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1.0 INTRODUCTION 

There have been many reports written about the geology and coal resources found in the Belt, 

Montana area, which is part of what Fisher (1909) describes as the Great Falls Coal Field (figure 

1.1). Therefore, the reader is referred to the work of Weed (1899), Fisher, (1907 and 1909), 

Silverman and Harris (1967), Montana Bureau of Mines and Geology (MBMG) (1966), and the 

numerous other reports referenced here for a more detailed description of the area than that 

presented here. 

Fisher (1909) described the Great Falls Coal Field as consisting of 1,500 square miles, lying 

mainly in Cascade County, but including small portions of Fergus and Chouteau Counties.  Shurick 

(1909) described the area of workable coal within the area to be approximately 230 square miles, 

in an area generally 30 miles long by 8 miles wide. 

1.1 Description of Current Project 

In order to control the flow of water entering the Anaconda Mine, an understanding of the local 

geology and hydrogeology is necessary. Compiling existing information in a form to help with the 

understanding of the controls on recharge was a key goal of this study. The main components of 

the current project consisted of: 1) geologic framework and description; 2) hydrologic monitoring 

and water-quality sampling of key sites adjacent to the historic Anaconda Mine workings; 3) multi­

spectral analysis; and 4) development of a three-dimensional (3-D) computer model. In addition the 

MBMG had another on-going project in the area that was collecting hydrologic information on a 

more regional basis. Information from that work was used to prepare portions of this report. 

Recent geologic mapping by the MBMG was used to develop cross sections and the 

relationship of various formations to the underground mine workings. Besides the cross sections, 
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the geologic data were converted into an electronic format that was used as a portion of the 3-D 

model. Existing wells were identified by geologic formation to assist with the identification of 

potential recharge areas. 

The hydrologic portion of the project consisted of flow monitoring from selected mine discharges 

and Box Elder Creek. It also included water-quality sampling for inorganic metals analysis, and 

limited isotope analysis from selected mine discharges, selected surface water and ground-water 

sites, and water-level monitoring from existing wells. 

Limited Multi-Spectral analysis was performed using available satellite images to augment the 

3-D model development. Various remote sensing techniques were applied to identify areas of 

potential recharge to the mine or discharge points from the mine. 

The 3-D model development included compiling all available data on the extent of underground 

mine workings, locations of exploration drill holes, and local geologic information into an ArcView 

project. The model will be used to present the relationships between the local geologic formations, 

ground-water sources, surface-water sources, and land-use practices that might influence the 

amount and location of water entering the mine workings. The completed model will be used to 

identify areas where additional information is necessary to better determine options for reducing 

the flow of water into the underground mine workings. 

1.2 Mine Development and Ownership 

The first coal mine developed in the Belt area was started by John K. Castner in 1877 (Western 

Mining World, 1896), and was known as the Castner Coal Mine. Coal from this mine was originally 

shipped by wagon to Fort Benton, a distance of 38 miles. 

P.J. Shields leased the Castner Coal Mine in 1892, and shortly thereafter, he formed a 

partnership with Marcus Daly (Stober, 1979) to purchase the mine. The new company was 

incorporated as the Castner Coal and Coke Company. In 1895, the company merged with the 
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reorganized Anaconda Mining Company, as the Anaconda Copper Mining Company, with the mine 

becoming the Anaconda Copper Mining Company Mine, or simply the ACM Mine. The ACM Mine 

operated almost continuously from 1895 until 1912, when The Anaconda Copper Mining Company 

shut the mine down, with portions of the mining operation being dismantled and equipment shipped 

to Butte (Stober, 1979). During its peak, the mine employed more than 1,000 men and produced 

an average of 300,000 tons per year (Silverman and Harris, 1967). Silverman and Harris (1967) 

estimated that this mine produced 7.5 million tons of coal during its 25-year-period of operation. 

One problem with the coal mined at this site was its high ash and sulfur content (Shurick, 1909). 

Iron-pyrite nodules that were found in the coal were the source of the sulfur. However, the iron-

pyrite nodules were recovered from the washing process and shipped to ACM’s Great Falls smelter 

and used as flux and additional fuel in the blast-furnace charge (Fisher, 1909). 

The mine reopened in 1913 when G.W. Merkle leased the property from ACM and operated 

until 1922 (GCM Services Inc., 1983). During this time, mining consisted of the removal of the pillars 

left in place during the original mine development. The pillars were removed starting at the back of 

the mine, allowing the roof to collapse (Stober, 1979). Stober (1979) stated that the removal fo the 

pillars and subsequent roof collapse did not result in land depressions above the mine. 

The mine had two primary openings. The original adit developed by Castner was in Castner 

Coulee (GCM Services Inc., 1983), which is the location of the U.S. Highway 87 access road into 

Belt. This opening became known as the No. 1 Mine (Western Mining World, 1896). Sometime 

between ACM’s purchase and 1896, the No. 2 Mine adit was developed in the next coulee, one-

quarter mile to the south (figure 1.2). The entire area mined through the No. 1 and No. 2 mines has 

been referred to generically as the Anaconda Mine over the years. The adit discharging acidic water 

is the location of the No. 2 Mine. 
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Figure 1.1. Location of study area and abandoned coal mine sites in the region. 

Castner Coulee 

ACM #2 

ACM #1 

Figure 1.2.  Location of ACM Mines # 1 and #2, and Castner Coulee. (Map modified
                   from Weed 1898.) 
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The underground mine workings were very extensive, extending almost 2 miles west-southwest 

of Belt. Figure 1.3 shows the approximate area and major haulage routes in the mine. 

1.3 Previous Site Work 

The Montana Department of Environmental Quality (DEQ) - Mine Waste Cleanup Bureau in the 

1980's identified a number of environmental problems associated with the historic coal mines and 

their ancillary facilities in the Belt area. As part of DEQ’s activities, the mine adit for the Anaconda 

Mine (ACM No. 2 Mine) was closed and a pipe installed to carry the acidic water discharging from 

the mine downhill where it discharges into a channel carrying acid water from another discharge. 

Water flows in this channel adjacent to a reclaimed waste pile before discharging to Belt Creek. 

DEQ, along with the U.S. Bureau of Mines (USBOM) in 1990, installed a series of wetlands for 

passive treatment of acid-mine water originating in the next coulee (unnamed)south of the ACM No. 

2 Mine adit. This water is very acidic also, but the flow is considerably less than that from the 

Anaconda Mine. A portion of this water was diverted into the wetlands for treatment and then 

discharged to Belt Creek. However, due to the high iron concentrations and harsh winter weather 

in the area, the wetlands were not able to achieve an acceptable level of treatment and were 

abandoned. Water from this location flows under the existing railroad beds, flows down a steep hill, 

and then discharges into the same channel that receives the Anaconda Mine drain water. This site 

was called the French Coulee mine drain during this study. 

The United States Geologic Survey (USGS) conducted an intensive water quality study of a 

number of sites in the Belt area as part of a study of acid mine drainage problems in the Stockett-

Sand Coulee and Belt areas. They installed a flume and stilling well for continuous monitoring of 

the discharge from the Anaconda Mine and collected periodic water quality samples from various 

sites. 

5




Figure 1.3. Approximate extent of major haulage routes for the Anaconda Mine. 
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When the coal-waste area below the Anaconda Mine, and adjacent to the channel receiving 

acid mine water discharge, was reclaimed, a series of six shallow monitoring wells were installed 

by DEQ for ground-water monitoring. These wells were installed for monitoring of a proposed 

grouting project aimed at mitigating the discharge of contaminated ground-water into Belt Creek. 

However, this project was postponed and no additional data were collected from these wells. 

2.0 GEOLOGY 

2.1 Stratigraphy and Water-Bearing Units 

Coal was mined from the upper part of the Morrison Formation which is overlain by the lower 

Kootenai Formation, table 2.1. A few miles north of Belt, the upper Kootenai and overlying Blackleaf 

Formation are also exposed. Tertiary alluvial terrace gravel caps part of the bench overlying the 

mine and glacial deposits overlie the Kootenai or Blackleaf Formations north of the mine. 

In the mine area, the Morrison Formation is underlain by the Swift Formation and the 

Madison Group. However, within a few miles south of Belt, other units appear between the Swift 

and the Madison: the Sawtooth, Otter, and Kibbey Formations. Age, lithology, thickness, and 

depositional environments of these stratigraphic units are summarized in table 2.1. 

Possible bedrock sources of ground-water recharge to the mine are the  Sunburst Member 

of the Kootenai Formation (quartzose sandstone unit of Walker, 1976), the Cutbank Member of the 

Kootenai Formation (basal sandstone of Walker, 1976) (figure 2.1), the Swift Sandstone, and the 

Madison Group limestone. Some water could also enter the mine from coal and thin sandstone 

units in the Morrison Formation. Surficial deposits that may serve as local sources are Quaternary 

channel alluvium, and Tertiary alluvial terrace gravel on the benches above Belt Creek. 
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Stratigraphic Unit Period Lithology Thickness 
Depositional 
Environment

 Blackleaf Formation Cretaceous Black shale and sandstone 
beds 

Not present at mine; 600' 
thick to north 

Mostly marine

 Kootenai Formation Cretaceous

 Fifth member Red mudstone and sandstone Not present at mine; 120' 
thick to north 

Alluvial plain

 Fourth member Fine-grained, thin-bedded red 
or brown sandstone 

45' thick at mine Deltaic and fluvial

 Sunburst Sandstone Clean, porous quartz 
sandstone 

45' thick at mine Marginal marine

        Second member Red mudstone with limestone 
lenses 

115' thick at mine Alluvial plain

        Cutbank Sandstone “Salt and pepper” sandstone, 
may be conglomeratic 

20' thick at mine Fluvial

 Morrison Formation Cretaceous Upper coal and black shale, 165' at Armington Alluvial plain 
and Jurassic lower green mudstone with 

sandstone and limestone 

ELLIS GROUP Jurassic Marine 

Swift Formation Orange-brown sandstone, 50' thick at mine 
conglomeratic, fossiliferous 

Sawtooth (Piper) Formation Oolitic limestone, shale and Not present at mine; 30' 
siltstone thick to south 

BIG SNOWY GROUP Mississippian Marine 

Otter Formation Green shale, limestone and 
gypsum 

Not present at mine; 300' 
thick to south

 Kibbey Formation Red mudstone, siltstone, and Not present at mine; 100' 
fine-grained sandstone thick to south 

MADISON GROUP Mississippian Marine 

Mission Canyon Formation Gray, thick-bedded limestone 800' thick to south of mine 

Lodgepole Formation Gray, thin-bedded limestone 700' thick to south of mine 
and shale 

Table 2.1 Stratigraphic units in the mine area. 

