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Figure 2. Highly strained and metamorphosed conglomerate in KMsm near Calvert Hill. Pencil is 
approximately 15 cm long. Figure 4. Evidence of transposition in Kgn with a probably igneous protolith. A lozenge with 

gneissic layering parallel to the top edge of the photo is preserved within gneissic layering that is 
parallel to the sides of the photo.

Figure 5. Two-mica granite gneiss from an inclusion within Kqsg.

Figure 7. Interlayered calcsilicate and marble inclusion within KMsm. Figure 8. Granodioritic gneiss with salmon-colored neosome segregations forming a new foliation 
that is parallel to the pencil. Pencil is 8 mm across.

Figure 3. Equal area, lower hemisphere stereonet plots of orientation data from the Foolhen 
Mountain quadrangle. The synoptic plot in the lower right shows the fold axes (B) as deter-
mined from poles to bedding (Bb), poles to preferred dimensional orientation foliations (Bp), 
poles to gneissic foliation (Bg), and the apex of the small circle distribution of outcrop-scale 
fold axes (Bf). The center of the lineation distribution is marked as “L.” All data point to a 
map-scale structure that plunges moderately towards the southeast.
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Figure 6. U-Pb age spectra for detrital zircons from Kqsg samples (left) and weighted mean ages for Kgn 
samples (right). Analytical procedures are described below. NAMG, North American Magmatic Gap; MSWD, 
Mean Square Weighted Deviation.

LA-ICPMS methods
Zircon was separated from 1–2 kg of sample using standard density and magnetic separation techniques at the 
MBMG mineral separation laboratory. For igneous rocks, approximately 100–200 representative zircon grains 
were hand selected from each sample and set in a 2.5-cm epoxy grain mount. For metamorphic rocks, an unbiased 
split of ~1,000 zircon grains from each sample was set in an epoxy grain mount. Zircon crystal structure and 
inheritance were assessed by scanning election microscopy cathodoluminescence at the Montana Technological 
University. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of the samples was then 
performed by Jesse Mosolf, MBMG, at the University of California Geochronology Center, Santa Barbara. 
Approximately 60 zircon grains from each sample were analyzed. Figure 6 reports 207Pb corrected 206Pb/238U ages 
for igneous samples, and 206Pb/238U (<1,400 Ma) and 207Pb/206Pb (>1,400 Ma) age distributions for metamorphic 
rocks. Appendix A (available online with this publication) summarizes all LA-ICPMS data collected in this study.
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INTRODUCTION

The Foolhen Mountain 7.5' quadrangle map continues detailed geologic mapping in the 
Wisdom 30' x 60' quadrangle, a long-term Montana STATEMAP goal to fill gaps remaining 
in 1:100,000-scale geological coverage of Montana. The Foolhen Mountain quadrangle is 
unlike much of southwestern Montana in that it is underlain by high-grade metamorphic rock 
and migmatite, and therefore requires attention to metamorphic series more than 
stratigraphic sequence. This is one of the MBMG’s few attempts at mapping the migmatites 
and high-grade metamorphic rocks of the West Pioneers, so our units and interpretations are 
tentative and will guide further mapping.

Geologic overview
Foolhen Mountain is in the West Pioneer Mountains (fig. 1), where two structural provinces 
overlap: Cordilleran fold and thrust belt structures intruded by the Cretaceous Pioneer 
Batholith, which characterizes the East Pioneer Mountains, and the Eocene–Oligocene 
Anaconda Metamorphic Core Complex (AMCC)(O’Neill and others, 2004; Foster and 
others, 2010), which dominates the Anaconda Range to the north. The two provinces are 
reflected in the West Pioneer Mountains as deeper parts of a fold and thrust belt that has been 
intruded by orogenic granitoids and then extended in the hangingwall of the low-angle 
Anaconda Detachment. 

