy to light isotope. Therefore, the results are interpreted relative to
SMOW. A positive 0 value means that the sample contains more of the heavy isotope than standard
ocean water; a negative § value means that the sample contains less.

Isotopes of oxygen and hydrogen have been used to determine the sources and flow patterns
of ground water (Muir and Coplen, 1981; Taylor and others, 1992), and the seasonal variabiiity of
the 1sotopes in surface water has been used to determine relative quantities and rates of ground-water
recharge (McCarthy and others, 1992; Kennedy and others, 1986).

The 6'°0 and & D concentrations were measured in selected surface and ground-water
samples (table 3). Monthly samples to assess the seasonal variation in **O were collected from the
Clark Fork River at McCormick Park and a nearby monitor well (well 69055) between June 1999
and December 2000. The river was expected to show a seasonal difference between spring runoff
when the river water is derived from snow melt (isotopic signature should be more depleted) and at
other times when base flow conditions are predominant. Ground-water samples were collected from
wells in June 1999 (peak flow) and March 2000 (low flow) to see if seasonal isotopic variations
could be detected in the aquifer. Water from the June 1999 round of sampling, was analyzed for both
isotopes (*O and D). Subsequent surface and ground water samples were analyzed for *O only
(table 3).

Seasonal variation of '®O in ground water is typically muted due to relatively slow infiltration

wn



and mixing in the unsaturated zone (Clark and Fritz, 1997 and Coplen and others, 2000); however,
given the hvdrogeologic setting of the Missoula Valley aquifer (most of the recharge is infiltrated
river water and the aquifer is highly transmissive) it was hypothesized that a seasonal signal might
be detectable in the aquifer and provide an independent means to trace ground-water flow.

The results from the monthly sampling of the Clark Fork River and well 69055 are shown
on figure 15. The 60O values from the river samples range from -17.86 to -16.46 per mill, the
ground-water samples range from -17.86 to -16.29 per mill. In general, the surface and ground water
samples show similar seasonal variations, with more depleted values in the cold winter and spring
months and more enriched values in the warm summer months. All the surface water samples with
8'0 values greater than -17 per mill occur between June and December.

The ™0 and 8D results from the June 1999 sampling are shown in figure 16 along with the
global and North American meteoric water lines (Coplen and others, 2000). The results plot along
and between the two lines demonstrating the regular relationship between 60O and 8D and
demonstrating the meteoric origin of the water. The sample from the Clark Fork River plots slightly
above the global line and has the most depleted 6'°O value; the ground water samples are all
relatively enriched.

The spatial distribution of the June 1999 &'*O values (figure 17) shows a gradient through
the aquifer that reflects the hvdraulic gradient of the flow syvstem; values become more enriched (less
negative) along flow path; the ground-water values ranged from -18 t0-16.94 per mill, with a median
of -17.26 per mill.

Figure 18 shows the results from the March 2000 samples. The March 2000 samples from
all but one well are enriched relative to the June 1999 samples, the concentrations ranging from -
17.52 to -15.82 per mill, with a median of -16.72 per mill. The amount of enrichment ranged from
0.20 to 1.12 per mill, with an average enrichment of 0.67 per mill (median 0.54 per mill). The
magnitude of the change is on the same order as the seasonal change observed in the Clark Fork
River samples. The 8'®0 concentration gradient is greater than in June 1999, especially in the
western part of the aquifer (figures 17 and 18), even though the hydraulic gradient is slightly less
(figures 6a and 6b).

The overall enrichment and spatial distribution of 'O in the March 2000 samples suggests
that water recharged from the Clark Fork River during warm months had invaded most of the
aquifer. Another explanation of the observed changes is that seasonal pulses of isotopically enriched
water move though the aquifer and the sampling frequency and spacing were not sufficient to
identify multiple seasonal peaks. Clearly, the results indicate that a seasonal 1sotopic variability can
be recognized throughout the aquifer, not just in the recharge area. Systematic sampling of ground
and surface water over one or more years could help trace ground-water flow and assess ground-
water residence times in the Missoula Valley aquifer.