The Kootenai sandstones and the alluvial terrace gravel overlie the Morrison coal horizon of the mine and 

are therefore likely sources of recharge to the mine. One of the questions of this study is whether the deeper 

Jurassic Swift and Mississippian Madison aquifers could also be sources of water in the mine. Several 
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(Red sandstone unit of Walker, 1974) 

Red or tan interbedded platy sandstone and shale. 

2.	 Sunburst Sandstone member of Kootenai Formation (Kk5) 
(Quartzose sandstone unit of Walker, 1974) 

Clean, well-sorted limonite-speckled quartzose sandstone with 
little or no black chert interbedded with subordinate shale. 

3.	 Second member of Kootenai Formation (informal) (Kk2). 
(Limestone concretion unit of Walker, 1974) 

Red mudstone with lenticular bodies of sandstone and limestone, 
and conspicuous limestone concretions. 

4.	 Cutbank Sandstone of Kootenai Formation (Kkc). 
(Basal sandstone of Walker, 1974) 

Coarse- to medium-grained chert-rich sandstone. Note that at Belt,
the Cutbank Sandstone thickens from 20 to 80 ft in less than a mile 
(Walker, 1974, p. 50). 

5.	 Upper Morrison Formation coal. 

11. Fourth member of Kootenai Formation (informal) (Kk4).1. 

2. 

3. 

4. 

5. 

Figure 2.1 Lower Kootenai Formation and underlying Morrison coal at Belt (modified from 
Walker, 1974). 

9 



 geologic features in this area might allow this possibility. These include: 1) pre-Jurassic erosional beveling 

of a regional pre-Jurassic structure;  2) paleotopography of the pre-Jurassic Madison surface, and Jurassic 

erosion into that surface; 3) Structures of the Great Falls Tectonic Zone; and 4) influence of the Sweetgrass 

Arch. 

2.1.1	 Pre-Jurassic Regional Structure 

Prior to deposition of the Jurassic Ellis Group (Sawtooth, Rierdon, and Swift formations), a regional uplift 

tilted the sedimentary units to the south. This was followed by erosional beveling preceding deposition of the 

marine Ellis Group, and resulted in a pre-Jurassic surface of progressively younger units to the south (figure 

2.2). On the northwest flank of the Little Belts, the units between the Swift and Madison include the Big 

Snowy Group (Kibbey, Otter, and Heath Formations), Tyler, Amsden, and Quadrant Formations.  Along the 

Smith River, the Jurassic Sawtooth and Rierdon Formations are also present. By contrast, at Belt, the Swift 

rests directly on Madison Group limestone (figure 2.3).  Swift overlying Madison is exposed near Stockett and 

in Sand Coulee about 5 miles southwest of the mine (figure 2.4).  At some exposures, folds in the upper 

Madison do not carry through to the overlying units, and at others, the dip of the Madison opposes that of the 

overlying Swift, with Swift dipping roughly to the north, and Madison dipping roughly to the south. 

Several factors relative to this structure may have implications for ground water: 

1. The Madison limestone is much closer to the surface at Belt than to the south where a wedge of Big Snowy 

Group thickens significantly between the Madison and Swift. Big Snowy Group is not present north of Belt. 

(Plate 1, cross section D-D’) 

2. 	The Madison Limestone was exposed prior to the Jurassic from Belt northward.  It may therefore thin to 

the north because of pre-Jurassic erosion. If the Madison Limestone thins north of Belt, this may 

promote a northward rise in the water table of the Madison. 
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Kootenai 

Morrison 

Rierdon 
Sawtooth 
Quadrant 

Amsden 

Heath 

Otter 

Kibby 

Mission Canyon 
(Madison Group) 

Kootenai 

Mission Canyon 
(Madison Group) 

Section at Belt 

Swift 

Tyler 

Composite section at

Western Little Belt Mountains


Figure 2.3 Comparison of interval between Morrison Formation coal and Madison Group limestone 
in western Little Belt Mountains and in the Belt mine area. 
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There may be a syncline  in the Madison Limestone not present in the units overlying the angular 

unconformity at the top of the Madison.  Across the axis of the syncline, the pre-Jurassic southward dip may 

surpass the north to northeastward dip off of the Little Belts.  Ground water may move up-dip in this area 

through more permeable zones that follow bedding, such as bedding plane karst, possibly contributing to 

artesian flow. A hingeline between a regional area of recharge to the Madison Group aquifer on the flanks 

of the Little Belts to a regional area of discharge, with areas of artesian flow, has been recognized (M. Miller, 

oral communication). This hingeline may be related in part to the possible syncline in the Madison Group. 

2.1.2 Paleotopography of Jurassic Depositional Surface and Jurassic Erosion 

The pre-Jurassic erosional surface had significant topography (Meyers and Schwartz, 1993).  One of 

the major paleohighs, Belt Island, has been defined by thickness isopach lines for the Sawtooth, Rierdon, and 

Swift Formations, including the zero isopach lines (figure 2.5) (Peterson, 1957). The Sawtooth and Rierdon 

Formations are not present in the Belt area because of this paleohigh, but the Sawtooth is present a few miles 

south of Armington. An interpretive cross section (figure 2.6) (Walker, 1976),  shows Belt Island as a Madison 

Group anticline or dome exposed during the Jurassic.  This interpretation suggests that the Madison was 

folded sometime after the regional southward tilting, but prior to the Jurassic. 

In the area of the mine, the Swift rests directly on the Madison Limestone.  Other paleohighs have 

been recognized based on depositional environments of the overlying Jurassic units (Meyers and Schwartz, 

1993; Porter, 1989) and sequence stratigraphy (Porter, 1989 ). In addition, channels were eroded into the 

Madison during the Jurassic (Meyers and Schwartz, 1993) (figure 2.7), also contributing to the irregularity of 

the Madison surface. Some of the irregularities are apparent in a series of seven cross sections in the mine 

area based on MBMG Ground Water Information Center (GWIC) data and outcrop data. (Plate 1), and in a 

3-D model of the surface of the Madison prepared for this report. A pre-Jurassic Madison paleohigh is 
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Figure 2.5. Zero isopach lines for the Sawtooth/Piper, Rierdon, and Swift Formations (Ellis 
Group) indicating the presence of a paleohigh, Belt Island (modified from 
Peterson 1957). 
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present just north of Belt in cross section D-D’ (Plate 1). It is not known if this structure resulted from folding 

of the Madison Limestone as represented in figure 2.6, or if it is an erosional feature. 

2.1.3 Great Falls Tectonic Zone Structures 

Belt lies within a regional northeast-striking structural zone, the Great Falls Tectonic Zone (O’Neill and 

Lopez, 1985) that extends from Idaho into Canada (figure 2.8).  The Great Falls Tectonic Zone is thought to 

be a basement suture zone (O’Neill, 1997; O’Neill and Lopez, 1985), and to have had recurrent movement 

throughout geologic time. A northeast-striking structural grain is apparent in the Belt area from northeast-

striking folds and faults mapped in the general mine area (figure 2.9). Pre-1915 unpublished Castner Coal 

Company (Anaconda Mine) mine maps and correspondence retrieved from the Montana Historical Society 

show a northeast-striking fault that extends through the northern border of the mine that is on strike with one 

of the mapped folds (Vuke and others, 2002). This fault may restrict the movement of ground water in certain 

aquifers in the mine area.  Associated fractures may serve as planes for ground water movement. Preliminary 

flume measurements on either side of this fold-fault trend on Box Elder Creek indicate loss of water to the 

north.  This may suggest that water in the creek is diverted by fractures into downward flow that may 

contribute water to the mine. 

Three depressions occur in this area, and are thought to be caused by collapse over karst voids in the 

Madison Group limestone (Vuke, 2000; Vuke and others, 2002).  Two of the depressions (figure 2.9) with the 

mine fault and associated folds and also with geologic structures southwest of the mine (figure 2.9), further 

suggesting that a northeast-striking regional structure passes through the mine area. Structurally controlled 

development of karst in the Madison may allow local groundwater flow from the southwest toward the mine. 

Recurrent movement on the faults of the Great Falls Tectonic Zone may have further ground-water 

implications because faults may control abrupt thickness changes in units. The cross sections (Plate 1) show 
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a gradual thinning of the Big Snowy Group, for example, but it is also possible that the Big Snowy Group 

terminates abruptly against a down-to-the-south paleofault. 

2.2 Influence of Sweetgrass Arch 

The Anaconda Mine lies on the southeast flank of the Sweetgrass Arch , another basement structure 

that has had recurrent movement throughout geologic time.  The northward dip off the Little Belt Mountains 

south of the mine is deflected to a gentle northeast dip in the mine area because of the influence of the 

Sweetgrass Arch . A surface dip of 4° northeast was measured over the mine area (Vuke and others, 2002) 

although measurements on folds immediately east of the mine suggest that they plunge slightly to the 

southwest. The direction of dip on the mined coal is significant for ground-water movement within the mine. 

Discharge into Belt Creek suggests that the dip is to the northeast as measured above the mine. 

