Spring Inventory and Other Water Data, Custer National Forest—Ashland Ranger District, Montana

By

Teresa A. Donato John R. Wheaton

Montana Bureau of Mines and Geology

Produced in cooperation with the U. S. Department of Agriculture Forest Service Custer National Forest

Contents

Introduction	1
Acknowledgements	1
Geology	2
Field Procedures	4
Database	4
Spring Hydrology	6
Vulnerability to Development	
Ongoing Work	8
References	
References	9

Figures

1.	Axis of the Powder River Basin	.3
2.	Site location system	.5

Appendices

A	Bibliography	for Ashland	Ranger	District	and ad	jacent	lands
---	--------------	-------------	--------	----------	--------	--------	-------

- B Spring inventory data for the Ashland Ranger District, 2002 and 2003
- C Well inventory data for the Ashland Ranger District, 2002 and 2003
- D Additional field-water-quality data for selected springs on the Ashland Ranger District, 2002 and 2003
- E Site descriptions for wells and springs inventoried on the Ashland Ranger District, 2002 and 2003
- F Photographs of springs inventoried on the Ashland Ranger District, 2002 and 2003 (Electronic copy only)
- G Regular ground-water monitoring sites on the Ashland Ranger District
- H Spring and well data on file for the Ashland Ranger District for sites not inventoried during 2002 2003

Plate

1. Map of hydrologic features on the Ashland Ranger District, Custer National Forest

Spring Inventory and Other Water Data, Custer National Forest—Ashland Ranger District, Montana

Introduction

Production of coalbed methane (CBM) began in Montana during 1998 in the Squirrel Creek drainage near Decker. The potential for CBM production covers portions of southeastern Montana, including the Ashland Ranger District, Custer National Forest (Van Voast, 2001). Due to the quantity and quality of water released, the development of CBM resources can have a significant impact on ground and surface water resources. The objective of this study is to provide information to the USDA Forest Service that can be used in decision-making processes concerning hydrologic issues related to CBM development on the Custer National Forest.

The Custer National Forest—Ashland Ranger District (District) is located in southeastern Montana. The area within the District boundary is comprised of approximately 435,000 acres. Ashland, located near the west-central boundary of the Forest, is the nearest community with available services and is the site of the Ashland Ranger District Headquarters. Coal deposits within the District have been used locally since the time the area was first settled. Currently there is no commercial coal mining within the District. The potential exists for future development of coal resources either on, or adjacent to the District, for solid fuel or coalbed methane.

Acknowledgments

Appreciation is extended for assistance and support that were received during this project. Many landowners adjacent to the Ashland Ranger District allowed welcome access across their property. The USDA Forest Service, Custer National Forest and the Montana Bureau of Mines and Geology provided financial, logistical and operational support; the hospitality of the staff at Fort Howes was especially appreciated. Dan Stanley and Jody Larned provided valuable guidance and quality control on the computer

databases, as well as making suggestions on the text. Wayne Van Voast assigned the geologic associations and susceptibility ratings for the springs, based on coal data and his numerous years of experience in the Powder River Basin.

Geology

The area encompassing the Custer National Forest near Ashland is underlain by non-marine sedimentary rocks of the Paleocene Fort Union Formation. The District is near the northern edge of the Powder River Basin, a southward-plunging regional syncline -that extends from near Miles City, Montana southward into east-central Wyoming. It is bounded on the west by the Big Horn uplift, on the east by the Black Hills uplift, and on the north by the Miles City Arch. The axis of the Powder River Basin is west of the District and roughly parallels the Tongue River (Figure 1). A gentle, asymmetrical northeast-plunging syncline of local extent defines the structure of the project area. In most places the sedimentary beds are nearly flat lying. Regionally the topographic slope is downward toward the north; this beveling across the southwardplunging Powder River Basin results in the older rocks being exposed at the north end of the basin, and becoming progressively younger to the south.

Most outcrops in the area are inter-bedded pale-yellow to gray sandstone and mudstone, coalbeds, and carbonaceous shale of the Tongue River member of the Fort Union Formation. Much of the near-surface coal has been burned by natural causes. The burning of the coal has baked and thermally metamorphosed overlying sediments, forming clinker beds of variable thickness. The orange-red clinker beds often form prominent cliff faces and are used as stratigraphic marker horizons for the surface mapping of coal. Overlying the Fort Union Formation, in the southwest corner of the District, are sandstone and mudstone units of the Eocene Wasatch Formation.

The coalbeds in the area have been mapped and studied by investigators from the U. S. Geological Survey and Montana Bureau of Mines and Geology. A bibliography of applicable publications is provided in Appendix A. Strippable coal resources in southeastern Montana total more than 32,000,000,000 tons (Matson and Blumer, 1973). These reserves are contained in 27 separately defined and mapped units. In some areas

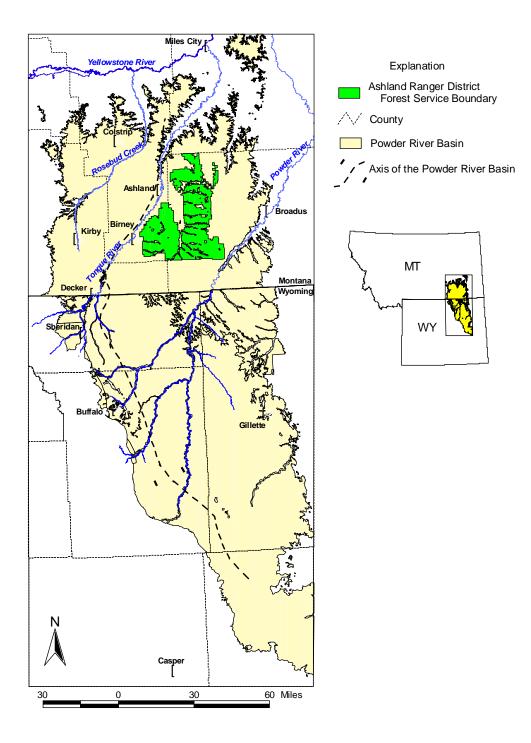


Figure 1. Map shows the axis of the Powder River Basin and the location of the Ashland Ranger District.

the correlations between these coal units have been well defined by previous investigators. In other areas the correlation is ambiguous at best. The lowest exposed principle coal bed in the District is the Knobloch and the upper-most is the Anderson. The intervening section is approximately 1,000 feet thick (Heffrin and others, 1993).

Field Procedures

An inventory of springs and wells within the District boundary began in 2002 and continued through July, 2003. Probable spring and well locations were first determined from USGS 1:24,000 topographic quadrangle maps, the USDA Forest Service 1:126,720 Custer National Forest Ashland Ranger District map, and Bureau of Land Management (BLM) 1:100,000 Surface Management Status topographic maps. In addition, the District provided locations of springs and wells previously inventoried by Forest Service personnel. Each site was visited and, where possible, physical and chemical attributes were measured and noted. Spring discharge rates were determined by the bucketstopwatch (volumetric) method and, where flow was observed, specific conductance and temperature were measured using hand-held field meters. In addition, on approximately half of the springs with measurable flow, the pH and oxidation-reduction potential (ORP) were determined. On a few selected springs field determinations of total iron and ferrous iron were made using a portable spectrophotometer, and field titration for hardness and alkalinity was performed. Latitude and longitude coordinates were obtained for each site using GPS units, and a photographic point of the site was established and photograph taken. The area surrounding the site was inspected and notes were made on geologic associations and the nature and condition of any development.

Database

Hydrogeologic data for the District are presented in one plate with five appendices, and are stored in the Montana Ground-Water Information Center (GWIC) database (http://mbmggwic.mtech.edu/). A GIS compilation of spring and well locations, geology, clinker outcrops, forest boundary, roads, and drainages is shown on Plate 1. Appendices B, C, D, E and F contain data collected during the 2002 and 2003 field

seasons. The physical and chemical attributes of the springs and catchments, including conditions to assess vulnerability to mining or gas development, are in Appendix B; data for the inventoried wells are in Appendix C; and an abbreviated list of springs for which more detailed field chemical analysis was performed is in Appendix D. Short descriptions of the spring and well sites and other comments from field visits are in Appendix E. Photographs of sites are in Appendix F as electronic files; file names correspond to the matching GWIC site number. Sites that have been identified for long-term monitoring are listed in Appendix G. Sites on-file in GWIC but not confirmed by field inventories are in Appendix H. These sites were not found due to poor location information or are not located on Forest Service land.

Locations for sites are recorded by latitude and longitude, and by township, range, section and tract. Tracts are identified by the letters A, B, C, and D, with A being the northeast quarter section and continuing counterclockwise so that D is the southeast quarter. Quarter sections are designated first, quarter-quarter sections second, and so forth. It is important to note that the location system used here is reversed from that commonly used by land surveyors; here, the letter designations begin with the largest quarter and progress to smaller ones. With the quarter-quarter system used by surveyors, the tract designation DABC would be read backwards as the southwest quarter, of the northwest quarter, of the northeast quarter, of the southeast quarter (Figure 2).

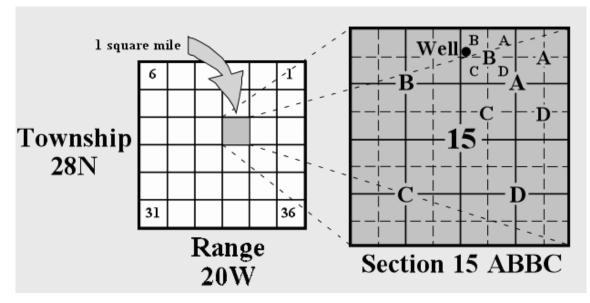


Figure 2. Site location system.

Spring Hydrology

Springs typically issue from clinker beds, sandstones and coalbeds near their contacts with confining underlying mudstone or shale units. In valleys the sources of springs are commonly obscured by alluvial or colluvial deposits. The District contains some of the highest elevations in the Powder River Basin, and is most likely the local recharge region for many of the area springs. However, some of the more persistent springs in the area may be the result of ground water migrating some distance along regional flow paths that intersect the surface where the beds are exposed by erosion.

A total of 409 springs, 21 wells and 2 man-made catchments were visited and inventoried (Appendices B and C). Of the 409 springs, 286 had measurable discharge. Discharge rates ranged from 0.01 to 15 gallons per minute. A total of 62 springs had a discharge rate of 1 gallon per minute or greater. Specific conductance values ranged from 245 μ mhos/cm@25C to 6,242 μ mhos/cm@25C and pH values ranged from 6.25 to 8.97. Oxidation-reduction potential (ORP) was measured at 153 springs and ranged from –147 to +201 millivolts.

Those springs with the lowest total dissolved solid (TDS) contents (as indicated by low specific-conductance values) are usually associated with clinker beds high in the stratigraphic section. Regionally, ground water in the Powder River Basin has a moderate TDS content and is chemically very soft. Therefore, those springs having TDS values of about 1,500 to 2,000 milligrams per liter, and Ca plus Mg hardness values less than about 100 milligrams per liter may represent springs that have the longest flow paths from recharge areas, perhaps of regional scale.

Thirty-one samples were analyzed for total iron (Fe) and ferrous iron (Fe+2) (Appendix D). The values ranged from 0.01 to 3.9 mg/L Fe and <0.01 to 2.64 mg/L Fe+2. Of those analyzed for iron, only one spring (USFS 138) had a total iron budget represented as the ferrous ion (reduced species). This spring also recorded the lowest ORP value (-147mV). Twenty-seven samples were analyzed for alkalinity (Appendix D). The values ranged from 178 to 966 mg/L as CaCO₃. Total hardness, Ca hardness and Mg hardness were determined for 27 samples by sequential titration. Total hardness values ranged from 112 to 1,060 mg/L as CaCO₃; Ca hardness ranged from 112 to 740 mg/L as

 $CaCO_{3}$; and Mg hardness ranged from <1 to 320 mg/L as $CaCO_{3}$. Twenty-one wells located in the District (Appendix C) were visited. If a well was pumping and a discharge point close to the wellhead was accessible, field parameters were collected. If it was clear that the well had not been used for some time, and the wellhead was accessible, a static water level was obtained.