Alternating, northwest-striking bands of granitoid, granitoid gneiss, migmatite, and 
amphibolite facies metasediment define the dominant structural fabric of the quadrangle. The 
protoliths are presumably Proterozoic and Phanerozoic rocks, based on correlations with 
lower grade units in the adjacent 7.5' quadrangles (see previous mapping figure). Within the 
Foolhen Mountain quadrangle, metamorphic grade and degree of partial melting increase 
southwestward and the contact between migmatites and granodiorite is gradational. 
Sedimentary structures can be identified in the feldspathic quartzites (Ysw) in the northeast 
corner of the Foolhen Mountain quadrangle and some original bedding can be identified in 
the probable Phanerozoic sediments (KMsm), but secondary fabrics and structures dominate 
everywhere else.

Truckle (1988) mapped a sedimentary stratigraphy within KMsm, but we found that strain 
within that package is too intense to trace units laterally for any significant distance. Shear 
zones and isoclinal folds in bedding as well as metamorphic layering within the KMsm 
package indicate a complex internal structure that will require more detailed mapping to 
disentangle. Quartzite pebble conglomerates are locally identifiable in spite of considerable 
strain (fig. 2). 

The northwest grain of the Foolhen Mountain quadrangle is continuous with very tight 
northwest-striking synforms in the east-adjacent Dickie Hills quadrangle (Lonn and 
McDonald, 2004), synforms that have Mesoproterozoic limbs and Phanerozoic cores as 
young as early Cretaceous. In the northeast-adjacent Lincoln Gulch quadrangle, the 
northwest-striking folds overprint the Johnson Thrust that placed Mesoproterozoic quartzite 
over Phanerozoic rocks in Cretaceous time (McDonald, 2011; Elliott, 2017).

The southeast corner of the Foolhen Mountain quadrangle has a north–northeast grain that 
mirrors the dominant trend of the fold and thrust belt of the East Pioneer Range. Pole plots of 
bedding, foliations, and fold axes measured in the quadrangle (fig. 3) grossly reflect folding 
about a southeast-plunging fold axis. This overall structural pattern does not reflect the 
multiple generations of folds and foliations present at the outcrop scale, and the relative ages 
of the large- and small-scale structures are not clear. In the Foolhen Mountain quadrangle, 
the north–northeast-striking gneissic foliations that dominate the southeast corner of the map 
appear to be overprinted and transposed into the east–southeast fabric that dominates the rest 
of the quadrangle (fig. 4).  In the northeast-adjacent Lincoln Gulch quadrangle, the 
east–southeast fabric, represented by steep axial planes, appears to be overprinted by north- 
and northeast-striking folds (Elliott, 2017). 

The steep 045°- to 050°-striking faults that cut across bedrock may be related to extension on 
the Anaconda Detachment. They are 5–10° oblique to the strike of the Anaconda Detachment 
in the Big Hole valley (figs. 1, 3), and perpendicular to the measured extension direction on 
the detachment (Elliott and Lonn, in review; Howlett and others, 2020). The youngest 
structure in the quadrangle is a roughly 115°-striking brittle fault that has a small 
down-to-the-south offset.   

Future mapping in the 7.5' quadrangles south and west of Foolhen Mountain will focus on 
distinguishing between igneous protoliths, on overprinting relationships between foliations, 
structures, and metamorphic minerals, and on the mechanisms and structures that brought 
rocks from the middle crust to the surface in the West Pioneers.

UNIT DESCRIPTIONS

Qal Alluvium (Holocene)—Modern stream and floodplain deposits. Thickness as much as 40 m (130 ft).

Qrg Rock glacier (Holocene)—Angular boulders to cobbles frozen together by ice in lobate deposits. 
Found in the southeastern corner of the map. Thickness generally less than 10 m (33 ft).

Qta Talus (Holocene–Pleistocene)—Angular and subangular cobble- to boulder-size clasts at the 
base of steep valley walls or cliffs. Thickness probably less than 30 m (100 ft).

Qaf Alluvial fan deposits (Holocene–Pleistocene)—Angular to subrounded, unsorted, cobble to 
boulder gravel fans. Thickness probably less than 10 m (33 ft).

Qalo Alluvium, older (Pleistocene)—Moderately to well-sorted cobble gravel, sand, and silt layers 
forming dissected terraces traced from the northwest-adjacent Long Peak quadrangle (Elliott and 
Lonn, in review). Thickness 2–10 m (9–33 ft).

