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ABSTRACT

The unconformity-bounded late early Eocene to early Miocene lower Bozeman Group (Renova Formation 
and equivalents) is primarily preserved in western Montana erosional and extensional terrestrial basins. Proxi-
mal volcanism and initial core complex exhumation were coeval with the late early Eocene onset of extension, 
and deposition of the oldest lower Bozeman Group rocks. Subsequently, distal volcanism contributed abundant 
ash to the basins. Fine-grained deposits dominated, with subordinate coarse-grained fl uvial and basin-margin 
deposits. Fluvial clast composition documents exposure of Laramide uplift basement cores and specifi c batho-
liths and plutons during lower Bozeman Group deposition. 

The lithologic variability across the basins led some to adopt a sequence stratigraphic approach to Bozeman 
Group stratigraphy. Generally, however, the Renova Formation is considered the dominant lithostratigraphic 
unit of the lower Bozeman Group, although its extent and lower contact have not been applied consistently. 
Renova Formation age equivalents occur in northwestern Montana, in bordering Alberta and Saskatchewan, and 
in southeastern Montana. 

The initiation of Basin and Range extension produced a widespread unconformity at the top of the lower 
Bozeman Group that separates the Renova Formation and equivalents from the overlying Sixmile Creek For-
mation of the upper Bozeman Group in much of western Montana. Unconformities within the lower Bozeman 
Group may refl ect augmented relief or the infl uence of climate such as the global Middle Eocene Climatic Opti-
mum. Locally, paleodrainages may have reorganized as sediment input changed, volcanic eruptions occurred, or 
structural changes disrupted drainage patterns, but in widespread areas paleodrainage patterns remained consis-
tent.

Ongoing basin analysis projects are evaluating several hypotheses regarding basin formation and develop-
ment and are refi ning understanding of sedimentology, depositional environments, paleoclimate, paleotopogra-
phy, and paleodrainage. Stratigraphic dating has evolved from primarily vertebrate fossil-based methods, sup-
plemented with magnetostratigraphy, to emphasis on radiometric dating, primarily of volcanic ash and detrital 
zircons. This has led to better constraints on depositional ages of units, and more refi ned evaluation of prove-
nance.

 INTRODUCTION

The lower Bozeman Group deposits discussed 
in this chapter represent the transition between the 
cessation of Laramide-Sevier contraction (late Pa-
leocene-earliest Eocene) and the onset of Basin and 
Range extension in western Montana (early Miocene). 
Despite its importance, this part of the stratigraphic 
section received little attention until the late 1950s 
through the 1970s when most studies emphasized 
vertebrate paleontology. Formal stratigraphic names 
are sparse, whereas informal names that refl ect various 
approaches to stratigraphy abound. Interpretations of 

depositional and tectonic settings have been inconsis-
tent, but recent work on these deposits has added new 
sedimentologic, magnetostratigraphic, thermochro-
nologic, detrital zircon, and radiometric data, leading 
to refi ned interpretations of stratigraphic correlation, 
tectonism, landscape evolution, and climate. The var-
ious approaches and interpretations for this part of the 
stratigraphic section in western Montana are reviewed 
in this chapter. Coeval deposits that occur as isolated 
remnants in the southeastern part of Montana and in 
southern Alberta and Saskatchewan are also discussed.
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Most of the original age assignments for the lower 
Bozeman Group (fi g. 1) were based on vertebrate pa-
leontology. Revisions to Paleogene geochronology and 
biochronology (Prothero and Swisher, 1992; Wood-
burne and Swisher, 1995; Prothero and Emry, 2004; 
Tedford and others, 2004) changed the position of the 
Paleogene-Neogene and the Eocene-Oligocene bound-
aries from their previous placement by Wood and 
others (1941). This paper uses the updated chronostra-
tigraphy even when citing literature that pre-dates the 
change. The paper is intended to serve as an overview 
of various observations and interpretations. 

STRATIGRAPHY

The lower Bozeman Group (fi g. 1) discussed in 
this chapter refers to a part of the early Eocene to early 
Miocene section in western Montana that is bounded 
by two signifi cant, regional unconformities, and is 
generally referred to as the Renova Formation and 
equivalents (fi g. 1), or as Sequences 1, 2, and 3 (fi g. 
2). Robinson (1963) was the fi rst to apply the formal 
stratigraphic name Bozeman Group to Paleogene and 
Neogene post-Laramide deposits of western Montana. 
Fields and others (1985) originally placed the oldest 
Bozeman Group deposits as coeval with early Eocene 
extensional volcanism. However, an addendum at 
the end of the report (Fields and others, 1985) modi-
fi ed the basal Bozeman Group to a younger position 
that excluded deposits genetically related to the ini-
tial early Eocene extensional volcanism. Hanneman 
and Wideman (1991) indicated that early Eocene 
extensional volcanic rock (e.g., Lowland Creek and 
Challis; see Mosolf and others, 2020) and associated 
sedimentary deposits should be considered part of the 
Bozeman Group, as originally designated. Based on 
Robinson’s (1963) designation of the Bozeman Group 
as “post-Laramide,” Rasmussen (2003) agreed that 
it should include volcanic rock from the initial early 
Eocene extension and noted that it should also include 
the Absaroka Supergroup volcanic rocks. Fritz and 
others (2007), on the other hand, indicated that the 
area where Renova Formation occurs is geographical-
ly bordered by the Eocene Challis, Lowland Creek, 
and Absaroka volcanic fi elds, and thus does not in-
clude that volcanic rock, except where it interfi ngers 
with basin sediment.

Lithostratigraphy
Kuenzi and Fields (1971) recognized two uncon-

formity-bounded, “lithologically and homotaxially 

distinct” sequences within the Bozeman Group. They 
applied lithostratigraphic terminology to the two 
sequences, which are separated by a “mid-Tertiary 
unconformity.” They designated the lower sequence 
Renova Formation and the overlying sequence Sixmile 
Creek Formation.

Although many workers make a fi ne-grained 
vs. coarse-grained distinction between the Renova 
and Sixmile Creek Formations, the original defi ni-
tions of these units were more detailed. Kuenzi and 
Fields (1971) defi ned the Renova Formation as rock 
containing greater than 70 percent terrigenous, very 
fi ne-grained sand, and fi ner sediment, and/or carbon-
ate rock; and less than 30% coarse-grained sediment 
with conglomerate generally as a relatively minor 
component. They defi ned the overlying Sixmile Creek 
Formation as typically containing fi ne-grained sand 
and coarser sediment, characteristically including con-
glomerate. The names Renova and Sixmile Creek For-
mations have been widely used, but are not universally 
accepted as the best approach for inter- and intra-val-
ley correlation (Hanneman and Wideman, 2016). 

In northwestern Montana, the Kishenehn Forma-
tion (Daly, 1912) correlates stratigraphically with the 
Renova Formation (fi gs. 1, 3). Informal names (in-
formal unit designations start with lowercase letter) 
were applied to other strata of this interval in parts of 
western Montana such as Medicine Lodge beds, Sage 
Creek formation (Scholten and others, 1955), Fort 
Logan formation (Douglass, 1903; Koerner, 1940), 
and Blacktail Deer Creek formation (Douglass, 1901; 
Hibbard and Keenmon, 1950). Fields and others 
(1985) suggested that the designation Renova Forma-
tion should apply to such informal units. The Ren-
ova Formation was not recognized in an interpreted 
synsedimentary rift zone in southwestern-most Mon-
tana (Janecke, 1994; Janecke and Blankenau, 2003), 
and in the Deer Lodge, Flint Creek, and Divide Basins 
(Stroup and others, 2008). However, others have ap-
plied the name Renova Formation in these areas (e.g., 
Dunlap, 1982; Rasmussen, 1989; Barnosky and others, 
2007; Retallack, 2009; Elliott, 2017; Harris and others, 
2017). Renova Formation has been applied by some 
workers as far west as the Lemhi Basin in southeast-
ern Idaho (Harris and others, 2017) and the Bitterroot 
Valley of western Montana (DesOrmeau and others, 
2009), and as far northwest as the Ninemile Valley 
(Hendrix and others, 2014; fi g. 3).
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Kuenzi and Fields (1971) formally designated 
three members of the Renova Formation in the Jeff er-
son Valley: Dunbar Creek, Bone Basin, and Climbing 
Arrow Members (fi gs. 1, 3, 4). The Dunbar Creek and 
Climbing Arrow Members had previously been desig-

nated as formations in the Three Forks area (Robinson, 
1963) and were later extended into the Toston area 
(Robinson, 1967). Fields and others (1985) further 
confi rmed that the lower Renova Formation includes 
locally derived coarse-grained arkose, conglomerate, 
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Figure 3. Western Montana valleys: (A) known to contain lower Bozeman Group (early Eocene to early Miocene) deposits, including in 
Madison Valley subsurface (Rasmussen and Fields, 1985); (B) likely contain subsurface early Eocene to early Miocene deposits.
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and gravel, as well as local interbedded volcanic fl ows 
and ash. Monroe (1981) designated the Passamari 
Member of the Renova Formation in the Ruby River 
Basin where it overlies the Dunbar Creek Member. 
Elsewhere, the informal names Cabbage Patch beds 
(Konizeski and Donohoe, 1958), Negro Hollow beds 
(Lofgren, 1985), and part of the Medicine Lodge beds 
(Scholten and others, 1955) were applied to rocks of 
similar age (late Oligocene to early Miocene) as the 
Passamari Member based primarily on vertebrate fos-
sils. Enough information was provided on the Cabbage 
Patch beds for formal designation as a new formation 
(Rasmussen, 1977), but subsequently, the unit was 
treated as part of the Renova Formation (Rasmussen, 
1989) or “lithologically similar to the Renova For-
mation” (Rasmussen and Prothero, 2003). Similar to 
designations of Fritz and others (2007; i.e. Medicine 
Lodge beds changed to the Medicine Lodge Member 
of the Renova Formation) in the Sage Creek Basin, 
the Cabbage Patch beds were mapped as the Cabbage 
Patch member of the Renova Formation in the Avon 
and Nevada (Helmville) Valleys (Mosolf and Vuke, 
2017; McDonald and Vuke, 2017; fi g. 3). The previ-
ously designated Medicine Lodge beds and the Cab-
bage Patch beds are each over 1,000 m thick (Scholten 
and others, 1955; Loen, 1986). 