Vulnerability to Development

Of special note on Appendix B are judgments of possible source coalbeds, based on Matson and Blumer (1973) and Van Voast and Thale (2001), and estimated proximities of recharge for each spring. These will be key indicators of spring-flow vulnerability to developments of mining or coalbed methane production. Both types of development are known to disrupt ground-water flow, but differing conditions of topography and geology characteristic of each type can create differing impacts.

In the case of mining, springs having local sources of recharge may be the most vulnerable to nearby development, while those fed by more regional recharge may be in less danger. Coal mines operate in areas of least overburden and would be comparatively local developments in the rugged terrain of the Ashland Ranger District. Regional flows characterize deeper aquifers farther from the outcrop areas that are attractive to mining.

In the case of coalbed methane development, springs fed by the regional flow system will be the most vulnerable. Methane does not occur in local flow systems because of the attendant oxidizing conditions and presence of sulfate. Gas production will be more remote from recharge areas, tapping deeper aquifers where chemical-<u>ly</u>reducing conditions encourage the stability and growth of methanogenic bacteria. In the Powder River Basin of Montana these conditions are optimum in Townships 8 and 9 South (Van Voast and Thale, 2001) which are south of the District boundary, and only moderate in Township 7 South (see Plate). Development that may impact District springs is most likely to occur south of the District, and to a somewhat lesser degree along its southernmost extreme. Of the more-than-400 springs inventoried in this investigation (Appendix B), 24 are judged to have some level of vulnerability to coalbed methane development through geologic associations, topographic conditions, and positions in the regional ground-water flow system.

Ongoing Work

The data collected during the study are being further evaluated and compared to data from the surrounding region. Information obtained from this evaluation will be used to help refine the sources determined for ground water issuing from the springs, develop a hydrologic model for the District and surrounding areas, and make recommendations for future studies. Flow measurements and field parameters from approximately 20 spring sites are being obtained on a monthly basis as part of a basin-wide long-term monitoring program. This information will be used to narrow the final population of springs selected for more extensive chemical analysis and long-term monitoring.

References

- Heffern, E.L., Coates, D.A., Whiteman, J., Ellis, M.S., 1993, Geologic map showing distribution of clinker in the Tertiary Fort Union and Wasatch Formations, Northern Powder River basin, Montana: U. S. Geological Survey Coal Investigation Map C-142, I plate, 1:175,000.
- Matson, R.E., and Blumer, J.W., 1973, Quality and reserves of strippable coal, selected deposits, southeastern Montana: Montana Bureau of Mines and Geology Bulletin 91, 135 pages.
- Van Voast, W., Thale, P., 2001, Anderson and Knobloch coal horizons and potential for methane development, Powder River Basin, Montana: Montana Bureau of Mines and Geology Geological Map 60, 1 plate, 1:250,000.

Appendix A–Bibliography for Ashland Ranger District and Adjacent Lands

- Affolter, R.H., Hatch, J.R., McKay, E.J. 1979, Chemical analyses of coal from the Knobloch and Flowers-Goodale coal beds, Tongue River Member of the Fort Union Formation, Otter Creek EMRIA study area, Powder River County, Montana: U. S. Geological Survey Open-File Report 79-859, 43 pages.
- Bass, N. W. 1932, The Ashland Coal Field, Rosebud, Powder River, and Custer Counties, Montana: U. S. Geological Survey Bulletin 831-B, 105 pages.
- Biewick, Laura R., 1994, Maps and diagrams showing thickness and morphology of the Paleocene Canyon Coal Bed in the northern Powder River basin, western part of the Broadus 30' x 60' Quadrangle, Montana and Wyoming. U. S. Geological Survey Coal Map 143-A, 2 sheets.
- Biewick, Laura R., McLellan, Marguerite W., 1990, Isopach maps, perspective projections, and correlation diagrams of the Paleocene Flowers-Goodale coal resource unit in the northern Powder River basin, Birney and Broadus 30' x 60' quadrangles, Montana-Wyoming. U. S. Geological Survey Coal Map 136-A
- BLM, 1975, Resource and Potential Reclamation Evaluation Otter Creek Study Site EMRIA Report No. 1 1975: U. S. Bureau of Land Management EMRIA Report 1.
- Bryson, R. P., Bass, N. W., 1973, Geology of Moorhead coal field, Powder River, Big Horn, and Rosebud counties, Montana. U. S. Geological Survey Bulletin 1338, 116 pages.
- Cannon, M.R., 1982, Potential Effects of Surface Coal Mining on the Hydrology of the Cook Creek Area, Ashland Coal Field, Southeastern Montana: U. S. Geological Survey Open-File Report 82-681, 30 pages.
- Cannon, M.R., 1983, Potential Effects of Surface Coal Mining on the Hydrology of the Snider Creek Area, Rosebud and Ashland Coal Fields, Southeastern Montana: U.
 S. Geological Survey Water Resources Investigation 82-4051, 28 pages.
- Cannon, M.R., 1985, Effects of Potential Surface Coal Mining on Dissolved Solids in Otter Creek and in the Otter Creek Alluvial Aquifer, Southeastern Montana: U. S. Geological Survey Water Resources Investigation 85-4206, 52 pages.
- Colorado School of Mines, 1978, Coal resource occurrence and coal development potential maps of the Fourmile Creek Quadrangle, Custer County, Montana. U. S. Geological Survey Open-File Report 78-640, 7 maps.

- Colorado School of Mines, 1978, Coal resource occurrence and coal development potential maps of the Hammond Draw NW Quadrangle, Rosebud County, Montana. U. S. Geological Survey Open-File Report 78-645, 9 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Ashland NE Quadrangle, Rosebud County, Montana. U. S. Geological Survey Open-File Report 79-1, 18 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Brandenberg Quadrangle, Rosebud and Powder River counties, Montana. U. S. Geological Survey Open-File Report 79-4, 12 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Foster Creek School quadrangle, Custer and Powder River Counties, Montana. U. S. Geological Survey Open-File Report 79-9, 13 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Hammond Draw Quadrangle, Rosebud County, Montana. U. S. Geological Survey Open-File Report 79-11, 15 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Hammond Draw SW Quadrangle, Rosebud County, Montana. U. S. Geological Survey Open-File Report 79-12, 15 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Hayes Point Quadrangle, Custer and Powder River counties, Montana. U. S. Geological Survey Open-File Report 79-13, 15 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the North Stacey School Quadrangle, Custer and Powder River counties, Montana. U. S. Geological Survey Open-File Report 79-16, 21 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Rough Draw Quadrangle, Rosebud County, Montana. U. S. Geological Survey Open-File Report 79-17, 21 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Beaver Creek School quadrangle Powder River County, Montana. U. S. Geological Survey Open-File Report 79-79, 30 maps.
- Colorado School of Mines, 1980, Coal resource occurrence and coal development potential maps of the Birney Day School quadrangle Rosebud County, Montana. U. S. Geological Survey Open-File Report 79-80, 33 maps.

- Colorado School of Mines, 1980, Coal resource occurrence and coal development potential maps of the Coleman Draw quadrangle Powder River County, Montana. U. S. Geological Survey Open-File Report 79-83, 30 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Cook Creek Reservoir quadrangle Powder River and Rosebud Counties, Montana. U. S. Geological Survey Open-File Report 79-84, 34 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Elk Ridge quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-85, 18 maps.
- Colorado School of Mines, 1980, Coal resource occurrence and coal development potential maps of the Goodspeed Butte quadrangle Powder River County, Montana. U. S. Geological Survey Open-File Report 79-88, 36 maps.
- Colorado School of Mines, 1980, Coal resource occurrence and coal development potential maps of the Green Creek quadrangle Rosebud County, Montana. U. S. Geological Survey Open-File Report 79-89, 36 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Hodsdon Flats quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-90, 36 maps.
- Colorado School of Mines, 1980, Coal resource occurrence and coal development potential maps of the Home Creek Butte quadrangle Powder River County, Montana. U. S. Geological Survey Open-File Report 79-91, 34 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the King Mountain quadrangle Powder River and Rosebud Counties, Montana. U. S. Geological Survey Open-File Report 79-92, 37 maps.
- Colorado School of Mines, 1980, Coal resource occurrence and coal development potential maps of the Phillips Butte quadrangle Powder River County, Montana. U. S. Geological Survey Open-File Report 79-96, 36 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Samuelson Ranch quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-97, 28 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Sonnette quadrangle Powder River County, Montana. U. S. Geological Survey Open-File Report 79-98, 33 maps.

- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Stacey quadrangle Powder River County, Montana. U. S. Geological Survey Open-File Report 79-99, 26 maps.
- Colorado School of Mines, 1979, Coal resource occurrence and coal development potential maps of the Threemile Buttes Quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-100, 52 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Yager Butte Quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-102, 43 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Yarger Butte Quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-103, 23 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Cook Creek Butte Quadrangle, Rosebud and Big Horn counties, Montana. U. S. Geological Survey Open-File Report 79-646, 12 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Bloom Creek Quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-784, 35 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Huckins School Quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-786, 40 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Moorhead Quadrangle, Powder River County, Montana, and Campbell County, Wyoming. U. S. Geological Survey Open-File Report 79-787, 29 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Reanus Cone Quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-788, 37 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Sayle Quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-789, 40 maps.
- Colorado School of Mines Research Institute, 1979, Coal resource occurrence and coal development potential maps of the Sayle Hall Quadrangle, Powder River County, Montana. U. S. Geological Survey Open-File Report 79-790, 45 maps.

- Culbertson, W. C., Klett, M. C., 1976, Geologic map and coal sections, Brown's Mountain Qandrangle, Montana. U. S. Geological Survey, Miscellaneous Field Studies Map MF 814.
- Culbertson, W. C., Mapel, W. J., Klett, M. C., 1976, Geologic map and coal sections of the Stroud Creek Quandrangle, Rosebud and Big Horn counties, Montana. U. S. Geological Survey, Miscellaneous Field Studies Map MF 822.
- Custer National Forest, 2000, Custer National Forest Ashland Ranger District map: USDI Forest Service, Billings, MT.
- Denson, N. M.; Crysdale, B. L., 1991, Geologic map showing total thickness of coal in the north half of the Powder River basin, southeastern Montana and northeastern Wyoming. U. S. Geological Survey IMAP 2131-A.
- Denson, N. M.; Pierson, C. T., 1991, Geologic map showing the thickness and structure of the Anderson-Wyodak coal bed in the north half of the Powder River Basin, southeastern Montana and northeastern Wyoming. U. S. Geological Survey IMAP 2094-A
- Flores, R. M., Ochs, A. M., Stricker, G. D., Roberts, S. B., Ellis, M. S., Keighin, C. W., Murphy, E. C., Cavaroc Jr., V. V., Johnson, R. C., and Wilde, E. M., 1999, National Coal Resource Assessment Non-Proprietary Data: Location, Stratigraphy, and Coal Quality of Selected Tertiary Coals in the Northern Rocky Mountains and Great Plains: U. S. Geological Survey Open-File Report 99-376, 1 CD.
- Fort Union Coal Assessment Team, 1999, 1999 Resource Assessment of Selected Tertiary Coal Beds and Zones in the Northern Rocky Mountains and Great Plains Region: U. S. Geological Survey Professional Paper 1625-A, 2 CD.
- Heffern, E.L., Coates, D.A., Whiteman, J., Ellis, M.S., 1993, Geologic map showing distribution of clinker in the Tertiary Fort Union and Wasatch Formations, Northern Powder River basin, Montana: U. S. Geological Survey Coal Investigation Map C-142, I plate, 1:175,000.
- Hotchkiss, W.R., 1975, Site-specific coal-reclamation study area near Ashland, Montana.: American Association of Petroleum Geologists Bulleting 59, page 912.
- Kennelly P.J., Donato, T., 2001, Hydrologic features of the potential coalbed methane development area of the Powder River Basin, Montana: Montana Bureau of Mines and Geology Open-File Report MBMG 448, 1 plate.