The Sweetgrass Arch also apparently influenced the distribution of the Sunburst Sandstone (quartzose 

sandstone of Walker, 1976), one of the aquifers that overlies the mine.  The Sunburst Sandstone was 

deposited in marginal marine environments of a shallow boreal sea.  Its distribution coincides with the position 

of the Sweetgrass Arch suggesting that there was reversal of movement on the structure from a paleolow 

during the deposition of the Sunburst Sandstone with the influx of the sea, to a paleohigh later as the arch 

developed (Figure 2.10). 

3.0 REGIONAL HYDROGEOLOGY 

As mentioned previously, the MBMG had a companion study underway in the Belt area looking at the 

regional hydrogeology. That study consisted of identifying wells from the area just south and east of Armington 

Junction to the west of Belt based upon the geologic formations the wells are completed in. The study involved 

measurement of water levels in selected wells monthly or quarterly to establish trends, activation of the flume 

on the Anaconda Mine drain channel for flow monitoring, and collection of water quality samples from key 

locations. That work is on-going. 
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3.1 Well Inventory 

A search of the MBMG GWIC database for water wells in the study area was conducted. Wells were 

then selected based upon access, geologic information, and distribution throughout the study area. Field visits 

were conducted to verify locations, accessibility, and measure water-levels. Selected wells were then 

monitored either monthly or quarterly as part of the companion study. Information from the well inventory and 

water-level monitoring was used to prepare the ground-water flow maps. 

3.2 Recharge to the Anaconda Mine 

Based on very preliminary interpretations a significant source of water to the Anaconda Mine appears 

to be from the overlying Kootenai Formation. Figure 3.1 is a surficial geologic map of the area above and 

adjacent to the Anaconda Mine.  The Kootenai Formation is as much as 200 feet thick in the Belt area. The 

lower sandstone unit (Cutbank Sandstone Member, figure 2.1) forms an aquifer directly overlying the targeted 

coal bed. The Cutbank Sandstone Member is overlain by an unnamed fine-grained unit (Second member, 

figure 2.1) that forms an aquitard.  The Sunburst Sandstone Member forms another aquifer overlying this 

aquitard. The upper unit of the Kootenai Formation is another unnamed fine-grained aquitard (Fourth 

member, figure 2.1). The Kootenai Formation is highly fractured causing some degree of vertical hydraulic 

connection from the surface down to the underlying coal bed. 

Wells and springs in the Kootenai Formation have been inventoried at 37 locations in the Belt area. 

Water levels have been monitored in 9 wells completed in the Kootenai Formation near the Anaconda Mine. 

Two general trends are apparent from existing water-level fluctuation data (figure 3.2).  Wells completed in 

the uplands up-gradient of the mine have very minor water-level fluctuations trending flat to a slight decline. 

Wells completed near streams or small tributaries generally indicate a declining water level in response to the 

recent drought.  Figure 3.3 is a potentiometric surface map of the Kootenai Formation based on 

measurements collected during the well inventory conducted in 2002 and 2003. This map was contoured 

using measurements from 37 wells and springs near the mine. This map shows only general water-level 
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conditions in the mapped area. Additional wells at critical locations will be needed to accurately depict ground­

water flow. In addition, a more accurate contour map requires monitoring of water levels at approximately the 

same time. The mapping depicts a ground-water divide located about 3.5 miles south of the Anaconda Mine. 

Only precipitation falling north of this divide has the potential to move towards the mine. Ground-water flow 

is perpendicular to the water-level contours. The upland between Belt Creek and Box Elder Creek is highly 

dissected by tributaries to the two streams.  These tributaries plus the main stems of the two streams are 

discharge areas for ground water moving out of the Kootenai Formation.  The potential recharge area to the 

Anaconda Mine starts at the ground-water divide 3.5 miles south of the mine and extends to the region directly 

overlying the abandoned mine workings. This forms a relatively narrow band following the axis of the surface 

water divide between Belt Creek and Box Elder Creek. The potential recharge area covers about 2,100 acres 

overlying and up gradient of the mine. The highly dissected nature of the upland appears to cause some of 

the precipitation falling on the upland to bleed out and discharge to the surface water drainages and springs 

in the valley walls.  A portion of this water is consumed by vegetation in the drainages as shown by the areas 

of dense plant cover depicted on figure 3.4. Several of the springs appear to be related to the contact of the 

Sunburst Sandstone Member (aquifer) and the underlying unnamed fine grained unit (aquitard) (Second 

member). 

The ground-water divide south of the mine appears to be both topographically and structurally 

controlled. The topographic high area forming the ground-water divide is located just north of a paired 

anticline-syncline structure that trends N 45° E. 

4.0 HYDROLOGIC MONITORING ACTIVITIES 

Monitoring consisted of continuous-flow monitoring of the discharge from the Anaconda Mine drain 

and two locations on Box Elder Creek, and continuous physical-parameter monitoring at the Anaconda Mine 

drain, French Coulee Mine drain, and the upper flume on Box Elder Creek. 
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Figure 3.4 Water-level contours are plotted on an infrared ASTER satellite base map taken 
in July 2001. Red-colored areas have relatively dense plant cover. 
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4.1 Flow Monitoring 

Flows from the Anaconda Mine drain were recorded at the H-Flume located in the discharge channel 

downstream of the Anaconda Mine discharge. This flume was installed during previous investigations. 

Two new 6-inch Parshall flumes were installed on Box Elder Creek. The upper location was chosen 

for its location above (up-gradient) the Anaconda Mine workings, while the lower location was located 

approximately 1½ miles downstream. These flumes were installed in late-May, 2003 and were equipped with 

pressure transducers for monitoring flow rates. 

4.1.1 Anaconda Mine Drain 

Very little information is available on the amount of water encountered during operation of this mine. 

However, there are several references in the literature (Shurick, 1909 and GCM Services Inc, 1983) that 

described the mine as being fairly to very wet and that it was built to be self draining. GCM Services Inc states 

that there were a number of pumps employed to keep the mine dry. Shurick (1909) described the use of the 

`Finlander Pump’ to drain water short distances and described as “a tub set up near the roof with a trough 

leading to the room mouth”. Shurick stated that it gave satisfactory results. Understanding the source and 

quantity of water entering and leaving the mine is very important to determine how best to limit the volume 

of water entering the mine. A short article by Rowe (1909) stated that the mine was idle almost the entire 

month of June, 1908, due to floods. Unfortunately, the article doesn’t say if the flood was in the mine or a 

surface water phenomenon. However, Stober, 1979, described a June, 1908, flood along Belt Creek that 

washed away several houses and a suspension bridge and covered an area known as Coke Oven Flats with 

water. It is possible that it is this flood that Rowe was referring to in his article.

 The U.S. Geological Survey (USGS) installed a 1½ foot H-Flume below the Anaconda Mine drain for 

flow monitoring for the period October 1, 1994, through September 30, 1996, a 24-month period (Karper, 

1998). Summary statistics for this period are contained in Table 4.1. Figure 4.1 is a hydrograph showing flow 

in gallons per minute (gpm). A portion of the hydrograph is estimated and is shown with a dashed line. 
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Agency Monitoring 

Period 

Mean Flow 

(gpm) 

Maximum Flow 

(gpm) 

Minimum Flow 

(gpm) 

USGS 10-01-94 to  09-30-96 99 184 63 

MBMG 08-08-02 to 01-08-04 132 158 111 

Table 4.1. Anaconda Mine Summary Flow Statistics, Average Daily Flow. 

The MBMG reactivated the USGS flume and stilling well as part of its regional study in the Belt area. 

Originally, a Stevens Type-F recorder was installed in the stilling well. However, the water in the stilling well 

froze during the winter, limiting data collection from late-December, 2002, through March, 2003. The recorder 

was replaced by a pressure transducer in August, 2003. This transducer was replaced by another pressure 

transducer located directly in the flume, to alleviate freezing problems.  Table 4.1 contains a summary of flow 

statistics for the recent monitoring, while figure 4.2 shows the daily average flow rates recorded by the MBMG. 

These flows are consistently higher than those recorded by the USGS in the mid-1990's (Table 4.1), and do 

not show the same level of seasonal variation. 

Daily precipitation amounts are plotted in figure 4.3 to identify any flow response that might occur from 

precipitation events.  While it appears there may be an occasional response in flow following several 

precipitation events, these increases may in fact, represent storm run-off entering the drainage channel 

upstream of the flume. Due to the location of the flume and the distance between the flume and the Anaconda 

Mine discharge shown in figure 4.4, storm run-off has the potential to influence the flows measured. This 

influence would indicate an increase in flow, which might not be coming from the Anaconda Mine discharge. 

It appears that the influence of precipitation is more regional (gradual) than local (quick) in nature. 

4.1.2 Box Elder Creek 

Figure 4.5 shows the location of the two Box Elder Creek flumes along with a representation of the 

underground mine workings. Both flumes are 6-inch fiberglass Parshall models. 
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Lower Flume 

Upper Flume 

Figure 4.5.  Location of Box Elder Creek flumes in relationship to underground mine 
workings. 
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4.1.2.1 Upper Box Elder Creek Flume 

The upper flume was installed up-gradient of any known workings associated with the Anaconda Mine. 

The flume was located in a portion of the channel on the Larson Ranch that reportedly has year-round, or 

nearly year-round flow. Figure 4.6 is a hydrograph showing flows at this site from May 22, 2003 through 

January 7, 2004. The mean flow was 37 gpm. Table 4.2 contains a summary of flow rates for both Box Elder 

Creek flumes. 

Upper Box Elder Creek Lower Box Elder Creek 

Mean 37 17 

Maximum 184 201 

Minimum 0 0 
All flows are in gallons per minute (gpm) 

Table 4.2. Summary Flow Statistics for the Box Elder Creek Flumes. 

Flows declined steadily from May through late July before leveling off, with flows at 10 gpm, or less, 

for the next month. Flows increased some in September, and rose to levels between 25 to 75 gpm in October 

and November. Flow rates since late November appear to be affected by ice forming within and adjacent to 

the flume, and should be used with caution. 