Certain lithologic characteristics represented in the 
Renova Formation and equivalents, but not the Six-
mile Creek Formation, help distinguish between these 
units. For example, mollusk-bearing marlstone and 
siliceous facies, considered diagnostic of the Cab-
bage Patch beds in the Flint Creek Basin (Portner and 
others, 2011), are also recognized in the same part of 
the section in the Avon area (Mosolf and Vuke, 2017). 
Paper shale, including oil shale, or otherwise thinly 
laminated silt, mud, and clay—especially with rich 
plant, insect and/or mollusk remains (Dorr and Wheel-
er, 1964; Becker, 1973; Miller, 1980; Dunlap, 1982; 
Constenius and Dyni, 1983; Monroe, 1981; Rasmus-
sen, 1977, 1989; Pierce, 1993; Ripley, 1995; Pierce 
and Constenius, 2001; CoBabe and others 2002; 
Rasmussen and Prothero, 2003)—are Renova or Ren-
ova-equivalent lithologies, not those of Sixmile Creek 
Formation. Insects are remarkably preserved in some 
areas such as the Kishenehn Basin, where many insect 
fossils, including an Eocene blood-engorged mosquito, 
were found (Briggs, 2013; Greenwalt and Labandeira, 
2013; Greenwalt and others, 2013). Insects have not 
been found in the Sixmile Creek Formation. Diatomite 
and diatomaceous beds have been described in Ren-

ova deposits (Monroe, 1981; Ripley, 1987, 1995; 
Vuke, 2003; Rasmussen and Prothero, 2003; Vuke, 
2004; Pierson and Schwartz, 2005), but also not in 
Sixmile Creek Formation deposits. Coal and lignitic 
beds in many valleys such as Bitterroot, Missoula, 
Flint Creek, Deer Lodge, Avon (Pardee, 1911), Toston 
(Robinson, 1967), Medicine Lodge (Dyni and Schell, 
1982; Fritz and others, 2007), Kishenehn (Constenius 
and Dyni, 1983), and Ninemile (Hendrix and others, 
2014) are Renova, Renova-equivalent deposits (fi g. 1), 
or deposits beneath Eocene volcanic rock.

The Eocene Climbing Arrow Member throughout 
its extent in southwestern and west-central Montana is 
perhaps the most recognizable stratigraphic unit in the 
Renova Formation based on lithologic characteristics 
such as its degree of “popcorn weathering” (owing 
to swelling clay content), local, thin, organic-rich 
shale, coarse channel sandstone and conglomerate 
with rounded pebbles, local distinct olive-green or 
gray-brown color, and distinct topographic expression 
(e.g., Robinson, 1963, 1967; Kuenzi and Fields, 1971; 
Petkewich, 1972; Fritz and others, 2007). The mostly 
age-equivalent Chadron Formation of northwestern 
South Dakota, thin remnants of which occur in south-
eastern Montana (fi g. 1), is described as bentonitic 
claystones that weather into characteristic “haystack 
hill” topography with a “popcorn” surface weather-
ing texture (Lillegraven, 1970). This description was 
noted as “identical” to that of the Chadron Formation 
of the Big Badlands of central South Dakota (Lille-
graven, 1970), and is also an apt brief description for 
distinct characteristics of parts of the Climbing Arrow 
Member of western Montana (fi gs. 4, 5). 

Although the lithologies described above are char-
acteristic of the Renova Formation and equivalents, in 
some areas where they are lacking it can be diffi  cult 
to distinguish Renova Formation from Sixmile Creek 
Formation on the basis of lithologic characteristics 
without the benefi t of age control, especially along 
basin margins or in fl uvial deposits where exposures 
are limited. Notably, the original type section of the 
Sixmile Creek Formation in the Toston area (Robin-
son, 1967) was later shown to contain late Oligocene 
or earliest Miocene fossils in its lower part that are 
older than the defi ning early Miocene unconformity 
that separates the Renova from the Sixmile Creek For-
mations. No other dating methods have been applied 
to determine if the fossils were reworked into younger 
basin-margin debris fl ow deposits. Regardless, Kuenzi 
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Figure 4. Members of Renova Formation designated by Kuenzi and Fields (1971) in the Jeff erson Valley. (A) Dunbar Creek Member; 
(B) Climbing Arrow Member; (C) Bone Basin Member; (D) photo locations.

A

B C
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and Fields (1971) redefi ned the Sixmile Creek Forma-
tion as restricted to above the “mid-Tertiary uncon-
formity,” although according to The Code of Strati-
graphic Nomenclature (American Commission on 
Stratigraphic Nomenclature, 1961) they should have 
formally abandoned and replaced the name Sixmile 
Creek (Tabrum, oral commun., 2002). However, the 
redefi ned name Sixmile Creek is now ingrained in the 
literature and widely used.

Sequence Stratigraphy
Hanneman and Wideman (1991) proposed a 

simplifi cation of stratigraphic complexities and incon-
sistencies by using a sequence stratigraphic approach. 
They called attention to the diffi  culty of distinguishing 
between Renova and Sixmile Creek Formations on 
the basis of lithology, particularly because fi ne- and 
coarse-grained deposits occur in both formations and 
because of lateral and vertical variability. Their se-

A

B

Figure 5. (A) Chadron Formation (Chadronian) in foreground, Brule Formation (Orellan) in background at Badlands National Park in 
South Dakota (National Park Service photo). (B) Climbing Arrow Member of Renova Formation (Chadronian) in foreground, Dunbar 
Creek Member of Renova Formation (Orellan) in background near Toston, Montana.
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quence-stratigraphic approach grouped relatively con-
formable strata into rock units bounded by signifi cant 
unconformities, and it used numbered sequences in 
place of the numerous formal and informal formation/
member names (fi g. 2). They recognized calcic pedo-
complexes (Hanneman and Wideman, 2006)—many 
of which had previously been interpreted as lacustrine 
deposits—at sequence boundaries in southwestern 
Montana valleys. They also documented that the pedo-
complexes can be traced into the subsurface, providing 
a means of correlating outcrops with subsurface seis-
mic data (Hanneman and others, 1994). They further 
noted the diffi  culty in making regional correlations 
based on lithostratigraphy, because Cenozoic depos-
its do not crop out extensively, making unit-by-unit 
correlation diffi  cult or impossible. In addition, local 
variations in composition and clast size can complicate 
correlations based on lithostratigraphy (Hanneman and 
others, 2003). The sequences they defi ned are bounded 
by unconformities at basin margins, but by correlative 
conformities at basin centers (Hanneman and Wide-
man, 2010).

The designated sequences (Hanneman and Wide-
man, 1991, 2017; fi g. 2) temporally correlate remark-
ably well with those identifi ed independently in central 
Washington (Cheney, 1994) and are similar to those in 
the Great Plains (Hanneman and others, 2003), sug-
gesting allocyclic controls on regional depositional 
patterns (Schwartz and Schwartz, 2013). However, 
not all of the sequence-bounding unconformities were 
recognized in the Sage Creek Basin (Kent-Corson and 
others, 2006; Methner and others, 2016; Schwartz and 
Graham, 2017), the Muddy Creek Basin (Schwartz 
and others, 2019a), and the Lemhi Basin (Harris and 
others, 2017; fi g. 1). 

Sequence 1, the lowest sequence of the Bozeman 
Group (Hanneman and Wideman, 1991), includes 
volcanic (fi gs. 2, 6) and sedimentary deposits from 
the initial early and middle Eocene stage of extension. 
It is not present in every basin. Sequences 2 and 3 
are generally equivalent to all or part of the Renova 
Formation and equivalents depending on how low in 
the section the name is applied by diff erent workers. 
Sequence 4 is generally equivalent to the Sixmile 
Creek Formation. 