- Lambing, J.H., Ferreira, R.F., 1986, Variability in Base Streamflow and Water Quality of Streams and Springs in Otter and Rosebud Creek Basins, Southeastern Montana: U. S. Geological Survey Water Resources Investigation 85-4302, 49 pages,
- Lee, R.W., Slagle, S.E., Stimson, J.R., 1981, Magnitude and chemical quality of base flow of Otter Creek, Tongue River, and Rosebud Creek, southeastern Montana, October 26-November 5, 1977: U. S. Geological Survey Open-File Report 80-1298, 25 pages.
- Malde, Harold E.; Boyles, J. Michael, 1976, Map of alluvial valley floors and strippable coal in forty-two 7 1/2-minute quadrangles, Big Horn, Rosebud, and Powder River counties, Southeast Montana. U. S. Geological Survey Open-File Report 76-162, 43 maps.
- Mapel, W. J., 1976, Geologic map and coal sections of the Birney Quandrangle, Rosebud counties, Montana. U. S. Geological Survey, Miscellaneous Field Studies Map MF 813.
- Mapel, W. J.; Martin, B. K., 1978, Coal resource occurrence and coal development potential maps of the Birney Quadrangle, Rosebud County, Montana. U. S. Geological Survey Open-File Report 78-30, 44 maps.
- Mapel, W. J.; Martin, B. K.; Butler, B. A., 1978, Coal resource occurrence and coal development potential maps of the Stroud Creek Quadrangle, Rosebud and Big Horn counties, Montana. U. S. Geological Survey Open-File Report 78-37, 54 maps.
- Mapel, W. J.; Martin, B. K., 1978, Coal resource occurrence and coal development potential maps of the southern part of the Clubfoot Creek Quadrangle, Rosebud County, Montana, U. S. Geological Survey Open-File Report 78-39, 69 maps.
- Mapel, W. J.; Martin, B. K.; Butler, B. A., 1978, Coal resource occurrence and coal development potential maps of the Hamilton Draw Quadrangle, Rosebud, Big Horn, and Powder River counties, Montana. U. S. Geological Survey Open-File Report 78-640, 53 maps.
- Mapel, W. J.; Martin, B. K., 1978, Coal resource occurrence and coal development potential maps of the Browns Mountain Quadrangle, Rosebud County, Montana. U. S. Geological Survey Open-File Report 78-641, 34 maps.
- Mapel, W. J.; Martin, B. K.; Butler, B. A., 1978, Coal resource occurrence and coal development potential maps of the Poker Jim Butte Quadrangle, Rosebud and Powder River counties, Montana. U. S. Geological Survey Open-File Report 78-651, 63 maps

- Matson, R.E., Blumer, J.W., Wegelin, L.A., 1973, Quality and reserves of strippable coal, selected deposits, southeastern Montana: Montana Bureau of Mines and Geology Bulletin 91, 135 pages.
- McClymonds, N.E., 1984, Potential Effects of Surface Coal Mining on the Hydrology of the West Otter Area, Ashland and Birney-Broadus Coal Fields, Southeastern Montana: U. S. Geological Survey Water Resources Investigation 84-4087, 70 pages.
- McClymonds, N.E., Moreland, J.A., 1988, Potential Effects of Surface Coal Mining on the Hydrology of the Upper Otter Creek-Pasture Creek area, Moorhead coal field, Southeastern Montana: U. S. Geological Survey Water Resources Investigation 88-4187, 87 pages.
- McKay, E. J., 1976, Preliminary geologic map and coal sections of the Willow Crossing Quadrangle, Rosebud and Powder River counties, Montana U. S. Geological Survey, Miscellaneous Field Studies Map MF 802.
- McKay, E. J., 1976, Preliminary geologic map and coal sections of the Fort Howes Quadrangle, Rosebud and Powder River counties, Montana. U. S. Geological Survey, Miscellaneous Field Studies Map MF 807.
- McKay, E. J., 1976, Geologic map and coal sections, King Mountain Quandrangle, Rosebud and Powder River counties, Montana. U. S. Geological Survey, Miscellaneous Field Studies Map MF 817.
- McKay, E.J., Hatch, J.R., Landis, E.R., 1976, Preliminary report on coal resources of the Otter Creek EMRIA Site, Powder River County, Montana: U. S. Geological Survey Open-File Report 76-387, 49 pages.
- McKay, E.J., Robinson, L.N., 1979, Coal resource occurrence and coal development potential maps of the Otter quadrangle, Powder River County, Montana: U. S. Geological Survey Open-File Report 79-105, 61 pages.
- McLellan, M. W., 1981, Geologic map and coal resources of the Leslie Creek quadrangle, Powder River County, Montana. U. S. Geological Survey Miscellaneous Field Studies Map 1296.
- McLellan, M. W., 1981, Geologic map and coal resources of the Box Elder Creek Quadrangle, Powder River County, Montana. U. S. Geological Survey Miscellaneous Field Studies Map 1297.
- Robinson, Laura N.; Culbertson, William C., 1984, Structure contour map on top of the Canyon Coal Bed, Birney 30' x 60' Quadrangle, Big Horn, Rosebud, and Powder River counties, Montana. U. S. Geological Survey Coal Map 96-A.

- Robinson, Laura N.; Culbertson, William C., 1984, Map showing isopachs of coal and overburden of the Canyon Coal Bed, Birney 30' x 60' Quadrangle, Big Horn, Rosebud, and Powder River counties, Montana. U. S. Geological Survey Coal Map 96-B.
- Slagle, S.E., 1983, Hydrology of Area 49, Northern Great Plains and Rocky Mountain Coal Provinces, Montana and Wyoming: U. S. Geological Survey Water Resources Investigations Open-File Report 82-682, 94 pages.
- Van Gosen, B. S., 1996, Energy and mineral resource assessment of the Ashland Division of the Custer National Forest, Powder River and Rosebud counties, southeastern Montana: U. S. Geological Survey Open-File Report 96-0045, 35 pages.
- Van Voast, W., Thale, P., 2001, Anderson and Knobloch coal horizons and potential for methane development, Powder River Basin, Montana: Montana Bureau of Mines and Geology Geological Map 60, 1 plate, 1:250,000.
- Vuke, S.M., Heffern, E.L., Bergantino, R.N., Colton, R.B., 2001, Geologic map of the Lame Deer 30' x 60' quadrangle, eastern Montana: Montana Bureau of Mines and Geology Open-File Report MBMG 428, 1 plate, 1:100,000.
- Vuke, S.M., Heffern, E.L., Bergantino, R.N., Colton, R.B., 2001, Geologic map of the Powderville 30' x 60' quadrangle, eastern Montana: Montana Bureau of Mines and Geology Open-File Report MBMG 429, 1 plate, 1:100,000.
- Vuke, S.M., Heffern, E.L., Bergantino, R.N., Colton, R.B., 2001, Geologic map of the Birney 30' x 60' quadrangle, eastern Montana: Montana Bureau of Mines and Geology Open-File Report MBMG 431, 1 plate, 1:100,000.
- Vuke, S.M., Heffern, E.L., Bergantino, R.N., Colton, R.B., 2001, Geologic map of the Broadus 30' x 60' quadrangle, eastern Montana: Montana Bureau of Mines and Geology Open-File Report MBMG 432, 1 plate, 1:100,000.

Site									Altitude		Inconton
Number (see map)	Spring Name	Township	Pango	Section	Tract	GWIC ID	Longitude	Latitude	Altitude (feet)	USGS Quadrangle	Inventory Date
572 SPUKE SPRING		01S	46E		DDAC	204995	-106.02895	45.75729	· · ·	HAYES POINT	5/20/2003
602 PRIMROSE SP		015	46E		CDDD	205025	-106.01668	45.75601		HAYES POINT	6/27/2003
225 SHEERING PIN		01S	46E		CBBB	199638	-106.00558	45.76209		HAYES POINT	8/30/2002
223 011221(110 1 11)		01S	46E		BBCA	199636	-106.00400	45.74784		BEAVER CREEK SCHOOL	8/30/2002
569 LITTLE WONDE		01S	46E		BBBD	204992	-106.04449	45.75285		HAYES POINT	5/18/2003
571 DEVAULT SPR		01S	46E		BADC	204994	-106.05901	45.75252		HAYES POINT	5/20/2003
564 SAWMILL SPR		01S	46E		DABB	204987	-106.01079	45.73249		BEAVER CREEK SCHOOL	5/16/2003
221 WONDER SPR		01S	46E		ACAD	199633	-105.99079	45.73638		STACEY	8/30/2002
222 SURPRISE SPE		01S	46E		BAAA	199635	-105.99659	45.74043		STACEY	8/30/2002
570 NORTH SARTI		01S	46E		BBDB	204993	-105.98589	45.72155		HAYES POINT	5/18/2003
181 SCHILLER SPR		01S	46E		DCCC	199614	-106.09766	45.69973		BEAVER CREEK SCHOOL	10/28/2002
177 SARTIN DRAW		01S	46E		BBDA	199610	-106.00272	45.70948		BEAVER CREEK SCHOOL	10/27/2002
226		01S	40L 47E		BABA	199639	-105.97852	45.78348		NORTH STACEY SCHOOL	8/30/2002
227 RED SHALE SF	PRING	01S	47E		DABB	199640	-105.97100	45.77690		NORTH STACEY SCHOOL	8/30/2002
228 LISCOM MOUN		01S	47E		ACAA	199641	-105.97027	45.75136		NORTH STACEY SCHOOL	8/30/2002
230 LISCOM BUTTE		015	47E		DACD	199643	-105.96892	45.74582		STACEY	8/30/2002
220 SARTIN DRAW		01S	47E		BDAC	199632	-105.97745	45.72173		STACEY	8/30/2002
178 NORTH STACE		015	47E		CCAC	199611	-105.96116	45.70062		STACEY	10/27/2002
669 BRIDGE CREE		01S	48E		CDCD	205072	-105.85381	45.71388		ELK RIDGE	7/18/2003
		010	-0L	50	0000	200072	105.05501	43.7 1300	3373		1/10/2003
655		02S	45E	3	DBBB	205060	-106.15940	45.68905	3300	COOK CREEK RESERVOIR	7/16/2003
657 JO SPRING		028	45E		ABCD	205061	-106.17985	45.69362		COOK CREEK RESERVOIR	7/16/2003
658		025	45E		CADB	205062	-106.18346	45.68702		COOK CREEK RESERVOIR	7/16/2003
660 BRINGOFF SPI	PING	025	45E		BCBC	205063	-106.19029	45.67731		COOK CREEK RESERVOIR	7/16/2003
662 CLIFF SPRING	AING	023	45E		DADD	205065	-106.13382	45.67212		COOK CREEK RESERVOIR	7/16/2003
157 MAIN ASH SPR	PING	025	45E		ABDA	198853	-106.11609	45.68007		BEAVER CREEK SCHOOL	10/9/2002
156 ASH CREEK 2		023	45E		ACCC	198851	-106.11837	45.67475		BEAVER CREEK SCHOOL	10/9/2002
155 ASH CREEK 1		023	45E		CDAB	198849	-106.12073	45.67020		BEAVER CREEK SCHOOL	10/9/2002
653 CUTBANK SPR		023	45E		AAAC	205059	-106.17208	45.66591		COOK CREEK RESERVOIR	7/16/2003
652 COOK SPRING		023	45E 45E		ADDB	205059	-106.17208	45.64719		COOK CREEK RESERVOIR	7/16/2003
661		023	45E		BCAA	205064	-106.18661	45.64912		COOK CREEK RESERVOIR	7/16/2003
190 DAILY SPRING		023	45E 45E		DDAB	199623	-106.13144	45.64169		COOK CREEK RESERVOIR	11/7/2002
154 PROVOST SPR		023	45E		BBCA	199594	-106.10934	45.63683		BEAVER CREEK SCHOOL	10/9/2002
566 GENTRY SPRI		023	45E		BDAC	204989	-106.14211	45.63742		COOK CREEK RESERVOIR	5/17/2003
66 COAL CREEK S		023	45E		CADA	197843	-106.14211	45.61530		WILLOW CROSSING	7/24/2002
187 WEST FORK 1		023	45E 45E		BBCD	197843	-106.14792	45.62168		WILLOW CROSSING	11/7/2002
188 WEST FORK 1		025	45E 45E		BCAA						
		025	45E 46E		DABA	199621	-106.14701 -105.98591	45.62070		WILLOW CROSSING STACEY	11/7/2002
172 BOTTOM CRIB 186	SPRING	025	46E 46E		CDCA	199605		45.68883		BEAVER CREEK SCHOOL	10/21/2002
						199619	-106.07861	45.68323			11/6/2002
185		02S	46E		BABC	199618	-106.08009			BEAVER CREEK SCHOOL	11/6/2002
		02S	46E		BBDA	199617	-106.08094			BEAVER CREEK SCHOOL	11/6/2002
167 MAXWELL SPR		02S	46E		DBAD	7247	-106.02932	45.67246		BEAVER CREEK SCHOOL	10/20/2002
171 STRAIGHT CRI	EER SPRING	02S	46E		ADCA	199603	-105.98603			STACEY	10/21/2002
168		02S	46E		BACD	199600	-105.99662	45.66381		STACEY	10/20/2002
567 SHEEP CREEK		02S	46E		BDCC	204990	-105.99785			STACEY	5/17/2003
164 UPPER BEAVE		02S	46E		BDAD	199597	-106.01363			BEAVER CREEK SCHOOL	10/20/2002
165 LOWER BEAVE	ER CREEK SPRING	02S	46E	14	BDAD	204932	-106.01360	45.66228	3505	BEAVER CREEK SCHOOL	10/20/2002