Qgl Glacial lake deposits (Pleistocene)—Fine-grained lacustrine deposits in the southwest corner of 
the map. Thickness unknown.

Qgt Glacial till (Pleistocene)—Unsorted clay to boulder deposits in lateral, ground, and medial 
moraines. Characterized by hummocky terrain scattered with large subangular to subrounded 
boulders. Thickness may be as much as 120 m (400 ft).

Tgr Gravel (Tertiary)—Poorly exposed gravel with subrounded quartzite pebbles and cobbles and 
subangular quartzite boulders in a silty matrix. In the northeastern part of the map, Tgr probably 
represents debris flow deposits. Truckle (1988) mapped Tgr as glacial till, but it is continuous with 
known Tertiary gravels in adjacent quadrangles. Tgr near the northwest corner of the map along the 
Big Hole River is boulder and cobble gravel dominated by rounded to very well-rounded quartzite 
clasts. It closely resembles the Miocene Sixmile Creek Formation in the north-adjacent Lower 
Seymour Lake quadrangle (Elliott, 2015). Thickness less than 65 m (220 ft).

Tv Volcanic rock (Tertiary?)—One very small exposure of undated, fine-grained, pink, igneous 
rock with 1–3 mm phenocrysts of glassy, white plagioclase. Fragmental texture with flattened 
pumice suggests an extrusive origin. Truckle (1988) mapped Tv as an andesite dike. Located in 
the northwestern corner of the map.

 Granite, two mica (Cretaceous–Paleocene–Oligocene?)—Medium- to coarse-grained, 
porphyritic, biotite–muscovite granite. Light gray to very pale pink. Mostly massive, but weakly 
foliated along Bryant Creek. Where it forms inclusions in Kqsg, it can be massive to strongly 
deformed and gneissic (fig. 5, contorted TKgbm gneiss). Contains mafic inclusions up to 5 m 
across. TKgbm is the Bryant Creek granite of Truckle (1988) and TKg of Ruppel and others 
(1993). Other two-mica granites in the region have crystallization and cooling ages that vary 
between about 65 and 39 Ma (Snee, 1982; Desmarais, 1983; Zen, 1988; Wallace and others, 
1992; Ruppel and others, 1993; Foster and others, 2007, 2010; Howlett and others, 2020).

 Ruppel and others (1993) correlate TKgbm with the Clifford Creek Granite of Zen (1988) who 
reports 64.6 ± 2.1 Ma and 64.9 ± 2.2 Ma K-Ar ages for biotite and an 40Ar/39Ar biotite age of 65.6 
± 1.4 Ma. Snee (1982) reports a muscovite cooling age of 63.9 ± 0.8 Ma and a biotite cooling age 
of 61.3 ± 0.6 Ma for a small two-mica pluton in the southwest-adjacent Proposal Rock 
quadrangle. Snee (1982) prefers an emplacement age of about 65 Ma but acknowledges that it 
could be as old as 72 Ma.

 
 Two-mica granites are abundant in the footwall of the AMCC, and have K-Ar ages between 54 

and 49 Ma (Wallace and others, 1992); 40Ar/39Ar cooling ages between 39 and 41 Ma for 
mylonites (Foster and others, 2010); and an 40Ar/39Ar biotite age of 53 ± 0.6 Ma for a related 
granodiorite (Foster and others, 2007). The two-mica Chief Joseph pluton in the western AMCC 
has Paleocene and Eocene 40Ar/39Ar cooling ages (Desmarais, 1983; Foster and others, 2010), and 
monazite U-Pb lower intercept age  of 58 Ma (Desmarais, 1983). Howlett and others (2020) 
found U-Pb zircon ages around 60 Ma on TKgbm near Pintler Lake.