Chronostratigraphy and Geochronology
Despite potential drawbacks, vertebrate paleon-

tology correlated with North American Land Mam-
mal Ages (NALMAs, fi g. 1) has historically been the 

most employed method of dating the lower Bozeman 
Group. The NALMAs for deposits discussed in this 
chapter from oldest to youngest are Bridgerian, Uin-
tan, Duchesnian, and Chadronian (Eocene); Orellan 
and Whitneyan (Oligocene); Arikareean (Oligocene 
and Miocene); and Hemingfordian (Miocene), which 
range from 50.5 Ma to 16.3 Ma (fi g. 1). 

Fossil reworking into younger units (e.g., Lofgren 
and others, 1990) is one possible problem with using 
fossil data to assign ages. Provincialism and endemism 
of local faunas can also make correlations with NAL-
MAs challenging, so confi rmation of biostratigraphy 
with paleomagnetic and geochronologic analyses has 
been desirable (Tabrum and others, 1996). Magne-
tostratigraphy has refi ned the ages of fossil mammal 
assemblages across the Eocene–Oligocene transition 
in the Jeff erson, Beaverhead, and Sage Creek Basins 
of southwestern Montana (Tabrum and others, 1996). 
It was also employed to refi ne ages of fossil mammals 
across the Oligocene–Miocene transition in the Flint 
Creek and Deer Lodge Basins, although with less 
certainty, because many short episodes of normal and 
reversed polarity are present in the late Oligocene and 
early Miocene magnetic time scale (Rasmussen and 
Prothero, 2003).

Recent chronostratigraphic dating has contested, 
refi ned, or corroborated the older biostratigraphic and 
magnetostratigraphic data. For example, signifi cant 
discrepancies were found between a radiometrically 
calibrated age model (Harris and others, 2017) and 
Miocene ages previously interpreted from magneto-
stratigraphy and biostratigraphy (Barnosky and others, 
2007) in the Lemhi Basin (fi g. 1). The newer research 
suggests that radiometric calibration could signifi cant-
ly refi ne the magnetostratigraphic and biostratigraph-
ic age interpretations elsewhere (Harris and others, 
2017). 

Chadronian (Eocene) fossils were identifi ed in the 
Bone Basin Member in one Jeff erson Valley section 
(Kuenzi, 1966). A nearby section was designated the 
type section of the Chadronian Bone Basin Member, 
yet in two much later separate studies, detrital zircon 
data from the type section from which fossils were 
not obtained independently indicated an Arikaree-
an (Oligocene) maximum depositional age of ca 25 
Ma (Stroup and others, 2008; Schwartz and others, 
2019a), as much as 12 Myr younger than originally 
indicated for the Bone Basin Member type section 
(Kuenzi and Fields, 1971; fi g. 1). 
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Figure 6. Location of Eocene and Oligocene volcanic fi elds, batholiths, and core complexes relative to western valleys that contain low-
er Bozeman Group at surface (see fi g. 3); Cypress Hills Formation in Canada; and White River Group (Chadron and Brule Formations, 
and Arikaree Formation in southeastern Montana and adjacent states).
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In three cases detrital zircon data provided Renova 
ages for fl uvial conglomerates that were previously 
considered Sixmile Creek Formation: on McCartney 
Mountain near an abandoned schoolhouse along the 

Burma Road (Rothfuss and others, 2012), in a quarry 
along Silver Bow Lane just west of the Beaverhead 
River (Schwartz and others, 2011), and within the Big 
Hole Canyon (Schricker and others, 2013; fi g. 7). 

Figure 7. Geographic features.
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Detrital zircon-based age constraints have broadly 
confi rmed NALMA designations in the Sage Creek 
basin (Schwartz and Graham, 2017) and have provid-
ed new age data for other basins (Hodges and others, 
2004; Link and others, 2008; Stroup and others, 2008; 
Roe, 2010; Schwartz and others, 2019a). Radiometric 
ages of interbedded volcanic or paleosol units have 
also been used to refi ne or corroborate NALMA ages 
in western Montana (e.g., M’Gonigle and Dalrymple, 
1993; Fritz and others, 2007; Methner and others, 
2016; Dawson and Constenius, 2018).

CAPPING UNCONFORMITY

The signifi cant unconformity that Kuenzi and 
Fields (1971) used to defi ne the upper contact of 
the Renova Formation, or the top of Sequence 3 
(Hanneman and Wideman, 1991), extends across the 
intermontane valleys of western Montana (unconfor-
mity 5; fi gs. 1, 2; Robinson, 1960; Kuenzi and Rich-
ard, 1969; Rasmussen, 1973; Monroe, 1981; Runkel, 
1986; Barnosky and Labar, 1989; Elliott and others, 
2003; Hanneman and others, 2003; Barnosky and 
others, 2007), and was historically age-constrained 
primarily based on vertebrate fossil assemblages. In 
western Montana it has been called the “mid-Tertia-
ry” (Robinson, 1960) or “early-Miocene” (Fields and 
others, 1985) unconformity. The name “mid-Tertiary 
unconformity” has been formally discarded for sever-
al reasons (Harris and others, 2017). It has also been 
called the “Hemingfordian unconformity,” because a 
distinct Hemingfordian (NALMA, fi g. 1) fauna had 
never been reported in nearly 100 years of vertebrate 
fossil collecting in western Montana (Fields and 
others, 1985), even where bracketing late Arikareean 
and early Barstovian strata are fossiliferous (Lofgren, 
1985). However, Hemingfordian fossils have subse-
quently been reported in the Sage Creek Basin (Ta-
brum, 2001), Horse Prairie Basin (Retallack, 2007), 
and Lemhi Basin (Barnosky and others, 2007). Devel-
opment of the unconformity has been interpreted as a 
direct response to the onset of Basin and Range exten-
sion in southwestern Montana and southeastern Idaho 
between ca. 18 to 17 Ma (Barnosky and Labar, 1989; 
Burbank and Barnosky, 1990). The unconformity has 
been recognized along the extent of the North Ameri-
can Cordillera spanning approximately the same time, 
and interpreted as the hiatus between regional collapse 
of the Cordillera and inception of Basin and Range 
tectonism (Constenius and others, 2003).

 The unconformity in parts of some basins is 
distinctly angular (Thompson and others, 1982; Ras-
mussen, 2003; Sears and Ryan, 2003), but in others, 
especially in the center of basins where identifi ed 
using seismic data, it is only erosional (Rasmussen, 
2003) or may be represented by a correlative confor-
mity (Hanneman and Wideman, 2010). Discordance 
was not recognized, for example, in the Medicine 
Lodge beds in basins of the Snake River Plain, Idaho 
(Hodges and Link, 2002). Calcic pedocomplexes mark 
the unconformity in many places in western Montana 
and probably at least as far east as southwestern North 
Dakota (Hanneman and Wideman, 2006). 

Age constraints for the unconformity have in-
dicated regional early Miocene synchroneity for its 
development (Constenius and others, 2003). However, 
new data from Railroad Canyon near Leadore, Idaho 
(fi g. 7), within 1 or 2 km of the southwestern Mon-
tana border, document a signifi cant discrepancy for 
the age of the hiatus (Lemhi Basin, fi g. 1). New age 
constraints at this location indicate ca. 21.5 to 21.4 
Ma (early Miocene, late Arikareean NALMA) tim-
ing of unconformity development based on a radio-
metrically calibrated model that used moderate- and 
high-precision U-Pb dating of single zircon crystals 
from four unconformity-spanning ash horizons (Har-
ris and others, 2017). This is signifi cantly older than 
previous Hemingfordian constraints of ca 17.3 to 13 
Ma (Zheng, 1966; Barnosky and others, 2007) based 
on biostratigraphy and magnetostratigraphy for the 
unconformity at the same section. The new dates also 
contrast with data from the upper Yellowstone Valley, 
Montana and Jackson Hole, Wyoming that constrained 
the Hemingfordian hiatus to an onset of 17–18 Ma and 
cessation at 16.8 Ma, also based on magnetostratigra-
phy and biostratigraphy (Barnosky and Labar, 1989; 
Burbank and Barnosky, 1990). The refi ned age range 
of the unconformity at Railroad Canyon suggests that 
refi ned dating in other areas may indicate that the age 
of the unconformity is not as uniform as previously 
recognized.

PALEOGENE BASIN DEVELOPMENT

Interpretations of late early Eocene to early Mio-
cene (lower Bozeman Group age, fi g. 1) basin devel-
opment are varied, in part because of overprinting by 
subsequent Neogene Basin and Range style (upper 
Bozeman Group/Sixmile Creek age and younger, fi g. 
1) faulting (Schmidt and Garihan, 1986; Constenius, 
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1996; Sears and Fritz, 1998) and in part because of 
possible geographic diff erences in basin development. 
Hypotheses and interpretations for the mechanism of 
sediment accommodation for lower Bozeman Group 
deposits include: (1) development of a network of 
grabens and half grabens throughout the extant Se-
vier thrust belt; (2) development of grabens and half 
grabens within a north–south-oriented rift zone within 
the extant Sevier thrust belt and hinterland, with an 
alluvial plain on the rift shoulder; (3) development of 
a single, broad basin in southwestern Montana bor-
dered by Eocene volcanic fi elds; and (4) development 
of a network of fl uvial paleovalleys during late-stage 
Laramide-Sevier tectonism, with minimal to moderate 
overprinting by subsequent extension (fi g. 8). Al-
though the models vary, certain aspects overlap from 
one model to another. 