Site											
Number									Altitude		Inventory
(see map)	Spring Name	Township			Tract	GWIC ID	Longitude	Latitude	(feet)	USGS Quadrangle	Date
	DEER CREEK 2 SPRING	02S	46E		BDDD	204986	-106.05472	45.65964		BEAVER CREEK SCHOOL	5/16/2003
176		02S	46E		ADAC	199609	-106.06626	45.66213		BEAVER CREEK SCHOOL	10/27/2002
	CABIN CREEK SPRING	02S	46E		BBAA	7246	-106.08165	45.66714		BEAVER CREEK SCHOOL	11/6/2002
	UPPER CABIN CREEK SPRING	02S	46E		BBDA	199616	-106.08042	45.66652		BEAVER CREEK SCHOOL	11/6/2002
	CABIN SPRING	02S	46E		CDDB	204988	-106.07802	45.65384		BEAVER CREEK SCHOOL	5/17/2003
	PASTURE SPRING	02S	46E		DDCD	204983	-106.06784	45.63905		BEAVER CREEK SCHOOL	5/15/2003
	DEER CREEK SPRING	02S	46E		BDAB	199622	-106.05595	45.64898		BEAVER CREEK SCHOOL	11/7/2002
	MAXWELL CREEK SPRING	02S	46E		AAAB	199598	-106.02604	45.65189		BEAVER CREEK SCHOOL	10/20/2002
	DARLING DRAW SPRING	02S	46E		DBDB	7249	-106.03131	45.64314		BEAVER CREEK SCHOOL	10/9/2002
	FUNNEL DRAW SPRING	02S	46E		ADCB	204985	-106.00798	45.64642		BEAVER CREEK SCHOOL	5/16/2003
	EAST FORK SPRING	02S	46E		ACBA	198777	-105.99103	45.63373		STACEY	10/7/2002
	SECTION 26 SPRING	02S	46E		DBBC	204980	-106.01046	45.63073		BEAVER CREEK SCHOOL	5/15/2003
	HORSEHEAD SPRING	02S	46E		BBAD	204984	-106.06085	45.63705		BEAVER CREEK SCHOOL	5/15/2003
	DARLING DRAW SLUMP 1 SPRING	02S	46E		DAAD	204981	-106.04556	45.63065		BEAVER CREEK SCHOOL	5/15/2003
	CORAL CREEK SPRING	02S	46E		BADA	204982	-106.07635	45.63558		BEAVER CREEK SCHOOL	5/15/2003
	BARREL SPRING	02S	46E		DACD	204973	-105.98594	45.61305		HOME CREEK BUTTE	5/13/2003
170		02S	47E		ABDD	199602	-105.94893	45.66510		STACEY	10/21/2002
	SHEEP CREEK 1 SPRING	02S	47E		BBCD	204991	-105.98151	45.66491	3670	STACEY	5/17/2003
169		02S	47E		CCAD	199601	-105.97795	45.65585		STACEY	10/20/2002
148	BIDWELL SPRING SOUTH PIPE	02S	47E		CCCC	198817	-105.96278	45.64039		STACEY	10/8/2002
149	BIDWELL SPRING NORTH PIPE	02S	47E	19	CCCC	198819	-105.96278	45.64039	3895	STACEY	10/8/2002
152	HOLIDAY SPRING	02S	47E		CDDB	7253	-105.97421	45.63929	3975	STACEY	10/8/2002
150	SUTTON SPRING TOP PIPE	02S	47E	30	ADCA	198821	-105.96544	45.63215	4000	STACEY	10/8/2002
151	SUTTON SPRING BOTTOM PIPE	02S	47E		ADCA	198822	-105.96544	45.63215	3900	STACEY	10/8/2002
144		02S	47E	30	BBDD	198810	-105.97770	45.63469	3990	STACEY	10/7/2002
192	THOMAS SPRING	02S	47E		DCDA	199624	-105.96795	45.62502	3920	STACEY	11/8/2002
667	BUCKBERRY SPRING	02S	48E	6	CBBC	205070	-105.86001	45.68978	3570	ELK RIDGE	7/18/2003
668	ELK RIDGE SPRING	02S	48E	8	BBDC	205071	-105.83580	45.68030	3795	ELK RIDGE	7/18/2003
664	CAMERON SPRING	02S	48E	17	ABDC	205067	-105.82500	45.66559	3600	ELK RIDGE	7/17/2003
665	CAMERON RESERVOIR SPRING	02S	48E	17	ADDA	205068	-105.81860	45.66310	3490	ELK RIDGE	7/17/2003
666		02S	48E	17	DADA	205069	-105.81892	45.65803	3550	ELK RIDGE	7/17/2003
663	MANNING SPRING	02S	48E	31	ABDC	205066	-105.84666	45.62155	3660	SAMUELSON RANCH	7/17/2003
538	NECESSITY 2 SPRING	03S	46E		ABBB	204963	-106.01204	45.60864	3575	COLEMAN DRAW	4/27/2003
533	PASS RESERVOIR SPRING	03S	46E	4	BDDC	204959	-106.05515	45.60112	3480	COLEMAN DRAW	4/27/2003
532	PASS SPRING	03S	46E		CDBB	7565	-106.05812	45.59717	3490	COLEMAN DRAW	4/27/2003
	RANDEL SPRING	03S	46E		CABA	204997	-106.07743	45.60051		COLEMAN DRAW	4/26/2003
534	SAND SPRING	03S	46E		DCBC	204960	-106.03151	45.58191		COLEMAN DRAW	4/27/2003
535	GILPATRICK SPRING	03S	46E		BBBB	204961	-106.00090	45.57833	3410	COLEMAN DRAW	4/27/2003
	NEW GILPATRICK SPRING	03S	46E		DDBB	204962	-106.00672	45.57674		COLEMAN DRAW	4/27/2003
	GASKILL SPRING	03S	46E		AABA	199612	-106.06606			COLEMAN DRAW	10/27/2002
	COAL BANK SPRING	03S	46E		BDAD	7418	-106.09590	45.57397		COLEMAN DRAW	10/27/2002
556	UD SPRING SPRING	03S	46E		AADC	204979	-106.08645	45.53275	3320	COLEMAN DRAW	5/15/2003
573	BEAR DEN SPRING	03S	46E		CCBA	204996	-106.06180	45.52440		COLEMAN DRAW	5/20/2003
	JELLISON SPRING	03S	46E		BDBA	204977	-106.03772	45.53136		COLEMAN DRAW	5/14/2003
	STAFFORD #1	03S	46E		DDDC	199700	-106.02515	45.52138		COLEMAN DRAW	11/7/2002
	STAFFORD SPRING	03S	46E		DDDC	7422	-106.02506			COLEMAN DRAW	11/7/2002