The area adjacent to this flume is planted in alfalfa, which is a high-water-use crop, therefore, it is not 

surprising that flows drop-off during the peak of the growing season. 

4.1.2.2 Lower Box Elder Creek Flume 

The lower flume was installed approximately 1½ miles downstream of the upper flume, on land owned 

by the Pleasant Valley Colony. Table 4.2 contains a summary of flow statistics for this site. 

Flows declined steadily from the end of May when the flume was installed until early July. Since early 

July, no flow has been recorded at this site (figure 4.7). The land upgradient and adjacent to this site was 
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planted in winter wheat during the past year. 

The county road crosses Box Elder Creek about mid-way between the two monitoring sites. The area 

upstream of the road has alfalfa planted, while the area downstream is planted with winter wheat. During late 

fall and early winter, the flow of water extended beyond (downstream) the road, however, it infiltrated into the 

ground before reaching the flume. 

4.1.2.3 French Coulee Mine Drain 

In addition to the above-mentioned three sites which had continuous flow-rate equipment installed, 

periodic flow rates were measured from the French Coulee Mine drain. A pipe dam was constructed just below 

the culvert beneath the train tracks, and flow rates were measured using a bucket and stop watch during most 

site visits. The mean, maximum, and minimum flows were 8, 11, and 6.5 gpm, respectively. Figure 4.8 is a 

flow hydrograph for this site. Flows increased gradually between March and mid-May before falling and 

leveling off for the most part from June through early January, 2004. When precipitation totals between flow 

measurements are plotted on this graph (figure 4.9) it appears that flows might increase somewhat following 

precipitation events. 

4.2 Physical Parameter Monitoring 

Physical parameter monitoring was conducted at the Anaconda Mine drain discharge, French Coulee 

Mine drain discharge, and the upper Box Elder Creek flume site. Multi-parameter probes (sondes) were used 

to record the following parameters: pH, specific conductance (SC), temperature, dissolved oxygen (DO), and 

redox. The sondes were moved from their original locations, to more representative locations during June 

2003. Initially, the sondes were set-up to collect data every 20 minutes; however, this increment was changed 

to every 30 minutes in June. The sondes were calibrated and set-up with a starting and ending date and time 

in the lab before deployment. The sondes were typically left in-place for 2 weeks and replaced with another 

sonde for the next 2 week period. 
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Figure 4.8 French Coulee Mine drain hydrograph of measured flow rates. 
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Figure 4.9	 French Coulee drain hydrograph of measured flow rates with 
precipitation totals between measurements. 
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The sondes were downloaded, cleaned and re-calibrated in the laboratory before being re-installed. 

Fouling from algae and/or iron precipitates was a continual problem at all three sites (figure 4.10). However, 

when the locations of the Anaconda Mine and French Coulee drain sondes were completed in June, the 

severity of the fouling was reduced considerably. Even with the improvement in operation following the sondes 

relocation, dissolved oxygen measurements were still affected by algae fouling. Figure 4.11 shows the algae 

growth adjacent to the sonde in the French Coulee site. In an attempt to further reduce probe fouling at this 

site, a 2.5-foot piece of 30-slot PVC well screen was installed in the discharge water, with the sonde installed 

inside the well screen. Unfortunately, this did not reduce the fouling problem; instead it appeared to make 

matters worse for other parameters. Other parameters, i.e. SC, exhibited considerable drift during the August 

18-October 23 period when the sonde was placed inside the screen. 

4.2.1 Anaconda Mine Drain Monitoring 

The multi-parameter sonde was installed on the down-gradient side of the road culvert underneath the 

county road initially; however to obtain more representative data, the sonde was moved upstream a short 

distance and installed directly inside the end of the drain pipe that carries water directly from the mine adit. 

Moving the sonde dramatically reduced the precipitates that formed on the probes and reduced the amount 

of variability seen in temperature readings in particular. Figures 4.12a and b, and 4.13a and b are time trend 

plots for pH-temperature, SC, dissolved oxygen, and redox for the period of monitoring at this site. Table 4.3 

contains a summary of statistics for the monitored parameters. 

pH 
SC 

(umhos/cm) 
Temperature 

(0C) 
DO 

(mg/L) 
%DO 
(%sat) 

Redox 
(mv) 

Mean 2.85 2,264 9.86 1.11 11.5 624 

Maximum 3.97 3,022 11.19 3.44 33.1 657 

Minimum 2.46 1,481 7.37 0.06 1.4 550 

Number Readings 14,028 14,028 14,028 14,028 9,060 14,028 

Table 4.3 Summary statistics for the Anaconda Mine drain, January 28, 2003 through January 7, 2004. 
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Figure 4.10 Photo of probe fouling by precipitates. 

Figure 4.11 Photos of algae growth at French Coulee site. 
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The pH and temperature of the water coming from the mine are very consistent as shown in figure 

4.12a. The most significant change occurred during and immediately after a rainstorm and micro-burst the 

evening of June 10, 2003. Severe winds and heavy rain hit the town of Belt with winds as strong as 100 miles 

per hour (National Weather Service, 2004). The pH and water temperature both increased to the maximum 

recorded levels during the storm, while the rise in temperature was followed by a drop in temperature of 

almost 3°C, before returning to pre-storm levels. These changes are most likely not representative of actual 

water draining from the mine, but are likely the result of the storm and storm runoff temporarily backing water 

up behind the road culvert. When these data points are removed from the graph the graph lines are almost 

flat. It appears that it takes about one hour for the pH probe to stabilize each time a new sonde was installed; 

however, the change during this period was usually a tenth of a unit or less. No seasonal trends (changes) 

are noticeable for either of these parameters. 

Figure 4.12b is a graph showing SC readings over time.  The most significant change is SC took place 

during the June micro-burst, with SC values dropping 500 or more umhos/cm. It appears that upon two or 

possibly four occasions a calibration error might have occurred, as SC values while consistent during the two 

week period, were considerably different than the periods preceding and following. (It should be noted that 

no problems were encountered during calibration during any of these periods.) No seasonal trends are 

noticeable on this graph. 

Figure 4.13a shows DO and percent DO values over time. As mentioned previously, these probes 

were the most susceptible to fouling. While relocating the sondes had some initial improvement on the probes 

fouling, the measured levels still dropped off consistently during each two week monitoring period. Extreme 

care should be used when using the DO data, however, it is safe to say DO concentrations are probably less 

than 2.5 mg/L in this water. These values are well below recommended aquatic life standards. 

Redox values are very consistent at this site also (figure 4.13b). The greatest redox change occurred 

during the June micro-burst, and were similar to the changes seen in pH, temperature, and SC. Some fouling 

may be occurring on this probe also during each period of deployment, as a slight increase in redox occurs 
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gradually during each two week period. However, this change is so minor and the overall trend of the graph 

is so flat that the average value of 624 mv is probably very representative of this water. Once again no 

seasonal water quality trend is noticeable for this parameter. 

Based upon the overall consistency of the physical parameters monitored in the Anaconda Mine drain 

water, the mine water appears to be unaffected by seasonal changes. Either the source and quality of the 

water entering the mine is very consistent, or chemical changes occur within the mine workings very quickly, 

so that the water discharging from the mine shows no effects of seasonal changes, or the source of acid 

production is primarily near the mine floor, not subject to changes in water levels. 

4.2.2 French Coulee Mine Drain Monitoring 

Originally the sondes were installed at the bottom of the hill in a small pool area that allowed complete 

submergence of the sonde-probes. However, considerable fouling of the probes occurred and ambient 

temperatures affected the water temperatures. Once the sondes were moved (June 4, 2003) to the inside of 

the discharge pipe at the top of the hill the extreme temperature changes were reduced and the amount of 

bio-fouling was also reduced. 

Similar changes in pH, temperature, and SC were seen at this site as those noted at the Anaconda 

Mine drain during the June Micro-burst. Figures 4.14 and 4.15 are graphs of the various physical parameters 

monitored at this site over time, while Table 4.4 contains a statistical summary of the data. 

pH 
SC 

(umhos/cm) 
Temperature 

(0C) 
DO 

(mg/L) 
%DO 
(%sat) 

Redox 
(mv) 

Mean 2.55 4,503 10.59 1.77 9.9 606 

Maximum 3.25 7,298 25.19 13.39 96.8 680 

Minimum 1.93 2,204 0.83 0.00 0.0 430 

Number Readings 14,022 14,022 14,035 14,022 9,283 14,035 

Table 4.4. Summary statistics for the French Coulee Mine drain, January 28,2003 through January 7, 2004. 

In an attempt to further reduce probe fouling at this site, a piece of 4-inch PVC well screen was 
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installed in the discharge and the sonde placed inside it. While visually this appeared to reduce the bio-fouling, 

it had a negative effect on SC measurements. As can be seen in figure 4.14b, SC values dropped off 

continuously from the beginning of each deployment of the sonde for the periods from September 3, 2003 to 

October 22, 2003. Once the well screen was removed and the sonde placed directly back inside the 

discharge pipe this change no longer occurred. Based upon the data presented in tables 4.3 and 4.4 and the 

figures, it appears that the conditions of the water change much more than that of the Anaconda Mine water. 

However, when graphs are prepared using just one data point (measurement) per day the amount of variation 

is not as pronounced (figure 4.16a and 4.16b). The added variability at this site might partially be related to 

temperature changes based upon ambient temperatures. 

While more variability occurred at this site, there was no indication of seasonal influence, such as 

dilution in SC values or a rise in pH values that might occur following recharge from precipitation and recharge 

events. 