Chlorofluorecarbons

Chlorofluorocarbons (CFC-11 and CFC-12) are synthetic organic compounds first produced
in the 19307, they have very low toxicity and have been used primarily as coolants in air
conditioners and refrigerators, blowing agents in foams and insulation, propellents in aerosol cans,
and as solvents (Plummer and Busenberg, 2000). Atmospheric concentrations of CFC’s are uniform
across large areas and have been steadily increasing since the 1940's. Atmospheric concentrations



of CFC’s have been monitored since 1978, and pre-1978 concentrations have been reconstructed
from CFC production and rates of release (Cook and Solomon, 1997). Therefore, atmospheric input
of CFC’s to ground water can be determined for most localities, and CFC’s provide excellent tracers
and dating tools for young ground water.

In ground water, CFC compounds are soluble and stable. Ground-water ages, or recharge
dates, are determined by converting CFC concentrations in ground water to equivalent air
concentrations using known solubility relationships and recharge temperature (Cook and Solomon,
1997). The equivalent air concentration is compared to known atmospheric concentrations to
determine the recharge year. Limitations to the method include reducing conditions that can degrade
CFC’s 1n ground water, and non-atmospheric sources of CFC’s (Oster and others, 1996). Under
optimal conditions CFC’s can be used to estimate ground-water age tc within 1-to 2-years; however,
accuracy generally decreases as age increases (Szabo and others, 1996; Stoner and others, 1997).

Several studies have used CFC’s to age-date ground water and to trace ground-water flow
(Busenberg and Plummer, 1992; Busenberg and others, 1993; Dunkle and others, 1993; Reilly and
others, 1994; Cook and others, 1995). CFC ages have also been used to assess land-use effects on
water quality (Bohlke and Denver 1996; Stoner and others, 1997), evaluate the timing of nitrate
impacts to ground water in the Flaxville gravel and underlying aquifers in the northern plains of
Montana (Nimick and Thamke, 1998), and to assess ground-water residence times and flow rates
in shallow aquifers in west-central Montana (Nimick and others, 1996). Studies that have compared
CFC to tritium-helium derived ages have shown generally good agreement between the methods
(Ekwurzel and others, 1994; Szabo and others, 1996).

For the Missoula valley, concentrations of CFC-11 and CFC-12 were determined in ground-
water samples collected from 12 wells and a sample from the Clark Fork River. The results were
variable, ranging from less than 3 to more than 77 picomoles per kilogram (pmoles/kg) for CFC-12,
and from less than 4 to 35 pmoles/kg for CFC-11 (table 4). All of the ground-water samples, except
for the two closest to the Clark Fork River, were contaminated having CFC concentrations in excess
of what would be expected from air-water solubility relationships. The elevated concentrations show
that CFC’s from non-atmospheric sources have been introduced into the aquifer, rendering the
samples unusable for age-dating. The two ground-water samples that did not show elevated CFC
concentrations were from wells at McCormick Park (well 69055) and near the Madison St. Bridge
(well 151191), the recharge dates were 1989 (10 year old water) and 1999 (recent < 1 year old
water), respectively. The sample from the Clark Fork River, collected at McCormick Park, returned
a date of 1999 (< 1 year old water).

Although most of the CFC samples were not usable for age dating the ground water, the
spatial distribution shows a pattern of increasing concentrations down flow path similar to the other
parameters associated with human activities. The land use over a large part of the aquifer is
unsewered 1esidential; sewage effluent is a recognized source of CFC contamination to shallow
ground water (Schultz and others 1976; Busenberg and Plummer, 1992; Plummer and Busenburg,
2000). Plotting the distribution of CFC-12 in relation to the location of known septic systems shows
that concentrations increase markedly downgradient of the high density septic areas (figure 19). CFC
concentrations in samples from the unsewered and upgradient parts of the sewered area are less than

10 pmoles/kg; downgradient of the high density septic areas concentrations range up to more than
75 pmoles/kg.