Site										
Number			_		_				Altitude	Inventory
(see map)	Spring Name	Township			Tract	GWIC ID	Longitude	Latitude	(feet) USGS Quadrangle	Date
	SCHOOLMARM SPRING	03S	46E		BBAA	204975	-105.99696			5/13/2003
	PAIN SPRING	03S	47E		BBAC	204966	-105.95812	45.60767		4/28/2003
	LOWER HANSON SPRING	03S	47E		DABA	199607	-105.94423	45.60052		10/26/2002
	UPPER HANSON SPRING	03S	47E		DABA	199608	-105.94369	45.60173		10/26/2002
	FISH POND SPRING	03S	47E		DBDA	199606	-105.94660	45.59841	3870 HOME CREEK BUTTE	10/26/2002
	BULL FROG SPRING	03S	47E		CCCC	204965	-105.98123	45.59424		4/28/2003
	FRARY SPRING	03S	47E		AADC	198811	-105.96308	45.59050		10/7/2002
	WILBUR SPRING	03S	47E		BACB	204964	-105.97551	45.59156		4/28/2003
146		03S	47E		ADCB	198812	-105.94524	45.58732		10/7/2002
	EAST SPRING	03S	47E		BCAA	198813	-105.93619	45.58923		10/7/2002
	UPPER CABIN SPRING	03S	47E		CCDB	197841	-105.93713	45.57929		7/24/2002
	CAIN SPRING	03S	47E		CDCA	205057	-105.87319	45.58161	3710 SAMUELSON RANCH	7/15/2003
62		03S	47E		DADD	197839	-105.89940	45.56890		7/24/2002
	LOGGING CREEK SPRING	03S	47E		DDAA	197838	-105.89970	45.56830		7/23/2002
	FLY CREEK 1 SPRING	03S	47E		AAAA	197738	-105.92060			7/24/2002
	CABIN SPRING	03S	47E		BCDD	197842	-105.95580	45.57262		7/24/2002
	CABIN 2 SPRING	03S	47E		BDBC	204967	-105.95522	45.57415		4/28/2003
	FLY CREEK 2 SPRING	03S	47E		BBCC	197735	-105.93860	45.56220		7/24/2002
	HIGHWAY 212 SPRING	03S	47E		DDCC	197711	-105.92360	45.55140		7/22/2002
	LOGGING SPRING	03S	47E		BAAD	197840	-105.90991	45.56317		7/24/2002
	LOGGING CREEK 3 SPRING	03S	47E		BCCA	204974	-105.91213		3890 HOME CREEK BUTTE	5/13/2003
	HOUGHLAN SPRING	03S	47E		CAAA	197710	-105.88830	45.55720		7/22/2002
191		03S	47E		ABAB	199625	-105.92643	45.55024		11/7/2002
	LEMONADE SPRING	03S	47E		ACAA	198766	-105.92551	45.54553		10/6/2002
	WESCO SPRING	03S	47E		BCAA	199627	-105.93880	45.54571	3595 HOME CREEK BUTTE	11/8/2002
193		03S	47E		ADBD	199626	-105.94272	45.54531	3585 HOME CREEK BUTTE	11/8/2002
	LITTLE TOBIN SPRING	03S	47E		DCBD	199628	-105.94861	45.53766		11/9/2002
552	PRIVATE SPRING	03S	47E	31	BBAD	204976	-105.97239	45.52656	3710 HOME CREEK BUTTE	5/13/2003
	KING CREEK SPRING	04S	44E		DACC	198798	-106.25995	45.47362		5/9/2002
	PASS SPRING	04S	44E		ABBB	7405	-106.24330	45.48278		5/9/2002
	MCKELVEY SPRING	04S	44E		DCBA	205012	-106.26617			6/4/2003
233		04S	44E		ACDB	198793	-106.24168	45.44867	3680 KING MOUNTAIN	5/9/2002
239		04S	45E		AADA	198967	-106.21333			9/5/2002
240		04S	45E		AADA	198969	-106.21381	45.46606		9/5/2002
	GENE CREEK SPRING	04S	45E		DDBB	7598	-106.21723			9/5/2002
	CAPRA SPRING	04S	45E		CADD	205056	-106.20635	45.44262		7/16/2003
	TUCKER SPRING	04S	46E		BBBA	204978	-106.05100			5/14/2003
	HARRIET 2 SPRING	04S	46E		BBBD	199694	-106.03083	45.49066		10/28/2002
	HARRIET 1 SPRING	04S	46E		ADCC	199695	-106.03679			10/28/2002
	POTHOLE SPRING	04S	46E		ACAA	205020	-106.07895			6/23/2003
	MCBRIDE SPRING	04S	46E		BDBD	205008	-106.04536			6/2/2003
	DD SPRING	04S	46E		CBAA	205007	-106.05015			6/2/2003
295		04S	46E		DABB	199697	-106.03670			10/30/2002
265		04S	46E		ABBA	199667	-106.01951			10/4/2002
294		04S	46E		CBCB	199696	-106.03120			10/30/2002
263	WATT DRAW 1 SPRING	04S	46E	24	CCCC	199665	-106.01083	45.46436	3640 YAGER BUTTE	10/3/2002

Site										
Number								Altitude		Inventory
(see map)	Spring Name	Township	Range	Section Tract	GWIC ID	Longitude	Latitude	(feet)	USGS Quadrangle	Date
264		04S	46E	26 AACA	199666	-106.01490	45.46096	3690	YAGER BUTTE	10/4/2002
275		04S	46E	27 BABC	199677	-106.04940	45.46214	3540	YAGER BUTTE	10/18/2002
575	COAL BANK SPRING	04S	46E	28 BACD	204998	-106.06635	45.46000	3560	YAGER BUTTE	5/30/2003
273	MINERAL YAGER SPR ING	04S	46E	28 DAAB	7606	-106.05491	45.45578	3480	YAGER BUTTE	10/18/2002
271	OTTESEN SPRING	04S	46E	29 BABD	199673	-106.08590	45.46230	3440	YAGER BUTTE	10/18/2002
270	COAL CREEK SPRING	04S	46E	29 CBBD	7607	-106.09195	45.45504	3340	YAGER BUTTE	10/18/2002
247		04S	46E	31 ABBB	199649	-106.10235	45.44880	3320	YAGER BUTTE	9/16/2002
249		04S	46E	33 BDCC	199654	-106.06737	45.44152	3310	YAGER BUTTE	9/16/2002
274	ERICKSON SPRING	04S	46E	35 BADA	199676	-106.02263	45.44706		YAGER BUTTE	10/6/2002
266	OLE SPRING	04S	46E	36 ADBA	199668	-105.99415	45.44506	3555	THREEMILE BUTTES	10/6/2002
251	SPIKE CAMP SPRING	04S	46E	36 BCDB	199653	-106.00746	45.44338	3510	YAGER BUTTE	9/16/2002
47	FEAR SPRING	04S	47E	4 CCBA	197707	-105.94690	45.51060	3920	HOME CREEK BUTTE	7/22/2002
49	BUFFALO HEAD SPRING	04S	47E	5 DBBC	197709	-105.95780	45.51250	3780	HOME CREEK BUTTE	7/22/2002
48		04S	47E	8 ABBB	197708	-105.95890	45.50670	3660	HOME CREEK BUTTE	7/22/2002
158	DOONAN GULCH SPRING	04S	47E	10 BACD	199595	-105.92052	45.50343	3940	HOME CREEK BUTTE	10/10/2002
159	KNUDSON SPRING	04S	47E	11 CBAC	198862	-105.90399	45.49860	3745	THREEMILE BUTTES	10/10/2002
161	LOWER KNUDSON SPRING	04S	47E	11 CDBC	198888	-105.90153	45.49501	3700	THREEMILE BUTTES	10/10/2002
160	KNUDSON 2 SPRING	04S	47E	14 BBBB	199596	-105.90724	45.49232	3730	THREEMILE BUTTES	10/10/2002
288	MCCLENNAN 2 SPRING	04S	47E	21 DCAC	199690	-105.93607	45.46593	3690	THREEMILE BUTTES	10/27/2002
163		04S	47E	22 AACA	198890	-105.91064	45.47597	3980	THREEMILE BUTTES	10/10/2002
162	DOONAN SPRING	04S	47E	23 ABAA	198889	-105.89380	45.47791	3830	THREEMILE BUTTES	10/10/2002
277	SKINNER GULCH 2 SPRING	04S	47E	26 ABCA	199679	-105.89925	45.46166	3990	THREEMILE BUTTES	10/19/2002
278	SKINNER GULCH 1 SPRING	04S	47E	26 BCCD	199680	-105.89647	45.45682	3870	THREEMILE BUTTES	10/19/2002
289		04S	47E	27 DABB	199691	-105.91238	45.45583	3890	THREEMILE BUTTES	10/27/2002
290		04S	47E	28 AADA	199699	-105.93009	45.46113	3715	THREEMILE BUTTES	10/27/2002
291	MCCLENNAN 1 SPRING	04S	47E	28 BBAA	199693	-105.94555	45.46297	3720	THREEMILE BUTTES	10/27/2002
285	BLUE BORE SPRING	04S	47E	30 CCBC	199687	-105.97000	45.45280	3650	THREEMILE BUTTES	10/21/2002
286		04S	47E	31 BDAD	199698	-105.98167	45.44405	3550	THREEMILE BUTTES	10/26/2002
267	ABBOTT SPRING	04S	47E	33 CCBA	199669	-105.94810	45.43799	3735	THREEMILE BUTTES	10/6/2002
268	JOE SPRING	04S	47E	33 CCDA	199670	-105.94636	45.43595	3695	THREEMILE BUTTES	10/6/2002
519		05S	43E	13 CBAC	204947	-106.37543	45.40023	3530	BIRNEY DAY SCHOOL	4/11/2003
510		05S	43E	26 BDCA	204940	-106.39605	45.37854	3350	BIRNEY DAY SCHOOL	4/10/2003
509		05S	43E	27 BACA	204939	-106.41233	45.37466	3340	BROWNS MOUNTAIN	4/10/2003
508		05S	43E	28 ADDC	204938	-106.42085	45.37332	3335	BROWNS MOUNTAIN	4/10/2003
57	GOOD SPRING	05S	44E	1 BBBC	197726	-106.25390	45.43810		GREEN CREEK	7/23/2002
232		05S	44E	1 BBCD	198789	-106.25298	45.43674		GREEN CREEK	9/5/2002
590	TWIN SPRING	05S	44E	1 CADD	205013	-106.24491	45.42938		KING MOUNTAIN	6/4/2003
	EAST FORK 2 SPRING	05S	44E	10 AADD	197878	-106.27489	45.42229		GREEN CREEK	8/15/2002
73	EAST FORK 1 SPRING	05S	44E	10 ADCB	197879	-106.27920	45.41950		GREEN CREEK	8/15/2002
520		05S	44E	20 ABDC	204948	-106.32312	45.39272		GREEN CREEK	4/11/2003
58	BRIAN 1 SPRING	05S	44E	24 BADD	197733	-106.24440	45.39280		KING MOUNTAIN	7/23/2002
	PERRY (NEW) SPRING	05S	44E	25 DCDC	197609	-106.24144	45.36675		FORT HOWES	7/23/2002
	- PERRY SPRING	05S	44E	25 DDBB	197861	-106.23699	45.36780		FORT HOWES	8/19/2002
	PERRY (OLD) SPRING	05S	44E	25 DDCC	197720	-106.23970	45.36690		FORT HOWES	7/23/2002
	HAY CREEK SPRING	05S	44E	27 ADCA	197880	-106.27914	45.37496		POKER JIM BUTTE	8/15/2002
	GREEN CREEK 2 SPRING	05S	44E	29 BDCD	205032	-106.33180	45.37449		POKER JIM BUTTE	6/29/2003