(1) Extensional Half Graben Network along 
Reactivated Thrust Faults throughout the Extant 

Thrust Belt
Contractile Laramide and Sevier orogenesis ceased 

during late early Eocene time. Subsequent gravita-
tional collapse of the over-thickened fold-thrust belt 
promoted extension (Dewey, 1988; Constenius, 1996), 
and consequent normal faulting produced a network of 
grabens and half grabens that served as Paleogene and 
early Neogene depositional basins. 

Within this framework, one model interprets ex-
tension as having started 45 to 40 My after the cessa-
tion of thrusting in southwestern Montana (Ruppel, 
1993). During this time, a pre-extensional erosion sur-
face developed, forming a subdued topography (Pard-
ee, 1950) that became the surface of a plateau-like 
feature. Remnants of the erosion surface are preserved 
on the Gravelly, Lemhi, and Beaverhead Ranges and 
elsewhere in western Montana. According to this 
interpretation, high-angle normal faulting that resulted 
from collapse of the orogenic wedge segmented the 
plateau into steep-sided grabens and half grabens with 
intervening high areas, forming a network of Paleo-
gene sedimentary basins in western Montana (Ruppel, 
1993). 

In contrast, based on chronostratigraphic and 
geochronologic data, a signifi cantly briefer transition 
between contractile and extensional deformation (1–5 
My) was interpreted (Constenius, 1996). According 
to this hypothesis, Late Cretaceous–early Eocene 
crustal contraction was immediately followed by early 
Eocene–early Miocene (ca. 49–20 Ma) gravitational 

collapse of the Cordilleran orogen. This resulted in 
a network of extensional basins, superposed on the 
Cordilleran fold-thrust belt (Constenius, 1996; fi g. 
8A). These basins were rooted to the mechanical 
stratigraphy, structural relief, and most importantly, 
the extensional reactivation of sole thrusts that dip 
gently west (3o–6o) above an undeformed Precambrian 
crystalline basement. Therefore, the same thrust faults 
that accommodated eastward-directed thrusting and 
construction of the mountain belt also facilitated oro-
genic collapse. This episode of crustal extension was 
coeval with formation of metamorphic core complexes 
and low-angle detachment faults in the hinterland, and 
widespread regional magmatism (fi g. 6) that tracked 
the rollback of the subducted oceanic plate.  

The Kishenehn Basin of northwestern Montana 
and southeastern British Columbia (fi g. 3), a half 
graben that contains more than 3,000 m of basin fi ll, 
is typical of these basins (Constenius, 1996). Interpre-
tation of seismic refl ection and borehole data, com-
bined with fi eld mapping by Canadian scientists in the 
1960s, led to the conclusion that the basin was bound-
ed by a SW-dipping listric normal fault that soled 
into and reactivated the extensive Lewis Thrust Fault, 
as did a listric normal fault that bounded the Rocky 
Mountain Trench (Bally and others, 1966; Dahlstrom, 
1970; fi g. 3). In addition, they recognized the ba-
sin-wide stratal growth geometry of the Kishenehn 
Formation in the form of systematic thickening of stra-
ta toward the basin-bounding listric normal fault and 
the gradual fl attening of dip in successively younger 
units (McMechan and Price, 1980). In the Middle Fork 
region of the basin, middle Eocene strata dip 50o or 
more at the base and progressively decrease to 32oNE 
near the eroded top of the section (Constenius, 1996), 
whereas in the North Fork region, middle Eocene to 
early Miocene strata show a dip change from 41–37o 
at the base to 26–17o higher in the section (McMechan 
and Price, 1980; Constenius, 1996; fi g. 3). 

(2) Extensional Rift Zone with Rift Shoulder 
Alluvial Plain 

A second interpretation also attributes lower 
Bozeman Group (late early Eocene to early Miocene) 
basin formation to gravitational collapse of the oro-
genic wedge, but with extension manifested not as a 
network of basins throughout the Cordilleran fold-
thrust belt, but rather as basins limited to a relatively 
narrow, N–S-oriented rift zone that extended from 
British Columbia through western Montana and south 



15

Susan M. Vuke: Lower Bozeman Group

Figure 8. Four hypotheses for dep-
ositional setting of lower Bozeman 
Group. (A) Valleys formed along for-
mer thrust faults that were reactivated 
as normal faults during extension. 
Modifi ed from Constenius (1996). (B) 
North–south rift, with deposition in 
the rift and across a plain emanating 
from the rift shoulder. Modifi ed from 
Janecke (1994). (C) Basin develop-
ment bordered by Eocene volcanic 
fi elds. Modifi ed from Fritz and others 
(2007). (D) Network of valleys inher-
ited from those that developed during 
Laramide–Sevier orogenesis. From 
Schwartz and Schwartz, 2013.

A

B C

D
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to the Great Basin (Janecke, 1994; fi g. 8B). According 
to this hypothesis, sediment was deposited in suprade-
tachment protobasins as they developed within the rift 
zone. The original basins were subsequently parti-
tioned into the current Grasshopper, Muddy Creek, 
Horse Prairie, Medicine Lodge, Nicholia Creek, and 
Salmon Basins (Janecke, 1994; Janecke and others, 
2005; Janecke, 2007; fi g. 3). Vertical stratigraphic 
successions in the axial parts of the protobasins dif-
fer from successions near the basin margins based on 
pebble and boulder counts (Janecke, 1994) and detrital 
zircon data (Stroup and others, 2008; Link and others, 
2008), allowing for depositional facies-based determi-
nations of basin margins and fault activity. Assemblag-
es of alluvial fan and lacustrine deposits support the 
role of extension in basin formation (Harrison, 1985; 
Janecke and others, 1999; Janecke and Blankenau, 
2003). 

According to this interpretation, a broad, tecton-
ically quiescent, coeval alluvial plain, the Renova 
Basin, extended eastward from the eastern rift shoul-
der, trapping sediment in fl exural or erosional valleys 
within the plain (Janecke, 1994; Thomas, 1995; Stroup 
and others, 2008). Detrital zircon data suggested that 
sandstones within the rift have a diff erent provenance 
than those east of the rift shoulder (Stroup and others, 
2008; Link and others, 2008). In particular, two-mi-
ca (muscovite and biotite) feldspathic sandstones are 
present in the rift zone, but not in deposits of the allu-
vial plain. The micas may have come from the Chief 
Joseph pluton of the Idaho Batholith (Thomas, 1995), 
or other granitic plutons in the footwall of the Anacon-
da Core Complex (Stroup and others, 2008; fi g. 6). 

 Although rift-zone sedimentation was coeval with 
developing supradetachment basins within the zone, 
alluvial plain sedimentation east of the rift shoulder 
was not tectonically disrupted until the formation of 
grabens during Neogene Basin and Range extension 
(Thompson and others, 1981; Stroup and others, 
2008). The name Renova Formation pertains to depos-
its of the alluvial plain, whereas informal names such 
as Medicine Lodge beds, Cabbage Patch beds, and 
Everson Creek beds were applied to deposits within 
the rift zone (Stroup and others, 2008). However, other 
workers (e.g., Dunlap, 1982; Nichols and others, 2001; 
Barnosky and others, 2007; Fritz and others, 2007; 
Retallack, 2009; DesOrmeau and others, 2009; Elliott, 
2017; Harris and others, 2017; Schwartz and others, 
2019a) applied the name Renova Formation to depos-

its of the interpreted rift zone area. Basin-fi ll deposits 
are coarser-grained in the western part of the rift than 
the eastern part, where they more closely resemble the 
type Renova Formation (Stroup and others, 2008). The 
lithologic similarity of the lower Medicine Lodge beds 
to the Renova Formation was noted as far west as the 
Snake River plain of Idaho (Hodges and Link, 2002).

(3) Single Basin Bordered By Eocene Volcanic 
Fields

A third model based on sedimentology, geochem-
ical correlations, and radiometric dating (Fritz and 
others, 2007; fi g. 8C) is similar to the previous model, 
but extended the Renova Basin farther to the west into 
part of the area of the previous model’s rift zone, and 
called it the Dillon–Renova Basin. The single, low-re-
lief depositional basin contained eastward-thinning 
deposits and was defi ned by the bordering early to 
middle Eocene Challis, Lowland Creek, and Absaroka 
volcanic fi elds. Volcanic rock that extends from the 
fl anking fi elds into the basin was designated as part 
of the Dillon Volcanic Member of the Renova Forma-
tion (Fritz and others, 2007; fi g. 6). West of the basin, 
Paleogene fault blocks exposed Challis volcanic rock 
and pre-Cenozoic bedrock of central Idaho. Gritty 
sandstone and conglomerate derived from the fault 
blocks were interpreted to have periodically entered 
the Dillon–Renova Basin at spill points. 