Sampies from the shallow-deep well pair (Well Pair A, figure 8) in the upgradient, sewered
area showed that there is no significant difference in CFC concentration between the shallow and
deep well, the CFC-12 concentrations were 7.5 and 7.94 pmoles/kg, respectively. However, samples
from the well pair in the unsewered part of the area (Well Pair B, figure 8) near the end of the flow
system showed that concentrations in the shallow well were almost 5 times greater than the deep
well, 77.68 and 15.93 pmoles/kg, respectively. These observations suggest that septic effluent is a
primary source of the excess CFC’s.

Tritium

Tritium (*H), the radioactive isotope of hydrogen with a half-life of 12.43 yr, is produced
naturally in the upper atmosphere. Atmospheric testing of nuclear weapons between 1952 and 1963
injected large amounts of trittum into the atmosphere, overwhelming the natural production. Tritium
concentrations in north American rainfall are estimated to have been in the range of 5 to 20 tritium
units (TU) prior to above ground nuclear testing: during the early 1960s tritium concentrations in
precipitation of more than 5,000 TU were recorded at several North American stations (Solomon and
Cook, 2000). Most of the bomb-derived tritium has since been washed from the atmosphere and
tritium levels in precipitation are now close to natural levels (Clark and Fritz, 1997). Tritium in
precipitation fluctuates seasonally. In Ottawa, Canada where it is monitored monthly, tritium levels
in precipitation since 1992 have ranged from about 10 to 30 TU (IAEA/WMO, 2001). Because of
its short half life, tritium is an ideal marker of recent (post-1952) ground-water recharge.

Tritium concentrations in ground water and the Clark Fork Riverranged from 8.7 to 13.1 TU
(table 5 and figure 20). The results show that all the sampled water is modern (i.e. has been
recharged since the advent of above ground nuclear testing) and are very consistent, less then 5 TU
separate the high and low values. The tight range of values suggests that recharge water flushes
through the aquifer relatively rapidly. There are no apparent flow path trends in the tritium data and
there is no difference between the ground-water samples and the Clark Fork River sample (figure
20).

Tritium-Helium Ground-Water Ages

Tritium decays to the stable noble gas helium-3 (*He). After water containing tritium enters
the ground-water system and becomes isolated from the atmosphere, *He concentrations increase as
the ground water becomes older. By determining the amount of tritium and tritiogenic “He in a

ground-water sample, an age can be calculated according to the relationship (Plummer and others,
1993):

{ = t,,/In2 * In( 1+ *He,,/*H)

trit
where tis the tritium-helium age, *He,,, is the helium-3 in the sample derived from tritiogenic decay,
*His the tritium concentration, and t, , is the tritium half life. Ratios of tritium to helium-3 have been
used to accurately date shallow ground water with ages ranging from a few months to 50 years
(Poreda and others, 1988; Solomon and Sudicky, 1991).

Tritium-helium dating has been used to understand flow constraints in an aquifer recharged
by bank infiltration (Stute and others, 1997), and in other studies to determine ground-water



recharge, to estimate variations in ground-water recharge, and to trace ground-water age and flow
(Poreda and others, 1988: Solomon and Sudicky, 1991; Solomon and others, 1992; Solomon and
others, 1993; Cook and others, 1996, Szabo and others, 1996). Tritium-helium dating has also been
used to determine aquifer characteristics and to trace solute transport at contaminated sites (Cook
and others, 1996; Solomon and others, 1995). More recently tritium-helium ages have been used to
improve ground-water flow models, and to estimate and constrain hydraulic parameters used in flow
models (Sheets and others, 1998; Shapiro and others, 1998; Portniaguine and Solomon, 1998).