Site											
Number (see map)	Spring Name	Township	Range	Section	Tract	GWIC ID	Longitude	Latitude	Altitude (feet)	USGS Quadrangle	Inventory Date
	UPPER GREEN CREEK SUMP SPRING	05S	44E		ACCC	205028	-106.34778	45.37451		POKER JIM BUTTE	6/28/2003
32		05S	44E		CCAA	197544	-106.31280	45.35440		POKER JIM BUTTE	7/20/2002
27		05S	44E		AAAC	197513	-106.27839	45.36470		POKER JIM BUTTE	7/19/2002
56		05S	44E		AAAA	197722	-106.25780	45.36580		POKER JIM BUTTE	7/23/2002
	LOWER BIG SPRING	05S	44E		BBAD	205003	-106.27308	45.35462		POKER JIM BUTTE	6/1/2003
	OLD ROAD SPRING	05S	44E		BDAC	205002	-106.26865	45.36155		POKER JIM BUTTE	6/1/2003
	BUTCH SPRING	05S	44E		ADDC	197717	-106.23688	45.35952		FORT HOWES	7/23/2002
	CHROMO SPRING	05S	45E		DABC	7757	-106.21811	45.42940		KING MOUNTAIN	10/27/2002
	BADGET SPRING	05S	45E		DDBC	197872	-106.21679	45.41168		KING MOUNTAIN	8/16/2002
	BRIAN 3 SPRING	05S	45E		CBAC	197846	-106.21179	45.41594		KING MOUNTAIN	8/20/2002
79		05S	45E		CCDD	197873	-106.21038	45.41042		KING MOUNTAIN	8/16/2002
	LOWER BRIAN 2 SPRING	05S	45E		AACC	7767	-106.21769	45.40665		KING MOUNTAIN	8/15/2002
	LITTLE BRIAN SPRING	05S	45E		ACAA	7766	-106.21860	45.40661		KING MOUNTAIN	8/15/2002
	UPPER BRIAN SPRING	05S	45E		BDBD	7769	-106.22605	45.40448		KING MOUNTAIN	8/20/2002
	FIRST SPRING	05S	45E		BDDD	197859	-106.20548	45.37437		FORT HOWES	8/19/2002
	PRONGHORN SPRING	05S	45E		CCCC	197862	-106.20348	45.36651		FORT HOWES	8/19/2002
	PAGET 2 SPRING	05S	45E		DAAB	7788	-106.19652	45.37294		FORT HOWES	8/19/2002
	LOWER PERRY	05S	45E 45E		CACC	197860	-106.22862	45.37294		FORT HOWES	8/19/2002
		05S	45E 45E				-106.17789				
245					AACD	199647	-106.17789	45.36292		FORT HOWES	9/14/2002
	DUNNING SPRING	05S	45E		AADA	199645		45.36380 45.36325		FORT HOWES FORT HOWES	9/14/2002
244		05S	45E		AADB	199646	-106.17651				9/14/2002
246 242		05S	45E		BBAA	199648	-106.17010	45.36517		FORT HOWES	9/14/2002
		05S	45E		BBBA	199644	-106.17272	45.36513		FORT HOWES	9/5/2002
	COOMBE SPRING	05S	46E		CBCC	7795	-106.05177	45.41318		YAGER BUTTE	10/21/2002
282		05S	46E		DABD	199684	-106.03519	45.41489		YAGER BUTTE	10/21/2002
	MIDDLE CREEK SPRING	05S	46E		DAAC	199686	-105.99281	45.41467		THREEMILE BUTTES	10/21/2002
	FIFTEEN MILE SPRING	05S	46E		CADB	198768	-106.06452	45.39980		YAGER BUTTE	10/6/2002
	WILEY USE SPRING	05S	46E		ABAC	7796	-106.08089	45.39274		YAGER BUTTE	9/28/2002
	JACOBS SPRING	05S	46E		CACC	205026	-106.00574	45.38364		YAGER BUTTE	6/27/2003
	SMITH SPRING	05S	46E		CADA	7800	-106.04250	45.37998		YAGER BUTTE	9/28/2002
	- OVERALL SPRING	05S	46E		DDAB	199658	-106.07471	45.36879		GOODSPEED BUTTE	9/26/2002
257		05S	46E		AADD	199659	-106.03220	45.36202		GOODSPEED BUTTE	9/27/2002
	PIERCE SPRING	05S	46E		ADAC	199661	-106.01399	45.36029		GOODSPEED BUTTE	10/2/2002
260		05S	46E		BCCB	199662	-106.00973	45.35990		GOODSPEED BUTTE	10/2/2002
-	ELK CREEK SPRING	05S	46E		DBDB	199663	-105.99830	45.35635		PHILLIPS BUTTE	10/2/2002
-	QUEBBEMAN SPRING	05S	47E		DDDB	197704	-105.88920	45.42175		THREEMILE BUTTES	7/21/2002
	POTTER SPRING	05S	47E		AADB	199685	-105.97179	45.41854		THREEMILE BUTTES	10/21/2002
	NO NAME SPRING	05S	47E		ADCB	204999	-105.93344	45.41526		THREEMILE BUTTES	5/31/2003
130	TENMILE SPRING	05S	47E		BBDA	199583	-105.92389	45.41771	3700	THREEMILE BUTTES	9/25/2002
131	DOTY SPRING	05S	47E	10	DACC	199584	-105.90975	45.41134	3770	THREEMILE BUTTES	9/26/2002
578	COLLINGE SPRING	05S	47E		ABCA	205001	-105.89664			THREEMILE BUTTES	5/31/2003
46		05S	47E		ABDD	197706	-105.89280		4060	THREEMILE BUTTES	7/21/2002
	MONTGOMERY SPRING	05S	47E	16	CDDC	197610	-105.94102	45.39202	3720	THREEMILE BUTTES	7/21/2002
41	UPPER FIFTEEN MILE SPRING	05S	47E	16	DCDC	197607	-105.93720	45.39202	3760	THREEMILE BUTTES	7/21/2002
132	LOWER SPRING CREEK SPRING	05S	47E	17	DABD	199585	-105.95208	45.39758	3720	THREEMILE BUTTES	9/26/2002
133	UPPER SPRING CREEK SPRING	05S	47E	17	DABD	199586	-105.95159	45.39784	3725	THREEMILE BUTTES	9/26/2002
140	DEAD HORSE SPRING	05S	47E	18	BDDD	199593	-105.98122	45.39911	3695	THREEMILE BUTTES	9/29/2002

Site											
Number									Altitude		Inventory
(see map)	Spring Name	Township			Tract	GWIC ID	Longitude	Latitude	(feet)	USGS Quadrangle	Date
	DALZELLS SPRING	05S	47E		ABBB	197608	-105.93797	45.39119		THREEMILE BUTTES	7/21/2002
	MCCOLLUGH SPRING	05S	47E		BDAD	205000	-105.91885	45.38635		THREEMILE BUTTES	5/31/2003
	MANKAMEYER SPRING	05S	47E		DACC	199582	-105.91038			THREEMILE BUTTES	9/25/2002
	ANCHOR SPRING	05S	47E		BAAA	205009	-105.94034	45.37645		THREEMILE BUTTES	6/2/2003
	CARL SPRING	05S	47E		ADBD	205027	-105.97288	45.35751		PHILLIPS BUTTE	6/27/2003
300	SCHWIND SPRING	05S	47E	31	DDCD	204935	105.97420	45.34830	3670	PHILLIPS BUTTE	7/21/2002
26	ROUGH PRONG SPRING	06S	43E	1	DDBA	197512	-106.40330	45.34140	3860	BROWNS MOUNTAIN	7/19/2002
23	BLACK EAGLE 1 SPRING	06S	43E	2	DBDC	197509	-106.42720	45.34080	3970	BROWNS MOUNTAIN	7/19/2002
22	BLACK EAGLE 2 SPRING	06S	43E	3	DABC	197508	-106.44220	45.34285	3920	BROWNS MOUNTAIN	7/19/2002
514	HACKLEY SPRING	06S	43E		BBBB	204944	-106.45902	45.33584	3895	BROWNS MOUNTAIN	4/10/2003
513	8	06S	43E		BDDC	204943	-106.45171	45.32979	3900	BROWNS MOUNTAIN	4/10/2003
20	TIMBER L SPRING	06S	43E		BDBB	197505	-106.40314	45.32646	3890	BROWNS MOUNTAIN	7/19/2002
512	2	06S	43E		DABB	204942	-106.40023	45.32861	3920	BROWNS MOUNTAIN	4/10/2003
	PRUNE SPRING LOWER	06S	43E		AABD	197516	-106.40008	45.32030	3820	BROWNS MOUNTAIN	7/20/2002
31	PRUNE SPRING UPPER	06S	43E		AADA	197517	-106.39869	45.32006	3820	BROWNS MOUNTAIN	7/20/2002
511	COTTONWOOD SPRING	06S	43E		BBCA	204941	-106.41884	45.31904	3790	BROWNS MOUNTAIN	4/10/2003
522	ROBERTS SPRING	06S	43E		ADCD	204950	-106.45119	45.31469	3500	BROWNS MOUNTAIN	4/9/2003
29	TIMBER CREEK SPRING 1	06S	43E		AABB	197515	-106.40170	45.30690	3940	BROWNS MOUNTAIN	7/20/2002
672	WILCOX SPRING	06S	43E		CCCA	205075	-106.45664	45.28061	3760	BROWNS MOUNTAIN	7/23/2003
209	PASTURE 2 SPRING	06S	43E		DDDD	198985	-106.43872	45.26464	3800	BROWNS MOUNTAIN	8/15/2002
210		06S	43E		BDCD	198986	-106.43193	45.27218	3980	BROWNS MOUNTAIN	8/15/2002
607	PENN AND PASTURE SPRING	06S	43E		BCAC	205030	-106.41489	45.27390	3800	BROWNS MOUNTAIN	6/28/2003
205	5	06S	43E	36	DCAC	198981	-106.40540	45.26643	3850	BROWNS MOUNTAIN	8/15/2002
	BREWSTER GULCH SPRING	06S	43E		DDDC	198979	-106.40032	45.26445	3730	BROWNS MOUNTAIN	8/15/2002
202		06S	43E		DDDD	199630	-106.39806	45.26471		BROWNS MOUNTAIN	8/15/2002
521		06S	44E		CBDB	204949	-106.31761	45.34403	3890	POKER JIM BUTTE	4/11/2003
24		06S	44E		ACAA	197510	-106.38619	45.33479	3940	BROWNS MOUNTAIN	7/19/2002
25		06S	44E		ADCB	197511	-106.38470	45.33390		BROWNS MOUNTAIN	7/19/2002
516		06S	44E		BCAB	204945	-106.35889	45.30545	3860	POKER JIM BUTTE	4/11/2003
517		06S	44E		BCCC	204946	-106.36102	45.30340		POKER JIM BUTTE	4/11/2003
10		06S	44E		DABA	198974	-106.34398		3860	POKER JIM BUTTE	7/12/2002
9		06S	44E		ACBA	198973	-106.28750	45.30528	4140	POKER JIM BUTTE	7/12/2002
608	JACKSON SPRING	06S	44E		ADCD	205031	-106.36528	45.28830	3685	POKER JIM BUTTE	6/28/2003
606	WILD HOG 1 SPRING	06S	44E		CACC	205029	-106.37627	45.28523	3660	BROWNS MOUNTAIN	6/28/2003
631	WATER GAPS SPRING	06S	44E		ABCD	205052	-106.39073	45.27869	3790	BROWNS MOUNTAIN	7/15/2003
	JACKSON 2 AND JACKSON HOLE SPRING	06S	44E		ACAD	205023	-106.36876	45.27635		POKER JIM BUTTE	6/26/2003
	WILD HOG 2 SPRING	06S	44E		BAAB	205024	-106.37375	45.28007		POKER JIM BUTTE	6/27/2003
	SQUIRREL SPRING	06S	44E		CBDD	205022	-106.35718	45.27060		POKER JIM BUTTE	6/26/2003
	3XBAR SPRING	06S	44E		CDAB	205021	-106.33304			POKER JIM BUTTE	6/26/2003
19		06S	44E		AAAA	197504	-106.27923			POKER JIM BUTTE	7/18/2002
	EMMA KRAFT SPRING	06S	44E		ABAA	197500	-106.28440			POKER JIM BUTTE	7/18/2002
	GATE SPRING	06S	45E		CBBD	199590				FORT HOWES	9/27/2002
	GATE CREEK 2 SPRING	06S	45E		DCCA	199588	-106.18850			FORT HOWES	9/27/2002
_	PAGET 1 SPRING	06S	45E		CACC	199587	-106.21135			FORT HOWES	9/27/2002
	ROCK JOB SPRING	06S	45E		DADD	199589	-106.19891	45.34201		FORT HOWES	9/27/2002
40	PADGETT SPRING THREE	06S	45E	4	CDBB	197606	-106.23394	45.34118	3930	FORT HOWES	7/21/2002