Kgdf  Granodiorite, foliated (Cretaceous)—Gray, medium- to coarse-grained granular to porphyritic 
granodiorite and tonalite containing 5–35 percent biotite, hornblende, or biotite and hornblende and 5–56 
percent potassium feldspar (Truckle, 1988). Hornblende appears to increase in abundance towards the 
south. Varies from massive with no foliation, to weakly foliated (preferred dimensional orientation 
fabric), to strongly gneissic. Named the Foolhen Mountain tonalite (Kf) by Snee (1982) and Truckle 
(1988), the tonalite of Foolhen Ridge (Kfn) by Berger and others (1983), and Kgtd granodiorite, tonalite, 
and quartz diorite by Ruppel and others (1993). Contains numerous light gray, fine-grained aplite dikes 
with up to 15 percent plagioclase and 5 percent biotite. Also contains metasedimentary inclusions of all 
sizes, from hand sample to map scale. In the east side of the map, large inclusions contain compositional 
layering and/or preferred orientation foliations at a high angle to the fabric in the enclosing granodiorite. 
In the western part of the map, foliations are commonly, but not everywhere, subparallel to contacts.

 Snee (1982) did not find a crystallization age, but proposed an emplacement age of about 77 Ma for the 
Foolhen tonalite, with biotite 40Ar/39Ar cooling ages decreasing westward from 69 to 65 Ma. Roe (2010) 
obtained a U-Pb zircon age of 71.8 ± 2.0 Ma for a sample from Chalk Bluff in the west-adjacent Pine Hill 
quadrangle. Zircons from a biotite-rich, unfoliated sample of Kgdf have a U-Pb age of 73.89 ± 0.39 Ma 
(fig. 6, sample CE18FH14). At Chalk Bluff, the contact with metasedimentary rocks is gradational and 
not parallel to gneissosity, suggesting that the contact is tightly folded and that the compositional layering 
is axial planar to the folds. Alternately, it is possible that the metasedimentary rocks and granodiorite 
were interleaved before deformation.

 Many metasedimentary inclusions in Kgdf that are large enough to show on the map locally contain 
primary structures, like bedding, but are mostly intensely foliated. The internal foliations are commonly 
at a high angle to the fabric in the enclosing granodiorite. This indicates that the sedimentary protoliths 
were strongly deformed prior to intrusion of Kgdf. 

Kbr Quartz breccia (Cretaceous?)—Black and white mottled quartz-rich cataclasite. Appears to be 
hydrothermally altered fault breccia along the northern edge of the large KMsm belt in the northern half of the 
map. The presence of Kbr and mylonitized marble along the KMsm/Kqsg contact suggests that it is a fault.

Kcs Calcsilicate and marble (Cretaceous metamorphic age)—Light to dark gray, mostly coarse-grained 
marble with varying amounts of silicate minerals, including epidote, garnet, scheelite, and a wide variety 
of skarn minerals (Truckle, 1988; Messenger, 2016). Outcrop-scale textures can be mylonitic, brecciated, 
gneissic (fig. 7), or massive. The protoliths may have been Madison Group and/or Kootenai Formation 
carbonates, (Truckle, 1988), but Mesoproterozoic origins have also been proposed (Messenger, 2016). 
Kcs is here labelled Cretaceous to reflect the age of metamorphism. Kcs hosts the Calvert tungsten skarn 
deposit as well as other skarn prospects throughout the quadrangle.

KMsm Metasedimentary rocks (Mississippian through Cretaceous, Cretaceous metamorphic age)— 
Layered, folded, severely deformed rock with rare recognizable primary structures. Includes 
metamorphosed sandstone, conglomerate, and quartzite. Truckle (1988) mapped these as formations in 
the regional Phanerozoic stratigraphy but our mapping suggests that while Phanerozoic protoliths are 
possibly identifiable in some cases (e.g., dense, purple quartzite with apatite nodules might be 
metamorphosed Phosphoria Formation), stratigraphic relationships are not retained. Messenger (2016) 
interpreted the protolith of the carbonates that host the Calvert tungsten deposit as Pennsylvanian. We 
interpret KMsm to be in fault contact with Kqsg and intruded by Kgdf.