Tritium-helium-3 (H-"He) apparent ages for the 12 ground-water samples from the Missoula
Valley aquifer ranged from less than zero to 4.6 years, with estimated uncertainties of 1 to 1.5 years
(table 5 and figure 21). ’

The results underscore one of the limitations of the *H-"He method, namely for very young
water accurate determinations of the amount of *He from atmospheric solubility and excess air are
very important (Solomon, 2000). Obviously an age less than zero does not make sense. However,
there are three main sources of *He in ground water, the atmosphere, excess air, and tritiogenic decay
(*He in ground water can also be derived from mantle and nuclear reactions, but for this study these
sources were considered negligible). The total amount of *He can be expressed as:

*He,, = *He,,, + “He, + *He,,
Where *He,,,, is the helium-3 derived from dissolution of air in recharging ground water, *He_ is the
component of helium-3 derived from the supersaturation of air in ground water, and *He,;, is the
component derived from tritiogenic decay. What is measured in the laboratory is *He,,, the total
amount of helium-3 in the sample. To apply this method the amount of *He,,;, must be isolated by
subtracting *He,,,, and “He, from ‘He,,. *He,,, is calculated from the recharge temperature, and
equilibrium solubility relationships with He in the atmosphere. The excess air component is
determined by the degree of neon supersaturation (the only source of neon is the atmosphere), the
recharge temperature, and the atmospheric concentration. Once the amounts of *He,, and *He_have
been accounted for the remaining *He is attributed to tritiogenic decay. The samples that returned
“negative ages” are very young water in which the *He,,, and *He, components overwhelm the *He
component, not enough time has elapsed to generate a significant amount of “He,,.

In general, the results show expected flow-path trends with ages increasing along flow path.
Figure 22 shows the distribution of apparent ages from the samples collected along the eastern
transect, the values range from less than 1 year near the river to more than 3 years at the end of the
transect. There were no strong correlations with depth below the water table, although most of the
samples were obtained near the water table (figure 23). In the nested well pair near the end of the
flow system (Well Pair B) the sample from the deep well had the younger age; however, given the
uricertainties associated with these determinations the ages can not be considered significantly
different.

Using the data from Well Pair B, a horizontal ground-water flow velocity was determined
using the equation:

trit

velocity = distance/time



The well pair is approximately 15,000 feet downgradient from the Clark Fork River (figure
8); the apparent ground-water ages were 4.6 years (well 151201) and 3.3 years (well 157210).
Assuming most of the ground water is recharged from the river, the velocity through this part of the
aquifer ranges from about 7 to 18 feet per day. These velocity estimates can be used in conjunction
with the hydraulic gradient and porosity to estimate values of bulk hydraulic conductivity for the
aquifer using a form of Darcy’s Law:

K = (vel*n)/l

Where K = hydraulic conductivity, vel = ground-water velocity, n = effective porosity, I = hydraulic
gradient. Using the measured hydraulic gradient of 0.002, and an assumed effective porosity value
of 0.25, the estimated hydraulic conductivity of the aquifer ranges from about 900 to 2,300 feet per
day (ft/d). This range agrees favorably with, although it is slightly lower than, ranges published by
McMurtrey and others (1965), 830 - 1,608 ft/d; Woessner (1988), 1,400 - 3,400 ft/d; and Miller
(1991), 1,100 - 18,000 fr/d.

Helium-4

Recharging ground water contains atmospheric *He in an amount that depends on recharge
temperature and air-water solubility relationships. As water moves through the subsurface, ‘He
concentration will rise due to additions of terrigenic *He produced within the aquifer solids
(Solomon, 2000). Terrigenic ‘He (4Hem) is derived mostly from the alpha (o) decay of uranium and
thorium series elements in rocks and sediments, and has been used to trace ground-water flow. The
general theory behind the method is that the longer the ground water is in contact with uranium and
thorium bearing minerals the greater the “He concentration. Therefore, as ground water moves down
flow path, “He concentrations increase: if the release rate is known then “He concentrations should
be proportional to ground-water travel times and can be used to trace ground-water flow (Solomon,
2000). The method has been used to trace ground water in regional bedrock aquifers in the range of
10° - 10® years (Andrews and Lee, 1979; Torgersen and Clarke, 1985; Stute and others, 1992).
However, Solomon and others (1996) observed “He concentrations increased with travel time in a
shallow, unconsolidated aquifer where the ground-water age was less than 50 years, and the
concentrations were 300 times greater than what can be supported by in situ decay of uranium and
thorium. They postulated that the large concentrations were due to the release of residual helium that
had accumulated in the protolith prior to its erosion and deposition as aquifer materials. Furthermore,
they showed that by quantifying the release rate, “He could be used to trace ground water over a time
scale of 10 to 10° vears in some aquifers.