(4) Erosional Paleovalleys
A fourth interpretation based on depositional facies 

mapping, paleocurrents, and sediment composition 
data from southwestern Montana suggests that fl uvi-
al erosion prior to extension played a major role in 
Paleogene basin development (fi g. 8D), after which 
Paleogene extension played only a minimal to mod-
erate role, and was spatially variable (Schwartz and 
Schwartz, 2009a,b; Schwartz and others, 2009; Roth-
fuss and others, 2012; Schwartz and Schwartz, 2013; 
Schwartz and others, 2019a). According to this hy-
pothesis, basins largely developed prior to lower Boz-
eman Group deposition during a period of extensive 
fl uvial erosion that occurred in the late stages of and 
immediately following Laramide and Sevier orogene-
sis, primarily during Paleocene and early Eocene time 
(Schwartz and Schwartz, 2013; Schwartz and others, 
2019a), producing the extensive unconformity at the 
base of the Bozeman Group (fi g. 1). No unequivocal 
rock record exists in western Montana from this time 
of intense erosion. 
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High-energy, Late Cretaceous to early Eocene fl u-
vial systems eroded and removed at least a 5 km thick-
ness of rock along zones of structural and stratigraphic 
weakness in the Cordilleran orogen, exposing Upper 
Cretaceous batholiths and other plutons as source 
rocks to adjacent incised Paleogene basins (Schwartz 
and Schwartz, 2009b; Stroup and others, 2008; Hous-
ton and Dilles, 2013; Schwartz and Schwartz, 2013). 

Degraded relict basins unmodifi ed by faulting 
were identifi ed as far north as the northern Helena 
Salient of the fold-thrust belt (Runkel, 1986), and 
no evidence was found indicating that faulting was 
involved with early stages of basin development east 
of the fold-thrust belt (Reynolds, 1979). Lielke (2017) 
attributed the lack of gravitational collapse and as-
sociated extension in the foreland east of the Sevier 
fold-thrust belt in southwestern Montana at this time 
to variations in the mechanical strength of underlying 
basement rocks. However, reactivation of thrust faults 
occurred in parts of southwestern Montana where 
the foreland and fold-thrust belt overlap (Schmidt 
and Garihan, 1986; VanDenburg and others, 1998; 
Schwartz and Graham, 2017), and thrust faults were 
reactivated as listric normal faults bounding half gra-
bens in northwestern Montana (Constenius, 1996). 

The relict erosional basins of southwestern Mon-
tana were also modifi ed by multiphase extension in the 
hanging wall of the Anaconda detachment zone of the 
Anaconda Core Complex (Elliott, 2019), which lasted 
at least into Oligocene time (ca. 27 Ma; Foster and 
others, 2010). Repetitive, thick Oligocene debris fl ow 
deposits in the Big Hole basin (fi g. 3) along the de-
tachment zone suggest that normal faulting may have 
provided accommodation space there (Roe, 2010). 
Eocene volcanism such as in the Sage Creek Basin 
(Rothfuss and others, 2012; Lielke, 2017) and Flint 
Creek Basin (Portner and others, 2011), also locally 
modifi ed the relict topography. 

Following Paleocene–early Eocene erosion, as-
semblages of basin margin (alluvial fan, hillslope) and 
basin interior (fl uvial, lacustrine, fl oodplain) depos-
its progressively fi lled the basin network (Schwartz 
and Schwartz, 2009a,b; Schwartz and others, 2009; 
Schwartz and Schwartz, 2013). Detrital zircon and 
compositional studies (Schwartz and Schwartz, 
2009a; Barber and others, 2012; Schricker and others, 
2013; Schwartz and Schwartz, 2013; Schwartz, 2014; 
Schwartz and others, 2019b), including the presence 
of rare sand-size two-mica plutonic clasts (Schwartz 

and Schwartz, 2013), suggest that sediment dispersal 
was widespread and not confi ned to separate rift and 
alluvial plain segments as earlier detrital zircon studies 
suggested (Stroup and others, 2008; Link and others, 
2008).

The alluvial fan and other hillslope deposits 
document the presence of relatively high-relief basin 
divides with source rocks similar to those of modern 
environments (Schwartz and Schwartz, 2013). Fluvial 
deposits range from boulder and cobble conglomerates 
representing laterally extensive channel complexes to 
medium-grained, quartzofeldspathic sandstones en-
cased in overbank mudstones (Schwartz and Schwartz, 
2013). Alluvial fan and hillslope deposits (e.g., talus, 
debris fl ow, and mud fl ow) unconformably overlie 
pre-Cenozoic bedrock surfaces with no apparent fault 
displacement (fi g. 9).

Figure 9. Paleoslope deposits at Red Hill near Cardwell.
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PALEOCLIMATE, PALEOTOPOGRAPHY, 
AND TECTONISM

Paleoclimate, paleotopography, and tectonism 
are interrelated, such as when mountain development 
creates rain shadows or highland collapse allows pen-
etration of regional climate; when topographic relief 
creates stratifi ed local climates; and when the inter-
play between climate and tectonism drives landscape 
evolution (Kent-Corson and others, 2006; Chamber-
lain and others, 2012; Fan and others, 2017; Schwartz 
and others, 2019a). The relationship among these 
parameters and to the Paleogene landscape evolution 
of southwestern Montana was interpreted through a 
detailed synthesis of sedimentary, tectonic, and paleo-
environmental data (Schwartz and others, 2019a). 

Unconformity 1 

(For the purposes of discussion, major 
unconformities within the lower Bozeman Group 
are arbitrarily identifi ed numerically; fi gs. 1, 2).

The unconformity at the base of the Bozeman 
Group (fi gs. 1, 2) represents deep fl uvial erosion into 
the late-stage Sevier and Laramide orogenic landscape 
of western Montana (Rasmussen, 2003; Lielke, 2012; 
Rothfuss and others, 2012; Schwartz and Schwartz, 
2013). At the end of Sevier–Laramide contraction, the 
orogen was likely an eastward-tapering plateau with 
maximum elevation (>2 km) near the Idaho Batholith, 
which decreased eastward toward the thrust belt front 
(e.g., Chase and others, 1998; DeCelles and others, 
2004; Snell and others, 2014; Fan and others, 2017; 
Schwartz and others, 2019a). The warm, wet, subtrop-
ical climate promoted deep incision into the orogen-
ic wedge (Schwartz and Schwartz, 2013), initially 
concurrent with Sevier–Laramide crustal thickening 
and isostatic adjustment, but continuing into early 
Eocene (Schwartz and others, 2019a). This climatic 
regime, correlative to the global Paleocene–Eocene 
thermal maximum (PETM), is refl ected by locally pre-
served red, saprolitic, kaolinitic soils that developed 
on the erosion surface (Thompson and others, 1982), 
identifi ed as lateritic soils (Wolfe, 1964) or ultisols 
(Hanneman and others, 1994). Elsewhere, coal depos-
its that underlie the early and middle Eocene volcanic 
fl ows that initiated during early extension (Rasmussen, 
2003; Portner and others, 2011) also suggest a warm, 
wet climate. The climate changed to cooler and drier 
during the transition to extension (Chamberlain and 
others, 2012).

Locally, sedimentary rock from environments as 
diverse as coal swamps, lakes, and fl uvial channels is 
preserved between Unconformity 1 and overlying vol-
canic deposits (Pardee, 1911; Dunlap, 1982; Harrison, 
1985; Zen, 1988; M’Gonigle and Dalrymple, 1996; 
Janecke and others, 1999; Rasmussen, 2003; Portner 
and others, 2011; Schricker and others, 2013; Scar-
berry and others, 2015; these geographically limited 
deposits are not shown in fi gs. 1 and 2).

Onset of Extensional Volcanism, Sedimentation, 
and Core Complex Development 

(ca. 55–40 Ma; early to middle Eocene)
Extension within the fold-thrust belt occurred 1–5 

My after the end of Sevier thrusting and crustal thick-
ening (Harlan and others, 1988; Constenius, 1996) and 
was heralded by a pulse of volcanism and core com-
plex development (O’Neill and others, 2004). Thermo-
chronology data indicate that relatively rapid exten-
sion occurred on the Anaconda Metamorphic Core 
Complex (fi g. 6) in the hinterland immediately west of 
the fold-thrust belt, starting at 53 ± 1 Ma, during fi nal 
stages of or immediately following shortening in the 
fold-thrust belt (Foster and others, 2010). Dominantly 
low-angle extensional faults within the fold-thrust belt 
paralleled preexisting contractional structures (Conste-
nius, 1996; VanDenburg and others, 1998; Janecke and 
Blankenau, 2003).

Isotopic data suggest that maximum surface 
elevations of ~4 km were attained in the Sevier hin-
terland between ~50 and 45 Ma (Mulch and others, 
2004, 2007; Mulch and Chamberlain, 2007; Mix and 
others, 2011; Chamberlain and others, 2012; Fan and 
others, 2017), closely following the initial exhumation 
of local core complexes (Schricker and others, 2013) 
and the southwestward delamination of the Faral-
lon slab from beneath the continent at ~55 Ma (after 
Copeland and others, 2017). Elevation gain and the 
onset of extension and volcanism have been attributed 
to various thermally driven mantle processes (Bird, 
1998; Thorkelson and Taylor, 1989; Madsen and 
others, 2006; Humphreys and others, 2008; Jones and 
others, 2015), and not strictly to gravitational collapse 
of the orogenic pile, which alone would have lowered 
paleoelevation (Chamberlain and others, 2012). The 
increase in thermal energy from the introduction of 
asthenospheric mantle promoted early to middle Eo-
cene volcanism and augmented crustal fl ow, resulting 
in extension and rapid surface uplift (Chamberlain and 
others, 2012). Augmentation of preexisting Sevier–
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Laramide hinterland elevations promoted local relief 
as fl uvial networks carved deep paleovalleys across 
the orogenic wedge. 