4.2.3 Box Elder Creek Monitoring 

The multi-parameter probe at this site was originally installed just upstream of where the county road 

crosses Box Elder Creek, on John Harris’ property. This was the one portion of the stream that was not 

completely frozen at that time. The monitoring site was relocated to the site of the upper flume on June 18, 

2003, on Jim Larson’s property. Table 4.5 contains a summary of monitoring statistics for this site. 

pH 
SC 

(umhos/cm) 
Temperature 

(0C) 
DO 

(mg/L) 
%DO 
(%sat) 

Redox 
(mv) 

Mean 8.17 612 8.37 8.15 80.8 553 

Maximum 9.85 854 28.70 20.79 214.9 655 

Minimum 6.61 304 -5.00 0.13 1.70 171 

Number Readings 13,637 13,260 13,637 12,248 12,936 12,114 

Table 4.5. Summary statistics for upper Box Elder Creek, January 28, 2003 through January 7, 2004. 
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Water quality conditions are much different at this site, in comparison to physical parameter data for 

the Anaconda Mine and French Coulee Mine drains. Figures 4.17a and b through 4.18a and b show the 

trends for the monitored parameters. 

Figure 4.17a shows pH values for the period of monitoring. For the most part pH values are between 

7.80 and 8.20. The slight daily variations are most likely the result of temperature changes and increasing 

biological activity during daylight hours. 

Daily and seasonal temperature changes are very noticeable on figure 4.17b. Temperatures rise in 

the spring and summer months before falling in the fall and winter. The stream temperature is near zero during 

much of the late fall and winter. These conditions and the low flows mentioned earlier resulted in periods 

where limited data were collected at this site. Occasionally the stream flow was too low and water depths too 

shallow to completely cover the monitoring probes, or the stream became completely frozen. 

Figure 4.18a shows DO and percent DO values for the monitoring period. Seasonal and daily trends 

are readily apparent on this figure. The increased temperatures during the summer and the accompanying 

increase in biological activity in the stream resulted in a decrease in DO concentrations. However, the DO 

conditions are favorable for aquatic life and stream health. 

4.2.4 Summary of Physical Parameter Monitoring 

Physical parameter monitoring of the two major acid mine discharges revealed a very stable condition 

of the water. No seasonal trends or changes occurred in either the Anaconda Mine discharge or the French 

Coulee Mine drain discharge. The greatest influence on data was the location of the monitoring sites. Once 

monitoring sites were moved to locations closer to the discharge, the amount of variation declined 

significantly. 

This monitoring documents the severely impacted (degraded) nature of the water coming from these 

two sites. The low pH values and elevated SC values show this water to be extremely detrimental to most 

forms of aquatic life. 
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Conversely, monitoring of the Box Elder Creek drainage showed significant daily and seasonal trends, 

with the overall physical condition of the stream being good. The pH values are actually on the high side of 

those recommended for aquatic life (6.5 - 8.5). The elevated pH values are probably the result of the 

interaction of the stream with the material that composes the stream channel and banks. It may also be 

influenced by the pH of ground-water that discharges into the stream. 

5.0 WATER-QUALITY SAMPLING 

Water-quality samples were collected monthly through October at the three main monitoring 

locations: Anaconda Mine drain, French Coulee Mine drain, and Upper Box Elder Creek. Both dissolved and 

total recoverable samples were collected, during most sample events. Samples were collected periodically 

from other surface water sites. Two of these sites are associated with what is referred to as the Highway Drain 

shown on figure 5.1. It is believed the majority of the water flow at this site is from a series of horizontal drill 

holes under U. S. Highway 87. Other surface water samples were collected from various locations on Belt 

Creek and at the flume located on Lower Box Elder Creek. 

Water quality samples were also collected twice from two domestic wells and a spring, while one 

sample from the town of Belt’s No. 2 well was collected. Dissolved and total recoverable samples were 

collected from these locations also. Appendix A contains analytical results of the samples collected. 

Note: Several sites (Anaconda Mine Drain and French Coulee Drain) had considerable precipitates form during the digestion 
procedure for total recoverable analysis, which possibly resulted in these concentrations being less than dissolved. 

5.1.1 Anaconda Mine Drain Water Quality 

Altogether, nine water-quality samples were collected and analyzed for common ions and trace metals 

at this site. Samples were collected at the same location where the continuous monitoring-multiparameter 

probes were located. 

The water quality from this site is similar to other acid mine discharges in the Great Falls coal field, 

with low pH and high concentrations of iron, aluminum, and sulfate. The water is an iron calcium-sulfate type 

(FeCa-SO4). This type water is unusual and typifies acid mine drainage.  Little or no arsenic, copper, or lead 
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was detected in any of the samples from this site. Metals that were elevated above normal-background 

conditions were aluminum, cadmium, cobalt, iron, and zinc. Sulfate was the only elevated anion. 

Due to the acidic nature of the water, close to 100 percent of the metals are in the dissolved form. 

Water quality results showed very little variation throughout the year. Figures 5.2, 5.3, and 5.4 show 

concentrations of both dissolved and total recoverable calcium, iron, and zinc for the various sample events. 

While the dissolved and total recoverable concentrations are very similar, there is one exception, that being 

the August sample event when total recoverable concentrations are double the dissolved concentrations. 

5.1.2 French Coulee Mine Drain Water Quality 

Nine water-quality samples were collected from this site also, for common ions and trace metals.  All 

9 samples were collected near the discharge pipe after flowing underneath the railroad tracks. 

This water is an iron calcium-sulfate type (FeCa-SO4), also. However, the percent iron is almost 50 

percent greater than that of the Anaconda Mine discharge. The water is acidic with the sulfate concentrations 

twice that of the Anaconda Mine water. Iron and sulfate concentrations are five-fold those of the Anaconda 

Mine discharge, however, the discharge is only about 6 percent of the Anaconda, which results in a much 

lower loading rate to surface sources. This water has elevated concentrations of aluminum, arsenic, cadmium, 

and chromium. Zinc concentrations exceed those recommended for aquatic life. Results of all the sample 

events are contained in Appendix A, while Table 5.1 lists what parameters are exceeded. 

Drinking Water 
Primary/Secondary Standard 

Aquatic Life 
Acute/Chronic Standard 

Aluminum Yes Yes 

Arsenic Yes No 

Cadmium Yes Yes 

Chromium Yes No 

Copper No Yes 

Iron Yes Yes 

Manganese Yes -

Zinc Yes Yes 

Table 5.1. French Coulee Mine discharge with one or more values in excess of drinking water and/or aquatic 
life standards. 
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Dissolved and total recoverable concentrations were similar, however, there appears to be some 

seasonal variation of some constituents. Figures 5.5, 5.6, and 5.7 show dissolved and total recoverable 

concentrations for calcium, iron, and zinc. Concentrations decreased through the spring and early-summer 

before rising again throughout late-summer and fall. 

5.1.3 Upper Box Elder Creek Water Quality 

Nine water-quality samples were collected for dissolved and total recoverable major ions and trace 

metal analysis at this site also. The water at this site is predominantly a calcium-bicarbonate type (Ca-HCO3). 

Iron exceeds water-quality standards about 40 percent of the time, however, its concentrations are orders of 

magnitude lower than those from the Anaconda Mine and French Coulee Mine drains. From the physical 

parameters (i.e. pH, SC) to trace metals, the water quality at this site is much different than either the 

Anaconda or French Coulee sites. Water-quality results for this site are summarized in Appendix A. 

5.1.4 Lower Box Elder Creek Water Quality 

Water-quality samples were collected at the location of the lower flume on Box Elder Creek. The creek 

channel was dry from mid-June through the remainder of the year. Therefore, only two sets of samples were 

collected. 

The water type at this location is a calcium-bicarbonate (Ca-HCO3) with water-quality concentrations 

similar to those at the upper flume. 

5.1.5 Highway Drain and Highway Drain Seep Water Quality 

Water-quality samples were collected on a similar schedule as that of the three main sample sites, with 

one exception being the water coming from the highway drains (horizontal wells). This small seep emanating 

from a corroded culvert on the south bank was sampled during the summer sampling events only. 

Water from the Highway Drain varies in water type between a magnesium calcium-bicarbonate 

60




M
on

ta
na

 B
ur

ea
u 

of
 M

in
es

 a
nd

 G
eo

lo
gy

Fr
en

ch
 C

ou
le

e 
M

in
e 

D
ra

in
B

el
t, 

M
T 

35
0 

Cal ci um Concentrati on (m g/ L) 

30
0

25
0

20
0

15
0

10
0 50 0 

D
is

so
l

l
ve

d
 

To
ta

 R
ec

 

01
/2

9/
03

 
03

/1
5/

03
 

04
/2

2/
03

 
05

/2
8/

03
 

06
/1

7/
03

 
07

/1
7/

03
 

08
/1

9/
03

 
09

/1
8/

03
 

10
/2

3/
03

 

S
 a 

m
 p

le
 D

a t
e 

Fi
gu

re
 5

.5
 

Fr
en

ch
 C

ou
le

e 
dr

ai
n 

di
ss

ol
ve

d 
an

d 
to

ta
l r

ec
ov

er
ab

le
 c

al
ci

um
 c

on
ce

nt
ra

tio
n.

 

61




M
on

ta
na

 B
ur

ea
u 

of
 M

in
es

 a
nd

 G
eo

lo
gy

Fr
en

ch
 C

ou
le

e 
M

in
e 

D
ra

in
B

el
t, 

M
T 

62


I ron Concentrati on (m g/ L) 

1,
40

0 

1,
20

0 

1,
00

0 

80
0 

60
0 

40
0 

20
0 0 

l
l

D
is

 s 
o

ve
d 

To
ta

 R
ec

 

01
/2

9/
03

 
03

/1
5/

03
 

04
/2

2/
03

 
05

/2
8/

03
 

06
/1

7/
03

 
07

/1
7/

03
 

08
/1

9/
03

 
09

/1
8/

03
 

10
/2

3/
03

 

S
a m

pl
e 

D
at

e 

Fi
gu

re
 5

.6
 

Fr
en

ch
 C

ou
le

e 
dr

ai
n 

di
ss

ol
ve

d 
an

d 
to

ta
l r

ec
ov

er
ab

le
 ir

on
 c

on
ce

nt
ra

tio
n.