The “He,., concentrations determined for the ground-water samples and the sample from the
Clark Fork River ranged from 0.2 x10°®* to 5.45x10® cubic centimeters at standard temperature and
pressure per gram (ccSTP/g) (table 5 and figure 24). The sample from the Clark Fork River had a
relatively small amount (0.22 x10® ccSTP/g), while samples from wells near the river, in the
upgradient part of the flow system, and below the central part of town had the largest concentrations.
A plot of the *He,, concentrations with distance form the Clark Fork River (i.e. down flow path)
shows that concentrations decrease down flow path (figure 25), a trend opposite of what has been
reported in the literature (Solomon and others, 1996; Solomon, 2000). There were no apparent
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correlations of *He,,, with depth (figure 26), one of the samples from a deep well near the Clark Fork
River had a large concentration (well 157208, 5.45x10® ccSTP/g), but the other deep well located
near the end of the flow system did not (well 157210, 2.10x10* ccSTP/g). To verify the results, four
of the wells were resampled, the results (table 5) confirmed the elevated concentrations and the
concentration distribution (figure 27).

The results of the helium analyses indicate a significant source of terrigenic helium in the
Missoula Valley aquifer and a concentration distribution that defies conventional interpretation.
Large concentrations of terrigenic “He have been detected in other aquifers in the region. Plummer
and others (2000) observed excess terrigenic helium, believed to be derived from a mantle source,
in the eastern Snake River Plain aquifer in south-central Idaho. However, the largest excesses were
detected in water with tritium concentrations generally < | TU, ground water that contained large
fractions of irrigation water (derived from the Snake River) had low excess *He. Pope and others
(1999) reported significant terrigenic helium in a basin-fill aquifer near Dillon, in southwest
Montana. The terrigenic “He was shown to increase in relation to depth and ground-water age,
however there was insufficient data to determine if the source was diffusion from the mantle or from
aquifer solids.

All of the samples from the Missoula Valley aquifer have terrigenic “He concentrations well
above what could be possible from the in-situ decay of uranium and therium. If the source is the
release of residual helium then it would appear that the release rate is not uniform through the
aquifer. Whatever the source, the presence of such large concentrations in ground water less than 5
years old, and a concentration distribution that does not account for known flow paths presents an
unsolved problem.

Summary and Conclusions

A study to assess the use of environmental tracers and water quality in the Missoula Vallev
aquifer was undertaken as part of the Montana Ground-Water Assessment Program and funded in
part by the Montana Water Center.

The ground water in the aquifer is a calcium-bicarbonate type with low dissolved solids
concentrations; none of concentrations of inorganic constituents exceeded public drinking water
standards. However, concentrations of total dissolved solids, sodium, chloride and nitrate were
higher in samples from the downgradient wells, indicating that concentrations of these constituents
increase as ground water flows from the Clark Fork to the Bitterroot River. Samples from two
shallow-deep well pairs show that concentrations of these constituents are slightly greater in the
shallow wells (near the water table). Much of the area overlying the aquifer in the study area is
urban, or high- and medium density residential (sewered and unsewered), and is covered by streets,
driveways, parking lots and lawns. Likely sources of sodium and chloride in this environmental
setting include de-icing chemicals and septic effluent; likely sources of the nitrate include fertilizers
applied to lawns and gardens, and septic effluent.