The fi rst phase of extension was pre-49.5 Ma in 
southwestern Montana (VanDenburg and others, 1998) 
and ca. 49 Ma in the fold-thrust belt of northwestern 
Montana (Constenius, 1996). Widespread extensional 
faulting probably did not occur in the fold-thrust belt 
of southwestern Montana until ca. 45 Ma (VanDen-
burg and others, 1998; Janecke and Blankenau, 2003). 
Rapid extension associated with the Montana core 
complexes (fi g. 6) continued through ca. 39 Ma (Fos-
ter and others, 2010). Hinterland crust was exhumed 
from a depth of 12–16 km during this time (Haney, 
2008; Bendick and Baldwin, 2009; Foster and oth-
ers, 2010). Volcanic deposits of the Challis, Lowland 
Creek, Garnet Range, and other volcanic fi elds fi lled 
developing valleys and preserved underlying and lo-
cally interlayered early middle Eocene lacustrine, pa-
ludal, and fl uvial deposits (Zen, 1988; Dunlap, 1982; 
Harrison, 1985; M’Gonigle and Dalrymple, 1996; 
Janecke and others, 1999; Rasmussen, 2003; Portner 
and others, 2011; Schricker and others, 2013; Scar-
berry and others, 2015). Elsewhere in Montana, initial 
Eocene volcanism is represented by Absaroka Super-
group volcanic rock of south-central Montana, and the 
alkalic province of north-central Montana. (fi g. 6). 

Research along the Sevier orogenic front in the 
Kishenehn Basin (fi g. 3) also determined that high ele-
vations existed during initiation of extension (Fan and 
others, 2017). Stable isotope studies in the basin sug-
gested that crustal thickness may have reached more 
than 55 km with an elevation of at least 4 km at the 
end of orogenesis, followed by gravitational collapse 
along the orogenic front concurrent with the presence 
of a high plateau in the hinterland. High elevation cou-
pled with high-relief topography persisted for 12 Myr 
along the orogenic front despite the collapse (Fan and 
others, 2017). Elevation from the inherited orogen-
ically thickened crust remained high during Eocene 
extension, maintained through thermal uplift from 
upwelling of hot asthenosphere. Isostatic rebound 
associated with lower-lithosphere delamination or slab 
removal may also have contributed to maintenance of 
the high elevation (Fan and others, 2017). During this 
time, three disparate types of fossil mollusks coexist-
ed with separate paleoenvironmental affi  nities—wet 
tropical, semi-arid subtropical, and temperate—indi-
cating a broad range of paleoclimates and paleoeleva-

tions within the Kishenehn Basin catchment (Fan and 
others, 2017). Similar variations likely also existed in 
other basins of the extant fold-thrust belt. 

Unconformity 2 
The unconformity that developed on the early and 

middle Eocene extensional volcanic deposits (fi gs. 1, 
2) in western Montana represents a signifi cant, but 
inadequately studied, regional tectonic event indicated 
by local folding, faulting, and erosion of the volcanic 
rock (Rasmussen, 2003). The onset of a global Eocene 
climatic event—the Middle Eocene Climatic Optimum 
(MECO)—which ranged from 42 to 38 Ma (Bohaty 
and Zachos, 2003; Bohaty and others, 2009), also 
occurred during development of unconformity 2, and 
may correspond to a second episode of lateritic (Hen-
drix and others, 2014) or ultisol (Hanneman and Wide-
man, 2010; 2016) soil development in some areas. 
Terrestrial stable isotope data from the Dell Member 
in the Sage Creek Basin of southwestern Montana 
suggest that the MECO event began there from 41 to 
40.0 Ma, after a long episode of Eocene global cooling 
between the PETM and middle Eocene time (Methner 
and others, 2016). The MECO interval was marked 
by rapid, transient global warming (a “hyperthermal 
event”) which produced a warm and semi-arid to 
sub-humid climate in contrast to the long, cool, and 
arid episode that preceded it (Mulch and others, 2015; 
Methner and others, 2016). Evidence from paleosols 
(Retallack, 2007) and terrestrial stable isotope data 
(Methner and others, 2016) indicates that warming 
also produced a transiently wetter climate that may 
have promoted erosion into the early and middle Eo-
cene volcanic rock (after Schwartz and others, 2019a). 
The MECO was followed by a progressively cooler, 
more arid climate (Lielke and others, 2012; Methner 
and others, 2016; Schwartz and others, 2019a).

Unconformity 3 (spans unconformities 1 and 2)
In southeastern and parts of southwestern Montana 

the unconformity beneath upper Eocene (Chadroni-
an) deposits spans unconformities 1 and 2 (fi gs. 1, 2). 
In the Jeff erson Basin (fi g. 3), the contact between 
the Renova Formation and pre-Cenozoic bedrock 
locally appears as terraced unconformities (Schwartz 
and Schwartz, 2013), suggesting continued fl uvial 
incision at the time of volcanism and core complex 
development elsewhere in western Montana. In parts 
of southwestern Montana the Renova Formation and 
equivalents rest on rock as old as Paleoproterozoic and 
Mesoproterozoic. 
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In southeastern Montana sparse outcrops of Chad-
ron (Eocene—Chadronian) and Brule (Oligocene— 
Orellan, and Whitneyan) Formations of the White 
River Group rest on rock as young as the Paleocene 
Tongue River Member of the upper Fort Union For-
mation and as old as the Upper Cretaceous Pierre 
Formation. The late Oligocene to early Miocene 
Arikaree Formation (Arikareean) also overlies an 
angular unconformity in southeastern Montana, resting 
on progressively older units toward the Black Hills 
(fi g. 10). The underlying units range from Oligocene 
paleolandslide deposits (fi g. 11) that locally preserve 
the Chadron and Brule Formations to rock also as old 
as the Late Cretaceous Pierre Formation (fi g. 10). 

Subsequent Sedimentation, Relatively Minor Volca-
nism, and Unconformity 4 (ca. 39–16 Ma)                        

An intense period of calc-alkaline volcanism oc-
curred during and immediately following the MECO 
throughout vast areas of the North American Cordil-
lera from Oregon into Mexico (Best and others, 2009, 
2013; Mulch and others, 2015, contributing immense 
quantities of volcanic ash to deposits of the Renova 
Formation and equivalents (Thompson and others, 
1981; Fields and others, 1985). It was particularly pro-
nounced in the southern Great Basin, where one of the 
greatest global long-lived (36 to 18 Ma) episodes of 
explosive silicic volcanism occurred (Best and others, 
2013). In contrast, only relatively minor volcanism 
occurred in Montana at this time. It was local, episodic, 
and of signifi cantly less volume than the earliest exten-
sional volcanism (52–40 Ma) had been. Volcanic rock 
with age ranges from 39 to 24 Ma is preserved in the 
Hog Heaven (Zehner, 1987; Zehner and Lange, 1992); 
Crater Mountain (Mosolf, 2015); Beaverhead Canyon 
and Big Hole Valley (Fritz and others, 2007); and Vir-
ginia City (Lielke, 2012) fi elds (Chadwick, 1985), and 
locally, such as in the lower Ruby Basin of southwest-
ern Montana (Fields and others, 1985; fi g. 3). 

Alluvial fan, talus, debris fl ow, and mud fl ow de-
posits, perhaps reworked from MECO oxidized soils, 
rest unconformably on bedrock paleoslopes in many 
areas. One of these deposits on Red Hill near Cardwell 
(fi gs. 7, 8) yielded Chadronian (late Eocene) vertebrate 
fossils (Tabrum, oral commun., 2007; Rothfuss and 
others, 2008). Another in the Three Forks area (fi g. 7), 
misnamed the Sphinx Conglomerate (fi g. 1), was also 
interpreted as Eocene (Robinson, 1963). Similar de-
posits are present at Doherty Mountain near Cardwell 
(Vuke, 2006; fi g. 7), the Tobacco Root Mountains near 

Harrison (Elliott and others, 2003; Vuke, 2006; fi g. 
7), near LaHood Park (Schwartz and Schwartz, 2013; 
fi g. 7), in the Big Hole Valley (Roe, 2010; fi g. 3), Big 
Hole Canyon (Schricker and others, 2013; fi g. 7), the 
Gravelly Range (Lielke, 2008, 2012; fi g. 7), and in 
the Radersburg–Toston Basin (Vuke, 2007; Michalak 
and others, 2010; Chamberlin and Schwartz, 2011; fi g. 
3). Typically, these deposits are breccias with red or 
reddish matrix (fi g. 9), probably having incorporated 
the older oxidized soils that had dominantly developed 
on Paleozoic carbonate bedrock. The deposits may 
include clasts as large as multi-meter boulders and 
suggest local relief as much as ~2 km based on mod-
ern map relationships (Schwartz and Schwartz, 2013).