Kqsg  Quartzite, schist, and migmatite gneiss (Cretaceous metamorphic age)—Fine- to medium-grained 
amphibolite–facies quartz–potassium feldspar–plagioclase–muscovite–biotite–sillimanite 
metasedimentary gneiss and schist that is commonly migmatitic. Metasediments vary from quartzose to 
feldspathic. Truckle (1988) recognized that there are two generations of sillimanite, one that is deformed 
(overprinted by a foliation), and one that is randomly oriented in the hinges of folds. Migmatite neosome 
is fine- to medium-grained biotite–mica granite locally injected or segregated in foliation-parallel sheets 
(lit-par-lit), locally segregated as blobs in fold hinges, and locally parallel to the axial plane of folds (fig. 
8). Migmatization increases towards contact with Kgdf, which is gradational; there are inclusions of Kqsg 
in the granodiorite as well as inclusions of granodiorite in the metasediments. Kqsg is complexly 
deformed, with several fold generations.

 Mapped by Truckle (1988) and Berger and others (1983) as Paleoproterozoic metamorphic rock, but 
Ruppel and others (1993) reinterpreted this unit as metamorphosed Mesoproterozoic Belt Supergroup. We 
concur, and would correlate this package with the thick quartzite units of the Lemhi subbasin, upper Belt 
Supergroup (Burmester and others, 2016). However, U-Pb zircon age spectra for a garnet-bearing, 
feldspathic Kqsg metaquartzite inclusion in Kgn (CE18FH1) and a Kqsg migmatitic quartz–feldspar– 
muscovite–biotite–sillimanite gneiss (CE18FH9) are shown in figure 6. While the ages fall within the 
expected range for upper Belt rocks, the presence of North American magmatic gap (NAMG) grains and 
lack of 1,700–1,800 Ma grains are unusual. Variations in age distribution may reflect input of local 
sources, and more work will need to be done before a full understanding is reached.

Kgn  Gneiss complex (Cretaceous)—Quartz–feldspar–biotite–cordierite mixed hornblende granodiorite and 
metasedimentary gneiss. Typically gray and very fine-grained, with evidence of transposition (figs. 4, 8). 
Locally, the preferred dimensional orientation of hornblende grains defines a strong lineation. Less 
deformed zones show granodiorite intruded into metasandstone as well as metasandstone inclusions 
within granodiorite gneiss. Kgn is intruded by, and older than, Kgdf. Metasedimentary protoliths are 
uncertain, and could be any age from Mesoproterozoic to Mesozoic. Kgn is equivalent to Xm of Berger 
and others (1983) who interpreted the unit to be Paleoproterozoic basement gneiss. Ruppel and others 
(1993) reinterpreted the unit as metamorphosed Cretaceous igneous rock (Khbg). Zircons from a sample 
of fine-grained Kgn yield weighted mean U-Pb ages of 73.1 ± 0.40 Ma (fig. 6, sample CE18FH13A).

Ysw Quartzite (Mesoproterozoic?)—Light gray, poorly sorted, fine- to coarse-grained feldspathic quartzite 
and pebble conglomerate. Metamorphic grade and deformation intensity increase from northeast to 
southwest. At the north edge of the map, primary structures are abundant, and the quartzites can 
confidently be traced to well-exposed Mesoproterozoic rocks in the north-adjacent Lincoln Gulch 
quadrangle (Elliott, 2017), and northeast-adjacent Dickie Peak quadrangle (McDonald, 2011). Bed 
thicknesses range from 0.2 to 1.0 m. Contains obvious chalky white feldspar grains, large trough cross 
beds, detrital muscovite, and metamorphic biotite along bedding planes. Contains lenses and intervals of 
conglomerate with round pebbles up to 2 cm. Clasts are fine-grained quartzite, angular granules, and 
small pebbles of feldspar and quartz, suggesting at least two source areas. Rare thin argillite beds 
typically contain desiccation cracks. Three slabbed and stained samples contained 20–25 percent 
potassium feldspar, and 15–20 percent plagioclase. The coarse grains and high potassium feldspar content 
relative to plagioclase support correlation with the Swauger Formation of the Lemhi subbasin strata in the 
upper Belt Supergroup (Burmester and others, 2016). Deformation precludes thickness estimates, but the 
unit is at least 1,600 m (5,250 ft) thick in the nearby Wise River valley (Calbeck, 1975; Lonn and Elliott, 
2017). Unit is equivalent to pCm2 and pCm3 of Truckle (1988) and Ym of Ruppel and others (1993).
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