Site										
Number								Altitude		Inventory
(see map)	Spring Name	Township	Range	Section Tract	GWIC ID	Longitude	Latitude	(feet)	USGS Quadrangle	Date
37	COIL SPRING	06S	45E	5 ACCD	197603	-106.24940	45.34535	3990	FORT HOWES	7/21/2002
	LOST SPRING	06S	45E	5 ADCB	197604	-106.24440	45.34610		FORT HOWES	7/21/2002
583	BIG SPRING	06S	45E	6 AABD	205006	-106.26481	45.35044	3990	POKER JIM BUTTE	6/1/2003
581	HAGEN 2 SPRING	06S	45E	6 ACDC	205004	-106.26879	45.34499	3830	POKER JIM BUTTE	6/1/2003
582	HAGEN 1 SPRING	06S	45E	8 CABA	205005	-106.25472	45.33050		POKER JIM BUTTE	6/1/2003
39	PAGET 4 SPRING	06S	45E	9 ACAB	197605	-106.22671	45.33423		FORT HOWES	7/21/2002
53	FIRST CREEK SPRING	06S	45E	9 DDDD	197715	-106.22032	45.32423		FORT HOWES	7/23/2002
52	STAG ROCK 2 SPRING	06S	45E	10 CADA	197712	-106.21030	45.32810		FORT HOWES	7/23/2002
67	STAG ROCK SPRING 2	06S	45E	10 CADB	197714	-106.21060	45.32813	3975	FORT HOWES	7/24/2002
33	PEGGY SPRING	06S	45E	11 DADD	205094	-106.17920	45.32728	3450	FORT HOWES	7/20/2002
34	STAG ROCK SPRING	06S	45E	11 DBCA	197601	-106.18643	45.32830	3490	FORT HOWES	7/20/2002
6	COW CREEK 2 SPRING	06S	45E	17 DCBA	198972	-106.24887	45.31186	3910	FORT HOWES	7/12/2002
7		06S	45E	17 DDDD	197456	-106.24046	45.30928	3840	FORT HOWES	7/12/2002
8		06S	45E	20 AAAA	204931	-106.24097	45.30846	3835	FORT HOWES	7/12/2002
1	COW CREEK 1 SPRING	06S	45E	20 ABBC	7909	-106.25010	45.30792	3940	FORT HOWES	7/11/2002
14		06S	45E	23 CCBC	197396	-106.19810	45.29673	3540	FORT HOWES	7/18/2002
13		06S	45E	23 DCDC	197395	-106.18504	45.29533	3490	FORT HOWES	7/18/2002
36	CY SPRING	06S	45E	27 DCBD	197459	-106.20421	45.28089		FORT HOWES	7/18/2002
17	MORRIS SPRING	06S	45E	31 BABD	197498	-106.27172	45.27867	3830	POKER JIM BUTTE	7/18/2002
	MOONSHINE SPRING	06S	45E	32 CDAD	197471	-106.25061	45.26720		POKER JIM BUTTE	7/18/2002
15		06S	45E	33 BCBC	197469	-106.23949	45.27533		FORT HOWES	7/18/2002
595	ASH SPRING	06S	46E	2 BADA	205018	-106.06667	45.34915		GOODSPEED BUTTE	6/20/2003
280		06S	46E	3 DCBA	199682	-106.08411	45.33988		GOODSPEED BUTTE	10/20/2002
	GOODSPEED 2 SPRING	06S	46E	13 DCAC	204971	-106.04492	45.31042		GOODSPEED BUTTE	5/7/2003
	OLE SPRING	06S	46E	14 BAAD	204972	-106.06858	45.32142		GOODSPEED BUTTE	5/7/2003
	GUMBO POINT SPRING	06S	46E	18 CBDB	197602	-106.15253	45.31284		FORT HOWES	7/20/2002
125		06S	46E	21 DDCC	199567	-106.10295	45.29427		GOODSPEED BUTTE	9/23/2002
	DRY GULCH WEST SPRING	06S	46E	22 CCBB	199578	-106.09791	45.29639		GOODSPEED BUTTE	9/23/2002
	DRY GULCH SOUTH SPRING	06S	46E	22 CCBB	199579	-106.09791	45.29639		GOODSPEED BUTTE	9/24/2002
	HEDUM 3 SPRING	06S	46E	23 DCCC	204969	-106.06770	45.29463		GOODSPEED BUTTE	5/7/2003
	GOODSPEED SPRING	06S	46E	24 BBAD	204970	-106.05390	45.30636		GOODSPEED BUTTE	5/7/2003
	KELTY SPRING	06S	46E	25 CCAB	197863	-106.05409	45.28182		GOODSPEED BUTTE	8/18/2002
	HEDUM SPRING	06S	46E	26 CDBA	199568	-106.07098	45.28231		GOODSPEED BUTTE	9/23/2002
	HEDUM 2 SPRING	06S	46E	26 DBBA	204968	-106.06634	45.28558		GOODSPEED BUTTE	5/7/2003
	FORK SPRING	06S	46E	28 BBBA	204953	-106.11787	45.29323		GOODSPEED BUTTE	4/10/2003
	SNELL SPRING	06S	47E	20 DDDA 2 DCCC	198891	-105.93025	45.33755		PHILLIPS BUTTE	9/10/2002
	CANYON SPRING	06S	47E	5 CACA	199660	-105.99701	45.34219		PHILLIPS BUTTE	10/2/2002
	MUD AND MUD OVERFLOW SPRING	065	47E	6 CADD	205017	-106.01503	45.34116		GOODSPEED BUTTE	6/20/2003
	ROCK SPRING	06S	47E	9 BBAC	198893	-105.97833	45.33541		PHILLIPS BUTTE	9/10/2002
	TWO TROUGH SPRING	065	47E	14 BDCC	198893	-105.97855	45.31576		PHILLIPS BUTTE	9/10/2002
	COAL MINE SPRING	065	47E 47E	15 ABAB	199500	-105.93507			PHILLIPS BUTTE	9/10/2002
105		065	47E 47E	16 CCDA	196692	-105.94879			PHILLIPS BUTTE	8/29/2002
	COAL HOLLOW SPRING	065	47E 47E	17 BBAD	205019	-105.97772			PHILLIPS BUTTE	6/20/2002
	RED SHALE SPRING	065	47E 47E	17 DDDD	197663				PHILLIPS BUTTE	
						-105.98341	45.30940			8/29/2002
253		06S	47E	18 DABB	199655	-106.01915			GOODSPEED BUTTE	9/25/2002
-	PIPER DRAW SPRING	06S	47E	19 DACD	204951	-106.01122			GOODSPEED BUTTE	4/10/2003
593	SOUTH LYON CREEK SPRING	06S	47E	20 BBAD	205016	-105.99818	45.30734	3700	PHILLIPS BUTTE	6/20/2003

Site											
Number (see map)	Spring Name	Township	Pango	Section	Tract	GWIC ID	Longitude	Latitude	Altitude (feet)	USGS Quadrangle	Inventory Date
	UPPER LYON CREEK SPRING	06S	47E		ACCA	199565	-105.94925	45.30264	· · /	PHILLIPS BUTTE	9/10/2002
	LYON CREEK SPRING	06S	47E		ACCC	199569	-105.95004	45.30200		PHILLIPS BUTTE	9/10/2002
119		06S	47E		ABAA	199574	-105.90653	45.29295		PHILLIPS BUTTE	9/12/2002
-	PIERCE SPRING	06S	47E		BCBC	197665	-105.96113	45.28866		PHILLIPS BUTTE	8/29/2002
	MUD TURTLE SPRING	06S	47E		DCAB	199581	-105.96914	45.28271		PHILLIPS BUTTE	9/24/2002
	SHEEP SPRING	06S	47E		AAAA	197864	-106.00704	45.27279		GOODSPEED BUTTE	8/18/2002
	COAL BANK SPRING	06S	47E		BBBB	204952	-106.03175	45.27729		GOODSPEED BUTTE	4/10/2003
	JOE ANDERSON SPRING	06S	47E		CABA	205011	-105.95470	45.27145		PHILLIPS BUTTE	6/4/2003
	UPPER SKULL SPRING	06S	47E		ADCC	197668	-105.90182	45.27223		PHILLIPS BUTTE	8/28/2002
	UPPER SKULL 2 SPRING	06S	47E		ADDD	197669	-105.90085	45.27191		PHILLIPS BUTTE	8/28/2002
	MASON PRONG SPRING	06S	47E		CDAD	197666	-105.91104	45.26731		PHILLIPS BUTTE	8/20/2002
	NORTH FORK SPRING	06S	48E		BDCA	205010	-105.87358	45.29962		HODSON FLATS	6/4/2003
	RED SHALE SPRING	06S	48E		CDDD	199570	-105.84813	45.27694		HODSON FLATS	9/12/2002
115		06S	48E		ADAC	199571	-105.86124	45.28586		HODSON FLATS	9/12/2002
	DEAD MAN SPRING	06S	48E		BABB	199572	-105.87433	45.29032		HODSON FLATS	9/12/2002
	WILLOW SPRING	065	48E		DBBA	199572	-105.88789	45.28307		PHILLIPS BUTTE	9/12/2002
	SKULL SPRING	065	48E		BCAB	197670	-105.89559	45.27114		PHILLIPS BUTTE	8/28/2002
	COAL DRAW SPRING	065	48E		AADA	205014	-105.85892	45.27383		HODSON FLATS	6/19/2002
	FENCE CORNER SPRING	06S	48E		CDBB	205014	-105.87258	45.26503		HODSON FLATS	6/19/2003
	MASON SPRING	065	48E		DDAB	197845	-105.86056	45.26427		HODSON FLATS	8/28/2002
102	MASON SERING	003	40L	52	DDAD	197043	-105.00050	43.20427	3710	TIODSONTEATS	0/20/2002
204		07S	43E	1	AAAB	199631	-106.40062	45.26416	2720	BROWNS MOUNTAIN	8/15/2002
204		075	43E		CBAA	204933	-106.41473	45.25694		BROWNS MOUNTAIN	8/15/2002
200		073	43⊑ 43E		CBAA	198983	-106.41689	45.25632		BROWNS MOUNTAIN	8/15/2002
207		075	43E 43E		DDAB	198984	-106.41069	45.25032		BROWNS MOUNTAIN	8/15/2002
106		073	43⊑ 43E		DAAB	197654	-106.42071	45.22759		STROUD CREEK	8/30/2002
	RIMROCK SPRING	075	43E 43E		DAAD	204955	-106.42071	45.22497		STROUD CREEK	4/25/2002
		07S	43E 43E		BCAA			45.22497			
	CLARK DRAW 2 SPRING		43E 43E		CADA	204957	-106.41474			STROUD CREEK	4/25/2003
	CLARK DRAW 1 SPRING	07S				204956	-106.40957	45.21106		STROUD CREEK	4/25/2003
	UPPER BREWSTER SPRING	07S	44E		BBBB	199629	-106.39680	45.26569		BROWNS MOUNTAIN	8/15/2002
	BREWSTER GULCH 1 SPRING	07S	44E 44E		CDAB	205054	-106.39487	45.25345		BROWNS MOUNTAIN	7/15/2003
	BREWSTER GULCH 2 SPRING	07S			DBBD	205053	-106.39140	45.25614		BROWNS MOUNTAIN	7/15/2003
	HOLBROOK DRAW SPRING 2	07S	44E		ABAC	199558	-106.34684	45.24862		HAMILTON DRAW	8/13/2002
	FOSSIL SPRING	07S	44E		ADAB	199559	-106.34220	45.24832		HAMILTON DRAW	8/13/2002
	HOLBROOK DRAW 3 SPRING	07S	44E		DABB	199560	-106.34464	45.24439		HAMILTON DRAW	8/13/2002
71		07S	44E		DACC	199561	-106.34578	45.24190		HAMILTON DRAW	8/13/2002
	BOYCE MEADOW SPRING	07S	44E		BBCB	204934	-106.29884	45.23578		HAMILTON DRAW	8/14/2002
-	WASHOUT SPRING	07S	44E		DDDD	205045	-106.27999	45.22339		HAMILTON DRAW	7/13/2003
	WOLF SPRING	07S	44E		ABBB	205048	-106.30988	45.23756		HAMILTON DRAW	7/14/2003
	NORTH LEE SPRING	07S	44E		CDBA	204958	-106.33362			HAMILTON DRAW	4/25/2003
505		07S	44E		BCAA	204936	-106.37843			STROUD CREEK	4/10/2003
506		07S	44E		BDCD	204937	-106.37540			STROUD CREEK	4/10/2003
	STOCKER DRAW SPRING	07S	44E		CDCC	204954	-106.39490			STROUD CREEK	4/24/2003
	CHIPMUNK SPRING	07S	44E		CCBB	205049	-106.36105			HAMILTON DRAW	7/14/2003
12		07S	45E		DDDD	197394	-106.21949			OTTER	7/18/2002
11		07S	45E		ACAA	197393	-106.20450			OTTER	7/18/2002
625	TOOLEY CREEK SPRING	07S	45E	18	DCAB	205046	-106.26768	45.22639	3860	HAMILTON DRAW	7/14/2003