Progressive Eocene cooling and aridifi cation in 
southwestern Montana was followed by rapid cooling 
at the Eocene–Oligocene boundary (ca. 34 Ma; Cham-
berlain and others, 2012), which accompanied ongoing 
extension within the fold-thrust belt until ca. 28 Ma 
(VanDenburg and others, 1998; Janecke and Blanke-
nau, 2003). Basin-margin relief was locally amplifi ed 
as a result of extension, but the prior high elevations 
of the extant Sevier hinterland diminished as the crust 
thinned (Lielke and others, 2012; Schwartz and others, 
2019a). The depositional area of the Renova Forma-
tion to the east of the thrust front remained relatively 
high (2–3 km) into early Oligocene time (Lielke and 
others, 2012; Schwartz and others, 2019). 

Unconformity 4 separates rocks that are composi-
tionally similar. Although the unconformity has been 
recognized regionally, it was likely not a result of 
tectonism (Hanneman and Wideman, 1991; Cheney, 
1994; Constenius, 2003). Eustatic changes were pro-
posed as the cause (Hanneman and Wideman, 1991), 
although Portner and others (2011) noted that western 
Montana is beyond the extent of eustatic infl uence. 
Warming during late Oligocene time (Barnosky and 
Carrasco, 2002) may have promoted erosion of old-
er rock and development of the unconformity. The 
warming was followed by rapid cooling at the Oligo-
cene–Miocene boundary (ca. 23 Ma; Chamberlain and 
others, 2012). 

Unconformity 5 and Initiation of Basin and 
Range Tectonism

The unconformity between the Renova and 
Sixmile Creek Formations and equivalents occurs 
throughout western Montana (fi g. 1) and is recognized 
on the basis of abrupt lithologic change (e.g., Pierson 
and Schwartz, 2005), and locally on the presence of 
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calcic paleosols, erosional features, and angular stratal 
relationships (Hanneman and Wideman, 1991). It is 
known as the early Miocene unconformity (Fields and 
others, 1985; Harris and others, 2017) or late Hem-
ingfordian unconformity (Barnosky and others, 2007). 
The unconformity was originally interpreted as a result 
of change from an arid to a humid climate (Thomp-
son and others, 1982). More typically, development 
of the unconformity has been attributed to the onset 
of Basin and Range extension (Barnosky and Labar, 
1989; Burbank and Barnosky, 1990; Fritz and Sears, 
1993; Constenius, 1996; Fritz and others, 2007) which 
began abruptly at 17–16 Ma as a result of gravitational 

collapse (Chamberlain and others, 2012; Camp and 
others, 2015). Basin-and-range development allowed 
penetration of monsoonal storms from the south that 
had been restricted by the previous higher elevation 
topography (Chamberlain and others, 2012).

The emplacement of the Yellowstone hotspot plume 
was considered the trigger that set off  the collapse of 
the high plateau, which was already under regional 
stress and on the verge of wholesale collapse (Camp 
and others, 2015). Alternatively, the Yellowstone out-
break point may have produced radial extension around 
the initial thermal dome (Sears and others, 2009).

Figure 11. Unconformities that bound the White River Group (Chadron and Brule Formations) preserved in paleolandslides in Finger 
Buttes, southeastern Montana (see fi g. 10 for location; from Gill, 1962).
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Faulting and doming, including from the Yel-
lowstone hotspot plume, during the Basin and Range 
episode of extension augmented the topographic relief 
of some of the basins (Reynolds, 1979) and segmented 
others (Janecke, 1994; Sears and Ryan, 2003; Janecke 
and others, 2005; Janecke, 2007), in some cases ele-
vating Paleogene and early Neogene basin deposits 
(lower Bozeman Group) as much as 5,300 m (17,400 
ft) above corresponding valley parts of the original 
basin (Luikart, 1997). Examples of such elevated fi ne-
grained deposits include Duchesnean to Chadronian 
(39–33 Ma) and Whitneyan (32–31 Ma) deposits in 
the Gravelly Range (Hanneman and Lofgren, 2017; 
fi g. 7) that may correspond to deposits in the Ruby 
Basin (Rasmussen, 2003); “Oligocene” (probably 
Eocene) lignitic, tuff aceous deposits in the small Dog 
Creek Basin just below Mullan Pass northwest of 
Helena along the Continental Divide (fi g. 7) that may 
correspond to deposits in the Avon and Helena Valleys 
(Erdmann, 1959); and lacustrine deposits in the Garnet 
Range that unconformably overlie bedrock and are 
lithologically similar to deposits in the Avon and Flint 
Creek Valleys (fi g. 3). Other examples of fi ne-grained 
Paleogene deposits at relatively high elevations in-
clude Chadronian deposits in the southern Elkhorn 
Mountains on a divide between the North Boulder and 
the Radersburg–Toston Basins (Freeman and others, 
1958; Hanneman and others, 2003), and in the Big 
Belt, Little Belt Mountains, and Castle Mountain areas 
(fi g. 7). 

PALEODRAINAGE 

Waning Stages of Sevier and Laramide 
Deformation (ca. 65–55 Ma)

During the waning stages of Sevier and Lara-
mide deformation, a network of fl uvially  connected 
intermontane basins developed as rivers incised into 
the Sevier and Laramide terranes during a warm/wet 
climate (Schwartz and Schwartz, 2013; Schwartz and 
Graham, 2017; Schwartz and others, 2019a). Fluvi-
al systems with headwaters in the Sevier hinterland 
drained eastward into the fold-thrust belt and adjacent 
foreland of southwestern Montana (Janecke and oth-
ers, 1999; Schwartz and Schwartz, 2013; Schwartz and 
Graham, 2017). Two deep valleys developed across 
thrust sheets along the modern continental divide 
between southwestern-most Montana and the Idaho 
Challis volcanic fi eld (Janecke, 2000; fi gs. 3, 12). Sed-
iment transported through these valleys and through 

southwestern-most Montana was deposited as the Bea-
verhead–Harebell–Piñon Megafan, which crossed the 
eastern Snake River Plain in Idaho into northwestern 
Wyoming (Janecke and others, 2000; Sears and Ryan, 
2003). Evidence for distal sources was also indicated 
from Mesoproterozoic clasts derived from Idaho in 
the latest Cretaceous–Paleocene(?) Beaverhead Group 
conglomerates in southwestern-most Montana, al-
though local sources were recognized as well (Garber 
and others, 2020).

 In contrast to western Montana where erosion 
dominated, the fl uvial systems from the west deposited 
sediment of the Paleocene Fort Union Formation and 
earliest Eocene Wasatch Formation in Laramide basins 
in central and eastern Montana (Roberts, 1972; See-
land and others, 1988). In south-central and southeast-
ern Montana, earliest Eocene rivers fl owed northeast-
ward out of the Big Horn and Powder River Basins 
in southern Montana (fi g. 4) and joined the eastward 
drainage toward the northward-retreating Cannonball 
Sea east of Montana (Denson and Gill, 1965; Seeland, 
1985, 1988, 1992; Vuke, 2020). 

In northern Montana an extensive north–north-
east-dipping erosional pediment surface developed 
east of the fold-thrust belt from which as much as 
1280 m of Upper Cretaceous through lower Eocene 
rock was likely removed in north-central Montana 
(Hearn, 1989). 

Late Early Eocene (ca. 55–48 Ma)
At the onset of extension, the eastward-fl owing 

rivers that had developed during Sevier thrusting in 
southwestern Montana were overwhelmed with vol-
canic rock, which backfi lled some of the basins that 
had transected the fold-thrust belt (Janecke and others, 
1999; Janecke, 2007). Collectively, isotopic, geochem-
ical, and sedimentary evidence suggests a drainage 
reorganization at ca. 49 Ma that likely resulted from 
the addition of higher-elevation source areas associat-
ed with the Challis volcanic fi eld, or with dissection of 
the landscape that allowed waters from the higher-ele-
vation Idaho Batholith to reach southwestern Montana 
(Kent-Corson and others, 2010). The oldest Absaroka 
volcanic eruptions or a structural change also blocked 
and defl ected the Big Horn Basin river from northeast 
to southwest (Seeland, 1985). Further drainage reori-
entation occurred with development of an interpreted 
rift zone along the axis of the Cordillera (fi g. 8B) that 
paralleled the Sevier orogenic belt and cross-cut the 
earlier drainage pattern (Janecke, 1994; Janecke and 

https://mbmg.mtech.edu/pdf/geologyvolume/VukeLaramideFinal.pdf
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others, 1997; Sears and Ryan, 2003). Farther east in 
the extant fold-thrust belt and western parts of the 
foreland, extension had only a minimal eff ect, and 
drainages followed the valleys created from the pri-
or episode of deep erosion (Schwartz and Schwartz, 
2013; fi g. 8D).