Monthly sampling of the Clark Fork River shows that concentrations of 6'*0 and 0D vary
scasonally, generally the water is more isotopically enriched during the warmer months. Ground-
water samples from June 1999 show 8'°0 increasing fairly uniformly down flow path. The results
from a repeat sampling in March 2000, show all of the samples, except one, were enriched relative
to the June 1999 samples and the concentration gradient was steeper. The amount of enrichment was
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on the order of the seasonal variability observed in the Clark Fork River samples. The seasonal
variability in the Clark Fork River most likely explains the spatial variability observed within the
aquifer and the shift in 80 values in the ground water between June 1999 and March 2000 because
the river is the primary source of recharge. The observed temporal and spatial variability could be
useful for tracing ground-water flow and determining ground-water residence times in the Missoula
Valley aquifer.

Evaluation of CFC concentrations in context of the ground-water flow system and land use,
specifically the distribution of septic systems, indicate that septic effluent is a probable significant
source of CFC’s to the Missoula Valley aquifer. The results indicate that CFC’s can not be used in
thisenvironmental setting to date ground water because of CFC contamination. Although unsuitable
for age dating, CFC’s may be useful for monitoring the effectiveness of sewering on the ground-
water quality. Parts of the study area are scheduled to be sewered, resampling the wells for CFC’s
after the septic systems are no longer in use may provide a way to document the effect of sewering
on ground-water quality.

Ground-water ages determined by the *H/"He method were for the most part hydrologically
consistent; ages generally increase with distance down flow path. The oldest apparent age was 4.6
years with an uncertainty of +\- 1 yr. Dating of the ground water was problematic because most of
the water is so young. Young water is more sensitive to atmospheric concentrations of *He which
results in increased uncertainty without accurate determinations of atmospheric components of “He.
However, the results are significant because they demonstrate the presence of young water
throughout the flow system between the Clark Fork and Bitterroot Rivers, and they are consistent
with the high transmissivity of the aquifer as measured by aquifer tests. Comparison of bulk
hydraulic conductivity values estimated from *H/*He ages agree favorably with values determined
from aquifer tests.

Large concentrations of terrigenic “He were present in the ground-water samples from the
Missoula Valley aquifer. The sample from the Clark Fork River did not contain significant “He,
suggesting that the excess ‘He is derived from the aquifer solids or possibly a deep regional flux.
However, the spatial distribution of “He does not show expected flow path trends that would support
either of these hypotheses. Ground-water samples very close to the Clark Fork River were highly
enriched in “He and concentrations generally decreased along flow path, samples from the deep wells
were not consistently more enriched in *He than shallow samples.

The water quality trends and the young age of the ground water highlight the overall
vulnerability of the Missoula Valley aquifer to contamination. It is recommended that the ongoing
monitoring efforts of the Missoula Valley Water Quality District continue 1n order to preserve the
current high-quality ground water in the aquifer.
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Figure 1. The Missoula Valley is located in southwest Montana near the confluence of the Clark Fork and Bitterroot

rivers.
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Table 3. Results of oxygen-18 and deuterium analyses