 



M
on

ta
na

 B
ur

ea
u 

of
 M

in
es

 a
nd

 G
eo

lo
gy

Fr
en

ch
 C

ou
le

e 
M

in
e 

D
ra

in
B

el
t, 

M
T 

Zi n c Concen trati o n (ug/L) 

7,
00

0 

6,
00

0 

5,
00

0 

4,
00

0 

3,
00

0 

2,
00

0 

1,
00

0 0 
01

/2
9/

03
 

03
/1

5/
03

 
04

/2
2/

03
 

05
/2

8/
03

 
06

/1
7/

03
 

07
/1

7/
03

 
08

/1
9/

03
 

09
/1

8/
03

 
10

/2
3/

03
 

D
is

so
l

l
ve

d
 

To
ta

 R
ec

 

S
a m

 p
le

 D
a t

e 

Fi
gu

re
 5

.7
 

Fr
en

ch
 C

ou
le

e 
dr

ai
n 

di
ss

ol
ve

d 
an

d 
to

ta
l r

ec
ov

er
ab

le
 z

in
c 

co
nc

en
tra

tio
n.

 

63




(MgCa-HCO3) to a magnesium calcium-sulfate (MgCa-SO4). Iron and manganese are the only parameters 

that exceed any water-quality standards. It should be noted that samples at this site were collected below 

where the water discharges from the Highway Drain seep. Therefore, flow from the seep can have 

considerable impact on both water type and concentrations, especially as flows in the drain decline. 

The Highway Drain seep has a magnesium-sulfate (Mg-SO4) water type, with elevated concentrations 

of sulfate. Concentrations of major cations, chloride, and sulfate are much higher at this site than those from 

the Highway Drain, itself. Copies of water-quality results are contained in Appendix A. 

5.2 Ground-Water Water Quality 

Water-quality samples were collected from three wells — those being the town of Belt’s No. 1 well 

(also known as the creek well) which is completed in the Madison Limestone; the Larson Ranch well 

completed in the shallow alluvium adjacent to Box Elder Creek; and the Harris Ranch well which is completed 

in the Kootenai Formation. Table 5.2 has the well depths, aquifer, and water type for these three sites. 

Well Name 
Total Depth 

(ft) Aquifer Water Type 

Belt No. 1 430 Madison calcium-bicarbonate 

Larson Ranch 32 Alluvium calcium-bicarbonate 

Harris Ranch 200 Kootenai calcium-bicarbonate 

Harris Spring - magnesium-bicarbonate 

Table 5.2 Ground-water sample sites, aquifer and water-type summary 

5.2.1 Ground-Water Isotope Data 

Limited isotope data were collected for selected monitoring sites during periodic sample events. 

Samples were collected and analyzed primarily for tritium with several sample sets  collected for both oxygen 

and deuterium. The primary reasons for collecting isotope data were for age-dating of sample water and 

identification of potential markers of source water recharging or discharging from the mine workings. Appendix 
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B contains results of isotope sampling. 

Tritium is one method used for age-dating water. The age is based upon the decay of tritium 

concentrations in the atmosphere from atmospheric testing of nuclear bombs in the 1950's and 1960's. Table 

5.3 lists tritium concentration and age of water based upon a linear interpretation of data contained in Hendry, 

1988. 

Tritium Concentration 
(Tu) Age Interpretation (modified from Hendry, 1988)  

>38 Average ground-water likely recharged during peak of thermo-nuclear 
testing between 1960-1965 

4 - 38 Average ground water less than 50 years old 

1 - 4 Average ground-water less than 35 years old 

<1, >0.1 Average ground-water older than 45 years old 

<0.1 Average ground-water older than 65 years old 

Table 5.3. Tritium concentrations and related age of water 

All of the tritium samples for the Belt sites fall within the 4 - 38 Tu concentration range, meaning the 

source of the water is less than 50 years old. The lowest Tu concentrations were in the Harris well, followed 

by the two town of Belt wells, while the highest concentrations were in Highway Drain seep and Highway 

Drain. What is interesting about these concentrations are those found in the two town wells, which are 

completed into the Madison Limestone at depths between 370 and 430 feet below ground surface. 

The Madison Formation receives most of its recharge in the Little Belt Mountains to the southeast. 

The Madison is well known for its good water quality and abundant yield. Giant Springs in Great Falls, 

discharges from the Madison at flows in excess of 130,000 gpm, making it one of the larger springs in the 

country (Patton, 1996). For decades, it has been believed that the water in the Madison was very old 

(perhaps hundreds of years), but the results of the tritium samples collected from the two town wells indicate 

otherwise. This indicates that the Madison receives substantial recharge of younger water from the overlying 

aquifers. The cross sections shown on Plate 1, indicate the absence of the Big Snowy Group which 

separates the Kootenai, Morrison, and Swift Formations from the Madison to the south. This allows younger 
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water in the upper formations to move downward, recharging the Madison in this area. The difference in 

water-level elevations in the Belt area indicate a downward gradient from the Kootenai into the Madison. 

6.0 MULTI-SPECTRAL ANALYSIS

            Multi-spectral analysis was used to identify possible surface water infiltration and other environmental 

factors contributing to the acid mine drainage problem in the Belt study area.  Satellite images in various 

formats, were acquired and ENVI 3.5 software, by Research Systems Inc., was used to process and analyze 

the satellite data. The images used in the analysis were Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) used for viewing the study area in detail, Land Satellite Multispectral 

Scanner ( LandSat MSS) for change detection over three decades, Land Satellite 7 Enhanced Thermatic 

Mapper Plus ( LandSat 7 ETM+) for change detection over a growing season and for thermal analysis.

 The uses of these different formats are discussed in the following sections. 

6.1 ASTER Image 

       The ASTER image used in this study provides a detailed view of the study area because of its 15 

meter resolution in the visible bands. It was used to provide an infrared image for various maps of the study 

area (figure 3.4). If an area of interest was identified using one of the other formats, a more detailed look at 

the area with the ASTER image was possible. At the time of the study, only one image of the area was 

available from National Aeronautics and Space Administration (NASA), so any change detection using this 

format was not possible. 

The ASTER data also provide the best image for terrain analysis and for draping of a Digital Elevation 

Model (DEM) to perform 3-D imaging. In figure 6.1, Maximum Curvature, a topographical modeling 

procedure, was used on the DEM of the area.  This procedure highlights the drainage network in the study 
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area. This image shows some interesting patterns that may show a southwest-northeast trending fault line, 

reported to be located at the north boundary of the mine. 

6.2 Land Sat MSS

            Land Sat MSS data were used to detect any changes over the past three decades. Using these 

images, a comparison of changes in land use and vegetation growth was possible, to determine if they had 

any affect on the study area. 

The Normalized Difference Vegetation Index (NDVI) (figure 6.2) was used to determine the areas of 

the healthiest vegetation in all three of the images. The NDVI is a ratio that shows the healthiest vegetation 

in red. The comparison of the images shows a change in patterns in the land use over the mine. The pattern 

in the 70’s image shows row crops in the west side of the mine, and the same area is fallow in the 90’s 

image.

            LandSat MSS images are the best for change detection due to the available images dating to the 

1970’s, but lack the resolution (80 meters) to see detail. 

6.3 Land Sat ETM+

            Land Sat ETM+ data were used in the change detection over a growing season and for spring 

detection. The three images used were dated May, July and November of 2002. The November image was 

used because the images in the early fall were of poor quality. 

With these images, a tasseled cap analysis (figure 6.3) was used to see changes in vegetation growth 

and determine if there were areas where vegetation appeared earlier and remained longer in the growing 

season that may show the location of springs or other areas of mine drainage. The analysis showed that 

vegetation started earlier in the spring and lasted longer in the fall in the areas of known ground-water 

discharge. 
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6.4 Thermal Image Analysis

            LandSat ETM+ thermal band was used to detect soil moisture in the study area (figure 6.4).  Using 

the thermal band 6, areas of moist soils appear cooler (light green) on the images. This analysis showed four 

moist areas (numbered in image) in and around the mine’s perimeter, three (area 2,3,4) that didn’t appear 

in any of the previous analysis. After looking at the orthophoto of the area, the moist areas were determined 

to be depressions on the surface, usually at the upper section of a drainage. 

6.5 Conclusion  

             From the analysis mentioned above, several features have been identified that could contribute to 

the AMD problem in the Belt area. From the change detection study with the LandSat MSS images, changes 

in land use can be seen that may contribute to surface water infiltration. 

             The analyses of the LandSat ETM+ images, vegetation appears earlier and remains later in and 

around the mine drainage areas. The analysis showed no new areas of AMD at this resolution.

              The thermal image analyses show that there are several depressions in and around the study area 

that hold moisture, which may contribute to surface water infiltration. Some of these depressions are near 

the fault line north of the mine perimeter. 

The spectral analysis of the Belt study area was done with images of 15 - 80 meter resolution. The 

acquisition of images with better resolution (0.5 - 5m) may allow for more detailed analysis of the study area. 

Further research into various formats such as from an airborne platform, Airborne Visible InfraRed Imaging 

Spectrometer (AVIRIS), or Airborne Imaging Spectrometer for Applications (ASIA) would help in the location, 

monitoring and remediation of the study area. 

The National Energy Technology Laboratory (NETL) has developed an airborne platform that uses 

thermal infrared imaging, Electro-Magnetic Conductivity and Total Field Magnetics to identify faults, acid mine 

drainage plumes and groundwater discharge zones. Appendix (C) shows the Abstract and Outline of this 

technique. 
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7.0 3-D MODEL DEVELOPMENT 

The 3-D modeling of the Belt area was created using ArcView 3.3 Software. Two extensions were 

also employed: 3-D Analyst and Spatial Analyst. With these extensions, data can be given an elevation value 

and viewed in simulated 3-D. This is valuable in order to visualize relationships between data that may not 

be apparent from a two dimensional map. 

This project involved the creation of several new sets of data and incorporating DEMs (digital 

elevation models), roads, streams, land use, and existing well data in the model. New geologic mapping at 

1:24,000-scale was completed and used in the model. Imagery in the form of digital ortho quarter 

quadrangles (DOQQs) and Tiffs were also used. A shapefile based upon a map from 1946 was created of 

the Anaconda Mine workings. A grid was created from known elevations of the workings and the shapefile 

was given the elevation values from this grid. The data from several coal exploration wells were converted 

into shape files. 