Middle Eocene (ca. 48–38 Ma)
The presence of abundant Challis-derived sedi-

ment in Eocene deposits of the Green River Basin of 
Wyoming indicated that a southeast-fl owing Eocene 
fl uvial system connected the Challis volcanic fi eld in 
Idaho with the Green River Basin. The main course 
of the river was inferred to have crossed into Montana 
from the Challis volcanic fi eld through the two deep 

paleovalleys that were incised during latest Creta-
ceous and Paleocene time (Janecke and others, 2000) 
and from there through southwestern-most Montana 
along a rift margin (Janecke and others, 2000; Che-
tel and others, 2011; fi gs. 8B, 12). However, based 
on paleocurrent and provenance data, the dominant 
paleodrainage in most of southwestern Montana was 
to the northeast (Schwartz and Schwartz, 2009a; 
Schwartz and others, 2009; Barber and others, 2012; 
Rothfuss and others, 2012; Schwartz and Schwartz, 
2013; Schwartz and others, 2019a; fi g. 12). 

Continued extension in the extant Sevier fold-
thrust belt of southwestern Montana further segmented 
some of the older drainages (e.g., Schwartz and others, 

Figure 12. Fluvial paleocurrent directions for lower Bozeman Group (Renova Formation and equivalents) from middle Eocene to early 
Miocene. Black outlines indicate interpreted valleys at that time based on modern extent of deposits, including those that now occur in 
the Garnet and Gravelly Ranges, the Big Belt and Little Belt Mountains, and the mountains west of Helena. Paleoslope deposits also 
help defi ne basin margins. The fl uvial paleocurrent directions are not meant to indicate a particular time slice within the middle Eocene 
to early Miocene time range. Ephemeral lakes that developed in certain areas during this time span are not represented in the fi gure, 
nor are possible drainage reversals or shifts.
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2019a). Closed to semi-closed, lacustrine-dominated 
basins with local source areas developed within the 
fold-thrust belt of southwestern Montana by ca. 40 Ma 
(Janecke and others, 1999; Janecke and Blankenau, 
2003; Schwartz and Graham, 2017; Schwartz and 
others, 2019a). The basins were short-lived, lacked 
throughgoing drainage, and refl ected episodic exten-
sion (Hodges and others, 2004; Stroup and others, 
2008). To the east, a signifi cant increase in Archean 
grains in middle Eocene rocks suggests initiation of 
Laramide uplift exhumation at this time, with sed-
iment transport in a paleo-Yellowstone River (Li, 
2018).

During Uintan time (fi g. 1), coarse-grained sed-
iment of the Cypress Hills Formation (fi g. 6) was 
deposited in braid plains of northeast-fl owing rivers 
in southern Alberta and Saskatchewan (Leckie, 2006). 
The generally north-dipping, previously developed 
pediment topography in northern Montana east of the 
fold-thrust belt was augmented by uplift from Pa-
leocene to middle Eocene alkalic igneous activity in 
northern Montana (Hearn, 1989; Leckie, 2006; fi g. 6). 
In southeastern Montana erosion continued through 
middle Eocene time.

Late Eocene (ca. 38–34 Ma)
By Chadronian time (fi g. 1), the Boulder Batholith 

(fi g. 6) was exposed, and separate fl uvial systems had 
developed on the eastern and western sides of the ba-
tholith (Schwartz and Schwartz, 2009b; Rothfuss and 
others, 2012; Schwartz and Schwartz, 2013). The To-
bacco Root Batholith and McCartney Mountain Pluton 
(fi g. 7) were also exposed in highlands by this time, 
contributing granitic clasts to fl uvial systems (Elliott 
and others, 2003; Schwartz and Schwartz, 2013). 

Crystalline basement rocks (Archean or Paleopro-
terozoic) from Laramide uplifts were also exhumed in 
highlands by this time. Clasts of basement rocks are 
present in an Eocene braided stream deposit, dated by 
detrital zircon analysis, near the juncture of the Bea-
verhead and Ruby Basins (Schwartz and others, 2011). 
Crystalline basement was also exposed and incor-
porated into Eocene deposits in the upper Jeff erson 
Basin (Vuke, 2006; Schwartz and Schwartz, 2009b; 
Schwartz and Schwartz, 2013), in late Eocene or Oli-
gocene fl uvial deposits in the Harrison Basin (Elliott, 
and others, 2003; Vuke, 2006), and in the Rochester 
Basin south of the Highland Mountains (Schwartz and 
Schwartz, 2009b; Carrapa and others, 2019; fi g. 7). 

In the Laramide foreland area of southwest Mon-
tana, one model has drainage dominantly to the east 
across a braid plain emanating from a N–S-orient-
ed rift shoulder (Thomas and others, 1995; Sears 
and Fritz, 1998; Sears and Ryan, 2003; Stroup and 
others, 2008; fi g. 8B). Another interprets a north-
eastward-fl owing inter-basinal trunk drainage net-
work that persisted in the segmented foreland region 
throughout Renova Formation deposition (Schwartz 
and Schwartz, 2013; Schwartz and Graham, 2017; 
fi g. 8D). Studies of paleo-meteoric water suggest that 
late Eocene topography in southwestern Montana 
was likely similar to present-day topography (Li and 
others, 2017) with drainages in valleys roughly similar 
to modern valleys (Schwartz and Schwartz, 2013; fi g. 
12). Coal; paper shale, including oil shale; diatomite; 
fossil fi sh; and other organisms (e.g., Dunlap, 1982; 
Constenius and Dyni, 1983; Monroe, 1981; Rasmus-
sen, 1977, 1989; Pierce, 1993; Ripley, 1995; Pierce 
and Constenius, 2001; Rasmussen and Prothero, 2003) 
also indicate the presence of lakes and swamps at this 
time.

Oligocene–Early Miocene (ca. 34–16 Ma)
By Oligocene time a drainage divide had devel-

oped in the Deer Lodge Basin (fi g. 12). North of the 
divide, paleodrainage was to the north and northwest 
toward the Flint Creek and Missoula Basins (Portner 
and others, 2011; Schricker and others, 2013; fi g. 
12). Paleocurrent data from the southern Deer Lodge 
Basin suggest southeasterly paleodrainage south of the 
divide (Schricker and others, 2013). These data were 
obtained from deposits along the Old Works trail in 
Anaconda that were recently dated as probable late 
Eocene to early Oligocene (Elliott, 2019; Scarber-
ry and others, 2019). Paleocurrent data also suggest 
northward drainage from the Bitterroot Valley into the 
Missoula Basin and northwestward drainage within 
the Missoula basin at this time (Harris, 1997; fi g. 12).  

Supradetachment basins within the interpreted rift 
zone of southwestern Montana contained axial me-
andering river drainages and lacustrine environments 
(Janecke and others, 2007; Stroup and others, 2008). 
Research in southwestern-most Montana (Barber and 
others, 2012) interpreted a linked and throughgoing 
fl uvial system that exited the supradetachment re-
gion toward the east, and fl owed northward as part 
of the paleo-Beaverhead River system, joining the 
northeastward-fl owing inter-basinal trunk drainage 
network in the segmented foreland region (Schwartz 
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and Schwartz, 2013; Schwartz and Graham, 2017; fi g. 
12). A shallow, large, perennial lake was interpreted 
to have occupied the closed Ruby Basin in the Lara-
mide foreland area during late Oligocene and earliest 
Miocene time (Monroe, 1981), and a lacustrine envi-
ronment is also indicated in the Canyon Ferry Lake 
area at this time (CoBabe and others, 2002). An Am-
azon-scale river is hypothesized to have transported 
sediment at this time from the Colorado Grand Can-
yon region through the Great Basin Rift, and north-
eastward toward southwestern Montana (Sears, 2013; 
Sears and others, 2014).

In southeastern Montana, presence of clasts from 
the Absaroka volcanic fi eld at the base of the Oligo-
cene Brule Formation, the lack of clasts from the 
Black Hills, and the confi guration of the erosion sur-
face on the underlying unconformity suggest drainage 
from southwest to northeast (Gill, 1962; Pipiringos 
and others, 1965; Seeland, 1985; Lisenbee and De-
Witt, 1993). The overlying Oligocene–early Miocene 
Arikaree Formation contains clasts that indicate 
derivation from a distal crystalline and metamorphic 
source mixed with crystal-vitric ash from a nearby 
source deposited in fl uvial and lacustrine environ-
ments (Denson and others, 1959).

FUTURE WORK

More data are needed to refi ne and perhaps partly 
integrate the multiple hypotheses about tectonics, cli-
mate, basin evolution, drainage patterns, stratigraphic 
correlation of units and associated unconformities, and 
ages of the lower Bozeman Group stratigraphic units. 
Use of the name Renova Formation needs formal 
clarifi cation regarding its geographic extent and if it 
applies to rock contemporaneous with and genetically 
related to initial post-Laramide–Sevier volcanism. 

Should thick units referred to as “beds” such as the 
Cabbage Patch and Medicine Lodge beds be designat-
ed as formal members or formations, and should other 
informal names be formally abandoned and replaced 
with formal stratigraphic names? In which situations 
should lithostratigraphic units vs. sequence strati-
graphic units apply? 

Further paleocurrent and provenance (composi-
tional and detrital zircon) data would help determine 
which, if any, basins ultimately drained northwest to 
the paleo-Columbia River, northeast toward the pa-
leo-Labrador Sea, east to the lowland that was occu-
pied by the Cannonball Sea during Paleocene time, or 

southeast toward the Green River Basin in Wyoming, 
all of which have been proposed. 
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