delta O18 and delta D results in per mill

+\:“" '.?;;j-r-"': '-5":'-. Samplgn«”m Pl :".'. B Sample } 1 \,5,,. :
2 éeﬁ%l@t I% Date | delta 018| deltaD || Date | deltaO18
69037 6/28/99  -16.94, -131.30 3/6/00] -15.82
69055 6/22/99  -17.76] -136.10)  3/8/00| -16.55
69402 6/28/99  -17.07] -132.30] 3/9/00, -16.66
151143 6/28/99  -17.31] -132.40| 3/9/00, -16.77
151161  6/22/99  -17.20] -132.80|  3/7/00,  -16.51
151189 | 6/22/99  -17.27) -132.10|  3/7/00] -16.92
151190 | B/21/99  -17.36] -133.30| 3/6/00, -17.16
151191 6/22/99  -17.53) -135.50]  3/9/00] -17.13
151200 6/28/99  -17.24 -13250| 3/7/00, -17.52
151201 6/21/99  -17.16] -129.40|  3/9/00, -16.65
157208 6/21/99  -18.00 -13554 3/6/00  -16.91
157210 6/21/99 1717 -13250] 3/9/00  -16.26
182632 6/22/99  -17.86  -133.50]  3/8/00  -17.42
L] 58055 ) 182632
Sample Date | delta O18| delta O18
6/22/99]  -17.76  -17.86
7/21/99) 1754 -17.47
8/7/99) -16.86  -16.81
9/1/99]  -16.47  -16.69
1117/99, 1714 -17.35
12/6/99]  -17.03  -17.27
1/6/00] -17.86  -17.05
2/3/00  -16.29  -17.05
3/8/00  -16.55  -17.42
4/6/00]  -17.08  -17.02
~ 510/00, -17.07  -17.26
6/5/00 -17.33  -17.33
N 7/15/00,  -16.7  -16.48
8/7/00  -16.49] -16.59
9/17/00  -16.61  -16.54
10/12/00  -16.61  -16.54
11/16/00  -16.91  -17.01
12/14/00  -17.14]  -17.78



Table 4. Chlorofluorocarbon (CFC) data for the Missoula Valley, Montana

Sample ID|  Date | kg)| (pmoles ‘recharge year'*
69055-1 (6/22/1999 4.05 2.96 :

69055-2 |6/22/1999 4.39 2.76 !

69055-3 |6/22/1999 5.62 5.62 422 2.86 1989
182632-1 16/22/1999 | 3.94 3.88 |

182632-2 16/22/1999 3.78 3.38 |

182632-3 16/22/1999 | 3.85 3.38 3.55 3.38| 1999
151101-1 |6/21/1999 na na |

151101-2 6/21/1999 34.06 47.56 |

151101-3 16/21/1999 35.99 55.21 35.03 51.39 contaminated
151143-1 |6/28/1999 na 4.73 |

151143-2 6/28/1999 6.68 4,58 ;

151143-3 '6/28/1999 6.53 6.83 6.61 463 contaminated
151161-1 |6/22/1999 na na |

151161-2 }6/22/1 999 6.72| 61.33

151161-3 6/22/1999 6.16 68.76 6.45 75.05 contaminated
151189-1 6/22/1999 na 19.9 B

151189-2 6/22/1999 13.79 16.08

151189-3 16/22/1999 | na 23.08 13.79 18.99 contaminated
151190-1 16/21/1999 na 7.56

151190-2 6/21/1999 6.27 Aoy - i

151190-3 6/21/1999 6.33 7.38 6.3 7.5 contaminated
151191-1 16/22/1999 | 6.75 292 -
151191-2 6/22/1999 | na 3.68 -
151191-3 16/22/1999 ! na na 6.75 3.3 1999
151200-1 6/28/1999 na na

151200-2 1 6/28/1999 na 14.7 |

151200-3 16/28/1999 9.85 5.51 9.85 545i contaminated
151201-1 16/21/1899 na na | )

151201-2 |6/21/1999 10.56 75.01 |

151201-3 16/21/1999 10.81 80.35 10.69 77.68 contaminated
157208-1 6/21/1999 na 7.77 |

157208-2 16/21/1999 | 5.35 7.99) B

157208-3 |6/21/1999 | 5.46 8.06 5.4 7.94 contaminated
157210-1 16/21/1999 | nal na

157210-2 16/21/1999 9.25 1599 o

157210-3 16/21/1999 9.44 15.87 9.34 15.93 contaminated
69402-1 6/28/1999 | na na * B
69402-2 6/28/1999 6.84 5.74 i | -
69402-3 6/28/1999 6.73 5.51 6.78 5.62 contaminated

* - Qutliers removed.
** - Assumes 6 C recharge temperature at an elevation of 1500 m.
na - Concentration was outside of calibration.
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