Other grids were created using well data from the Bureau’s GWIC database. These included a grid 

of the Madison Formation and the coal horizon. The elevations for the grids were extrapolated from the well 

data as well as known outcrop elevations. Both grids showed outcrops to the south and a gradual dip in a 

northerly direction. They also showed some anomalies in elevation (small peaks and valleys). 

Another grid was created using the static water level (SWL) of shallow wells in the area. 

In ArcView, these various layers can be turned on and off and viewed from many different angles. The 

views can be exported and saved as image files. The complete 3-D model is contained on the compact disk 

(CD) that accompanies this report. 

8.0 CONCLUSIONS AND RECOMMENDATIONS 

Through the course of the past several years, considerable information has been gained on the 

discharge of water from the Anaconda Mine drain and the local geology and hydrogeology. This study was 

intended to pull together all of the known geologic and hydrologic information for the area in a format that 

would enable an evaluation of what data gaps existed, so a workable solution could be found to solve the 
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acid mine drainage problem. The 3-D Model contained on the enclosed CD goes a long way towards this 

goal. In one graphic display, it is possible to visually see the relationship of the underground mine workings, 

geologic formations above and below the mine, as well as local water levels. 

An approximate estimate of the recharge area for the Anaconda Mine has been identified. Based 

upon gross estimates of recharge (assuming 10 percent of precipitation infiltrates), it is possible that up to 

0.5 cfs (225 gpm) is coming from the overlying Kootenai Formation. This quantity is sufficient to maintain the 

consistent discharge of 130 gpm coming from this site. However, the lack of seasonal changes in flow are 

unusual, as it would be expected that with the source of recharge being the overlying alluvial material and 

Kootenai Formation, the influence of snow melt and precipitation would be seen in flow variations. Likewise, 

an influence from the recent drought would be more noticeable. It is possible that the numerous springs in 

the drainages actually control ground-water recharge to the mine workings. That is, when increased 

precipitation occurs, the excess recharge is carried away by increased flows in the springs, leaving the 

amount of water entering the deeper system somewhat consistent. 

In order to fully define the recharge area and predominant flow patterns, additional monitoring wells 

are necessary. These wells will also help document the relationship in water levels between the alluvium, 

Kootenai and Madison Formations. Continued monitoring of discharges from the Anaconda Mine drain and 

French Coulee Mine drain are also necessary. 

In order to accomplish the project goals of identifying recharge to the mine workings, it is 

recommended that an additional 10 to 12 monitoring wells be installed at the locations shown on figure 8.1. 

Two or three multiple-depth wells will be installed at each location. These nested wells will be completed in 

the upper portion of the overlying Kootenai Formation, at a depth similar to that of the mine workings, and 

into the Madison Formation underneath the mine. Continuous water levels will be collected from each group 

of wells to determine response to precipitation events and vertical, as well as horizontal gradients. 

Continuous monitoring of the discharge from the Anaconda Mine should continue with the location 

moved closer to the actual discharge point, if possible. A flume should be installed in the French Coulee 
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Figure 8.1 Location of proposed monitoring wells. 
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drainage and flows monitored on a continuous basis. 

In addition to the above, measured discharge from springs in the area should be monitored to 

determine their flow response to precipitation and recharge events. Flow monitoring of the Box Elder Creek 

drainage should also continue. 

Water-quality monitoring and sampling would also be part of a continuing program. Water-quality 

samples should be collected from the newly installed monitoring wells, plus the key sites discussed in this 

study. 

The new information should then be included in the 3-D model which will help determine the methods 

necessary to mitigate the discharge of acidic mine water from the Anaconda Mine. These same practices 

can then be used at other abandoned coal mines with acid drainage problems throughout the Great Falls-

Lewistown coal fields. 
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APPENDIX  A 

Inorganic Water Quality Data 

Note: Due to laboratory practices during most of 2003 samples for total recoverable concentrations were run at 
a different time than samples for dissolved concentrations. This practice resulted in different equipment calibrations 
and resulted in total recoverable sample concentrations that were less than dissolved concentrations at several 
sites. This was especially apparent where concentrations were near instrument detection limits. Several sites 
(Anaconda Mine Drain and French Coulee Drain) had considerable precipitates form during the digestion 
procedure for total recoverable analysis, which possibly resulted in these concentrations being less than dissolved 
concentrations. 
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Appendix B 
Isotope Data 

Belt, MT Project 
Water Quality Results 

DATE TIME Lab No. Oxygen Deuterium Tritium Tritium 
(mm/dd/yy) (HRS) 18O TU Pico curies/L 

2H E3H 
Anaconda Mine Drain 

01/30/03 11:30 57350 14.2 44.7 
05/28/03 18:30 67115 -18.04 16.0 50.4 
07/17/03 17:45 67123 -18.22 16.0 50.4 
10/23/03 16:20 72794 -18.46 -146.49 12.9 40.6 

Mean -18.2 14.8 46.5 
Maximum -18.0 16.0 50.4 
Minimum -18.5 12.9 40.6 
Number 4 4 4 

French Coulee Drain 
01/29/03 14:00 57351 15.3 48.2 
05/28/03 18:00 67116 -17.98 19.5 61.4 
07/17/03 17:10 67124 -18.04 17.2 54.2 
10/23/03 15:50 72793 -18.28 -143.92 16.0 50.4 

Mean -18.1 17.0 53.5 
Maximum -18.0 19.5 61.4 
Minimum -18.3 15.3 48.2 
Number 4 4 4 

Highway Drain 
01/30/03 14:10 57352 26.0 81.9 
05/28/03 17:25 67117 -16.52 23.6 74.3 

Mean -16.5 24.8 78.1 
Maximum -16.5 26.0 81.9 
Minimum -16.5 23.6 74.3 
Number 2 2 2 

HWD-Seep 
07/17/03 14:15 67125 -17.36 31.9 100.5 

Mean -17.4 31.9 100.5 
Maximum -17.4 31.9 100.5 
Minimum -17.4 31.9 100.5 
Number 1 1 1 
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Appendix B 
Isotope Data 

Belt, MT Project 
Water Quality Results 

DATE TIME Lab No. Oxygen Deuterium Tritium Tritium 
(mm/dd/yy) (HRS) 18O TU Pico curies/L 

2H E3H 
Box Elder Creek, Harris Ranch 

01/29/03 16:15 57353 18.6 58.6 

Mean #DIV/0! 18.6 58.6 
Maximum 0.00 18.6 58.6 
Minimum 0.00 18.6 58.6 
Number 1 1 1 

Upper Box Elder Creek, Larson Ranch 
05/28/03 15:50 67119 -17.11 20.2 63.6 
07/17/03 11:20 67126 19.8 62.4 
10/23/03 11:15 72792 -16.88 -135.16 23.2 73.1 

Mean -17.0 -135.2 21.1 66.3 
Maximum -16.9 -135.2 23.2 73.1 
Minimum -17.1 -135.2 19.8 62.4 
Number 2 1 3 3 

Lower Box Elder Creek 
05/28/03 16:45 67118 -16.74 20.3 63.9 

Mean -16.7 20.3 63.9 
Maximum -16.7 20.3 63.9 
Minimum -16.7 20.3 63.9 
Number 1 1 1 

Belt Well #1, Creek Well 
06/05/03 15:15 67121 -18.67 13.1 41.3 
11/23/03 15:30 72795 -18.99 -145.62 12.2 38.4 

Mean -18.8 12.7 39.8 
Maximum -18.7 13.1 41.3 
Minimum -19.0 12.2 38.4 
Number 2 2 2 

Belt Well #2, Park Well 
11/23/03 15:45 72796 -19.04 -145.04 13.6 42.8 

Mean -19.0 -145.0 13.6 42.8 
Maximum -19.0 -145.0 13.6 42.8 
Minimum -19.0 -145.0 13.6 42.8 
Number 1 1 1 1 
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Appendix B 
Isotope Data 

Belt, MT Project 
Water Quality Results 

DATE TIME Lab No. Oxygen Deuterium Tritium Tritium 
(mm/dd/yy) (HRS) 18O TU Pico curies/L 

2H E3H 
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Appendix B 
Isotope Data 

Belt, MT Project 
Water Quality Results 

DATE TIME Lab No. Oxygen Deuterium Tritium Tritium 
(mm/dd/yy) (HRS) 18O TU Pico curies/L 

2H E3H 

Jim Larson Well 
06/05/03 13:40 67120 -16.99 18.1 57.0 
10/23/03 12:20 72791 -17.08 -136.06 16.8 52.9 

Mean -17.04 17.45 55.0 
Maximum -16.99 18.10 57.0 
Minimum -17.08 16.80 52.9 
Number 2 2 2 

John Harris Well 
08/19/03 13:20 68103 -18.59 -146.11 8.9 28.0 
10/23/03 13:20 72789 -18.60 -143.91 8.6 27.1 

Mean -18.60 -145.01 8.8 27.6 
Maximum -18.59 -143.91 8.9 28.0 
Minimum -18.60 -146.11 8.6 27.1 
Number 2 2 2 2 

John Harris Spring 
08/19/03 14:10 68104 -17.81 -141.67 14.2 44.72 
10/23/03 13:50 72790 -17.91 -142.48 13.6 42.83 

Mean -17.86 -142.08 13.90 43.8 
Maximum -17.81 -141.67 14.20 44.7 
Minimum -17.91 -142.48 13.60 42.8 
Number 2 2 2 2 

John Harris Pond 

Mean #DIV/0! #DIV/0! 
Maximum 0.00 0.0 
Minimum 0.00 0.0 
Number 0 0 
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Appendix B 
Isotope Data 

Belt, MT Project 
Water Quality Results 

DATE TIME Lab No. Oxygen Deuterium Tritium Tritium 
(mm/dd/yy) (HRS) 18O TU Pico curies/L 

2H E3H 
Belt Creek#2, above AMD 

07/17/03 18:45 67122 -17.94 13.2 41.6 
08/20/03 12:30 68105 -17.89 -136.32 13.0 40.9 

Mean -17.9 -136.3 13.1 41.3 
Maximum -17.9 -136.3 13.2 41.6 
Minimum -17.9 -136.3 13.0 40.9 
Number 2 2 2 2 

BC01 
08/27/03 10:50 68106 -17.46 -135.56 12.4 39.0 

Mean -17.5 -135.6 12.4 39.0 
Maximum -17.5 -135.6 12.4 39.0 
Minimum -17.5 -135.6 12.4 39.0 
Number 1 1 1 1 

BC02 
08/27/03 13:35 68107 -18.02 -138.19 11.60 36.53 

Mean -18.02 -138.19 11.60 36.53 
Maximum -18.02 -138.19 11.60 36.53 
Minimum -18.02 -138.19 11.60 36.53 
Number 1 1 1 1 

BC03 
08/27/03 19:35 68108 -17.83 -136.77 14.5 45.7 

Mean -17.83 -136.77 14.50 45.66 
Maximum -17.83 -136.77 14.50 45.66 
Minimum -17.83 -136.77 14.50 45.66 
Number 1 1 1 1 

B-5




APPENDIX C 

Abstract

 Use of Airborne Thermal Infrared Imaging, EM Conductivity, 

and Total Field Magnetics to Identify Faults, Acid Mine Drainage Plumes 


and Groundwater Discharge Zones


by


Richard W. Hammack

U.S. Department of Energy, National Energy Technology Laboratory


Pittsburgh, PA




The National Energy Technology Laboratory (NETL) has conducted airborne reconnaissance of large 

mined areas in California, West Virginia, Pennsylvania, Maryland, and Ohio using thermal infrared imaging, 

electromagnetic conductivity, and total field magnetics. The purpose of these surveys was to locate sites of 

groundwater discharge and to identify hydrologic features that affect the flow of contaminated groundwater. 

This information was then used to target selected areas for more detailed investigations. Although airborne 

surveys cost about $100/line-km, they are more cost effective than comparable ground-based surveys 

because data can be acquired from large areas in a minimum amount of time. Moreover, airborne surveys 

avoid land access issues that are problematic to ground-based surveys. A field study will be presented where 

airborne geophysics identified groundwater flow paths that were missed by a multimillion dollar network of 

groundwater monitoring wells. 

Thermal Infrared Imaging 

» Locates springs, seeps, and mine discharges 

» Acquired from aircraft platform 

» Night-time data collection during winter months 

Maximizes thermal contrast between surface and groundwater 

Temperature resolution - 0.1 degrees centigrade 

» Correction of imagery 

Aircraft attitude 

Topographic 

Polynomial stretching using ground control points 

» Examples 

Mine discharges 

Seeps and springs 

Cultural anomalies 

C-1 



EM Conductivity 

» Locate plumes of contaminated (conductive) groundwater 

» Locate alteration envelopes along fault zones 

» Acquired from helicopter platform (sling load) 

» Data processing 

Contoured data overlain on DOQQ or draped from a DEM 

Cross-sections using inverted conductivity data 

» Examples  

» Plume of contaminated groundwater 

» Faults 

» Sources of acidic groundwater 

Total Field Magnetics 

» Locates geologic contacts and faults 

» Acquired from aircraft platform 

» Detects differences in the abundance of magnetic minerals 

» Data processing 

Contoured data overlain on DOQQ or draped from a DEM 

» Examples 


» Lava flow


» Faults


Resistivity 

1. Locate mine subsidence "chimneys" 

2. Vertical grout distribution 

3. Ground 

4. Example 
C-2 



I77 Guernsey County, Ohio

            Using the techniques mentioned above, new areas of springs or AMD were not seen at the 

resolutions available.

            The infiltration of surface water into the mine and contributing to the AMD is inconclusive. The areas 

that were found using the thermal images don’t seem to hold much water and are virtually nonexistent in the 

dry season. 
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MBMG Open File 504, Plate 1 Cross Sections MONTANA BUREAU OF MINES AND GEOLOGY

Duaime and others, 2004 A Department of Montana Tech of The University of Montana


SOUTH 
A'A 

E
le

va
tio

n 
in

 m
et

er
s 

600 

700 

800 

900 

1000 

1200 

2000 

1900 

1800 

1700 

1600 

1500 

1400 

1300 

NORTH 

1100 

SOUTH 
B'B 

E
le

va
tio

n 
in

 m
et

er
s 

400 

500 

600 

700 

800 

900 

1000 

1200 

2200 

2100 

2000 

1900 

1800 

1700 

1600 

1500 

1400 

1300 

NORTH 

1100 

SOUTH 
C'C 

E
le

va
tio

n 
in

 m
et

er
s 

400 

500 

600 

700 

800 

900 

1000 

1200 

2100 

2000 

1900 

1800 

1700 

1600 

1500 

1400 

1300 

NORTH 

1100 

SOUTH 
D'

D 

E
le

va
tio

n 
in

 m
et

er
s 

500 

600 

700 

800 

900 

1000 

1200 

1700 

1600 

1500 

1400 

1300 

NORTH 

1100 

SOUTH 
E'E 

E
le

va
tio

n 
in

 m
et

er
s 

700 

800 

900 

1000 

1200 

1700 

1600 

1500 

1400 

1300 

F 

EAST 
F' 

WEST 
G 

EAST 
G' 

E
le

va
tio

n 
in

 m
et

er
s

800 

900 

1000 

1200 

1400 

1300 

E
le

va
tio

n 
in

 m
et

er
s

800 

900 

1000 

1200 

1400 

1300 

18
44

16
30

53
4

S
an

d 
C

ou
le

e 
C

re
ek

B
ox

 E
ld

er
 C

re
ek

 

S
an

d 
C

ou
le

e 
C

re
ek

B
ox

 E
ld

er
 C

re
ek

 

19
61

48

B
el

t C
re

ek
 

31
98

9

32
00

 
O

tte
r 

C
re

ek
 

B
el

t C
re

ek
 

NORTH 

1100 

WEST 

1100 

1100 

S
pr

in
g 

C
re

ek
 

35
91

7 

26
53

 

35
31

5 

12
29

57
 

16
78

65
 

34
62

4 

15
26

34

33
63

3 

33
61

6 

19
72

66
 

20
19

96

33
62

8

15
05

04

18
64

78

13
50

24
31

95
9

31
97

5 
31

98
9 

32
00

0 

13
27

66
 

20
18

78

20
47

17

12
34

77
 

19
61

48
 

30
53

3

30
53

4

14
26

61

16
41

61

18
02

11
 

18
44

16

B
' 

B
 

C
 

A
 

D
 

E
 

C
' 

A
' 

D
' 

E
' 

F
 

G
 

F
'

G
' 

MBMG Open File 504 

by 

Shawn Reddish, and Jon Reiten 
2004 

Maps may be obtained from 

Montana Bureau of Mines and Geology 

Phone: (406) 496-4167 Fax: (406) 496-4451 

Plate 1. Cross Sections A�E 

Reevaluation of the Hydrological System in the Vicinity 
of the Anaconda Mine at Belt, Cascade County, Montana 

Ted Duaime, Ken Sandau, Susan Vuke, Jay Hanson, 
Publications Office 

1300 West Park Street, Butte, Montana 59701-8997 

http://www.mbmg.mtech.edu 


	REEVALUATION of the HYDROLOGICAL SYSTEM

in the VICINITY of the ANACONDA MINE

at BELT, CASCADE COUNTY, MONTANA
	Table of Contents
	List of Figures
	List of Tables

	1.0 INTRODUCTION
	1.1 Description of Current Project
	1.2 Mine Development and Ownership
	1.3 Previous Site Work

	2.0 GEOLOGY
	2.1 Stratigraphy and Water-Bearing Units
	2.1.1 Pre-Jurassic Regional Structure
	2.1.2 Paleotopography of Jurassic Depositional Surface and Jurassic Erosion
	2.1.3 Great Falls Tectonic Zone Structures

	2.2 Influence of Sweetgrass Arch

	3.0 REGIONAL HYDROGEOLOGY
	3.1 Well Inventory
	3.2 Recharge to the Anaconda Mine

	4.0 HYDROLOGIC MONITORING ACTIVITIES
	4.1 Flow Monitoring
	4.1.1 Anaconda Mine Drain
	4.1.2 Box Elder Creek
	4.1.2.1 Upper Box Elder Creek Flume
	4.1.2.2 Lower Box Elder Creek Flume
	4.1.2.3 French Coulee Mine Drain


	4.2 Physical Parameter Monitoring
	4.2.1 Anaconda Mine Drain Monitoring
	4.2.2 French Coulee Mine Drain Monitoring
	4.2.3 Box Elder Creek Monitoring The multi-parameter probe at this
	4.2.4 Summary of Physical Parameter Monitoring


	5.0 WATER-QUALITY SAMPLING
	5.1.1 Anaconda Mine Drain Water Quality
	5.1.2 French Coulee Mine Drain Water Quality
	5.1.3 Upper Box Elder Creek Water Quality
	5.1.4 Lower Box Elder Creek Water Quality
	5.1.5 Highway Drain and Highway Drain Seep Water Quality
	5.2 Ground-Water Water Quality
	5.2.1 Ground-Water Isotope Data


	6.0 MULTI-SPECTRAL ANALYSIS
	6.1 ASTER Image
	6.2 Land Sat MSS
	6.3 Land Sat ETM+
	6.4 Thermal Image Analysis
	6.5 Conclusion

	7.0 3-D MODEL DEVELOPMENT
	8.0 CONCLUSIONS AND RECOMMENDATIONS
	References Cited and Selected Bibliography
	APPENDIX A
	APPENDIX B
	APPENDIX C