Site									
Number								Altitude	Inventory
(see map)	Spring Name	Township	Range	Section Tract	GWIC ID	Longitude	Latitude	(feet) USGS Quadrangle	Date
626	MARY SPRING	07S	45E	18 DCDD	205047	-106.26533	45.22376		7/14/2003
4		07S	45E	26 DCBC	197454	-106.18719	45.19617	3620 OTTER	7/11/2002
629	BECKY SPRING	07S	45E	30 CACD	205050	-106.27410	45.19817	3835 HAMILTON DRAW	7/14/2003
673	DYNAMITE SPRING	07S	45E	31 CCAB	205076	-106.27679	45.18307	3790 HAMILTON DRAW	7/24/2003
5	HANDLEY SPRING	07S	45E	31 DBCA	8013	-106.26584	45.18524	3850 HAMILTON DRAW	7/11/2002
3		07S	45E	36 BACA	197453	-106.17045	45.19144	3870 OTTER	7/11/2002
120	GRIFFIN COULEE SPRING	07S	46E	4 BDBA	199575	-106.11054	45.26066		9/13/2002
127	WILBER SPRING	07S	46E	9 AADD	199580	-106.09685	45.25088		9/24/2002
618	SEYMOUR SPRING	07S	46E	12 CACD	205039	-106.04885	45.24336	3695 REANUS CONE	7/12/2003
623	RENI SPRING	07S	46E	14 BDCA	205044	-106.07077	45.23221	3600 REANUS CONE	7/13/2003
674	SCHOOL SECTION SPRING	07S	46E	16 DBDC	205077	-106.10359	45.22710	3470 REANUS CONE	7/24/2003
677	HIGH TRAIL SPRING	07S	46E	23 DDDD	205080	-106.05544	45.21053	3650 REANUS CONE	7/24/2003
	POLYWOG SPRING	07S	46E	26 CCBB	205079	-106.07479	45.19880		7/24/2003
675	REANUS SPRING	07S	46E	27 BBBC	205078	-106.09576	45.20762	3580 REANUS CONE	7/24/2003
2		07S	46E	31 BACD	197452	-106.15005	45.19141	3470 OTTER	7/11/2002
630	CONE SPRING	07S	46E	33 CBAA	205051	-106.11216	45.18804	3755 REANUS CONE	7/14/2003
671	CHARLIE KRAFT SPRING	07S	46E	35 DACC	205074	-106.05987	45.18408	3730 REANUS CONE	7/23/2003
622	SCHOOL SECTION 36 SPRING	07S	46E	36 BCAB	205043	-106.05136	45.19142	3595 REANUS CONE	7/13/2003
121		07S	47E	2 AACD	199576	-105.92070	45.26121	4100 PHILLIPS BUTTE	9/13/2002
	SLOUGH GRASS CREEK SPRING	07S	47E	3 BBCB	197865	-105.95458	45.26260	4040 PHILLIPS BUTTE	8/18/2002
	MAY SPRING	07S	47E	5 ACDA	199577	-105.99905	45.26115	3855 PHILLIPS BUTTE	9/14/2002
86	TAYLOR CREEK SAWMILL SPRING	07S	47E	5 BCDC	197866	-106.01131	45.25831	3840 GOODSPEED BUTTE	8/18/2002
85	STANLEY SPRING	07S	47E	6 BABB	197867	-106.02973	45.26426	3735 GOODSPEED BUTTE	8/18/2002
81	YONKEE SPRING	07S	47E	13 DCBB	197871	-105.90343	45.22677	3850 SAYLE	8/17/2002
83	PLUM CREEK CORRAL SPRING	07S	47E	25 DCAD	197869	-105.90375	45.19660	3965 SAYLE	8/17/2002
670	RIZOR SPRING	07S	47E	29 ADBD	205073	-105.99699	45.20469	3890 SAYLE	7/23/2003
621	YONKEE DRAW SPRING	07S	47E	30 BDCC	205042	-106.02980	45.20191	3695 REANUS CONE	7/13/2003
620	SCHOOL HOUSE SPRING	07S	47E	32 BABA	205041	-106.00808	45.19444	3695 REANUS CONE	7/13/2003
619	LOWER SCHOOL HOUSE SPRING	07S	47E	32 BABD	205040	-106.00766	45.19369	3695 REANUS CONE	7/13/2003
114		07S	47E	34 ACCA	205093	-105.94661	45.18850		9/12/2002
615	LOWER MAVERICK SPRING	07S	48E	2 DCCD	205036	-105.80440	45.24687	3615 BLOOM CREEK	7/12/2003
	STUDINER SPRING	07S	48E	2 DDCA	205037	-105.79990	45.24778		7/12/2003
	BOG HOLE SPRING	07S	48E	10 CBAC	205035	-105.83457	45.23818	3520 BLOOM CREEK	7/12/2003
613	WATER GAP SPRING	07S	48E	17 AADB	205034	-105.85939	45.22991	3600 BLOOM CREEK	7/12/2003
612	BULL 2 SPRING	07S	48E	17 BCDD	205033	-105.87483	45.22508	3755 BLOOM CREEK	7/12/2003
82	HAILSTONE SPRING	07S	48E	18 CAAC	197870	-105.88824	45.22349	3840 SAYLE	8/17/2002
84	WOLF DEN SPRING	07S	48E	29 DBCC	197868	-105.86749	45.19265	3730 BLOOM CREEK	8/17/2002
617	PEAYS SPRING	07S	48E	29 DDCC	205038	-105.86221	45.18875	3730 BLOOM CREEK	7/12/2003
635	BOUNDRY SPRING	07S	48E	33 CCDD	205055	-105.85337	45.17491	3850 BLOOM CREEK	7/15/2003

Site Number (see map)	Measured Discharge (gpm)	Discharge Notes	Discharge Method	pН	Temperature (Degrees C)	Specific Conductance (umhos/cm 10 25 C)	Source Lithology	Nearest Overlying Coalbed Association	Recharge Origin	Site Status
572		NO FLOW			,	,	COAL	SAWYER	LOCAL	NOT MAINTAINED
602			ESTIMATED	7.40	13.9	853	CLINKER	SAWYER	LOCAL	DEVELOPED
225	0.20		VOLUMETRIC	-	16.1		SANDSTONE	SAWYER	LOCAL	
223		DRY					SANDSTONE		LOCAL	
569	0.20		VOLUMETRIC	7.57	11.4	3511	CLINKER		LOCAL	DEVELOPED
571	0.90		VOLUMETRIC		9.3		COLLUVIUM	KNOBLOCH	LOCAL	DEVELOPED
564	1.50		VOLUMETRIC		9.8		ALLUVIUM	SAWYER	LOCAL	DEVELOPED
221	0.10		VOLUMETRIC	-			SANDSTONE		LOCAL	
222	0.10		VOLUMETRIC		17.1		SANDSTONE		LOCAL	
570		NOT MEASURABLE					ALLUVIUM	NONE	LOCAL	UNDEVELOPED
181	0.30		VOLUMETRIC	7.20	10.0	2512	SILTSTONE	NONE	LOCAL	DEVELOPED
177	0.04		VOLUMETRIC		11.1	1905			LOCAL	DEVELOPED
226		DRY						NONE	LOCAL	NOT MAINTAINED
227		NO FLOW						NONE	LOCAL	
228	0.40		VOLUMETRIC		14.2	4367	SANDSTONE	NONE	LOCAL	
230	0.30		VOLUMETRIC		15.5		COAL	SAWYER	LOCAL	
220			VOLUMETRIC		10.0		COAL	SAWYER	LOCAL	
178		DRY	VOLOMETRIO			-1017	00/12	NONE	LOCAL	NOT MAINTAINED
669		NO FLOW					COAL	NONE	LOCAL	DEVELOPED
000		NOTLOW					OOAL	NONE	LOOAL	
655		NO FLOW					COLLUVIUM	NONE	LOCAL	NOT MAINTAINED
657		NO FLOW					SANDSTONE	NONE	LOCAL	NOT MAINTAINED
658		NO FLOW					ALLUVIUM	NONE	LOCAL	UNDEVELOPED
660		NO FLOW					COAL	SAWYER	LOCAL	NOT MAINTAINED
662	1.10		VOLUMETRIC	7 40	11.2	1929	CLINKER	SAWYER	LOCAL	
157	-	NOT MEASURABLE	VOLUMETRIC	7.40	11.2	1020	CLINKLK	NONE	LOCAL	UNDEVELOPED
157		NOT MEASURABLE						NONE	LOCAL	UNDEVELOPED
156		NO FLOW						NONE	LOCAL	UNDEVELOPED
653			VOLUMETRIC	6.94	11.0	2604	ALLUVIUM	NONE	LOCAL	DEVELOPED
652	0.80		VOLUMETRIC	6.64 7.08	11.6 11.5		COLLUVIUM	NONE	LOCAL	DEVELOPED
			VOLUMETRIC	7.00	11.0	1102				
661		NO FLOW		6.07	0.0	0700	SANDSTONE	NONE NONE	LOCAL LOCAL	DEVELOPED DEVELOPED
190 154	0.20		VOLUMETRIC VOLUMETRIC		9.8 11.9		SANDSTONE	NONE	LOCAL	DEVELOPED
154 566		NO FLOW	VOLUIVIETRIC	0.99	11.9	2592		NONE	LOCAL	NOT MAINTAINED
						4000	SANDSTONE	NONE		
66		NO FLOW	VOLUMETRIC			4228	SANDSTONE COAL		LOCAL	
187									LOCAL	
188							SANDSTONE		LOCAL	DEVELOPED
172		NO FLOW		0.07		0400		NONE	LOCAL	
186			VOLUMETRIC	8.97	6.4	2196	CLINKER	SAWYER	LOCAL	UNDEVELOPED
185		NO FLOW		0.00		0.000			LOCAL	UNDEVELOPED
184			VOLUMETRIC		5.7				LOCAL	
167	0.10		VOLUMETRIC		9.4			NONE	LOCAL	DEVELOPED
171	0.10		VOLUMETRIC		8.5		SANDSTONE		LOCAL	
168			VOLUMETRIC		10.5				LOCAL	DEVELOPED
567			VOLUMETRIC		10.0		SANDSTONE		LOCAL	DEVELOPED
164			VOLUMETRIC	7.59	10.0		ALLUVIUM		LOCAL	DEVELOPED
165	1.20		VOLUMETRIC		10.3	2364	ALLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED

Site Number	Measured Discharge		Discharge		Temperature	Specific Conductance (umhos/cm @		Nearest Overlying Coalbed	Recharge	
(see map)	(gpm)	Discharge Notes	Method	рН	(Degrees C)	25 C)	Source Lithology	Association	Origin	Site Status
563	1.10		VOLUMETRIC		8.9		ALLUVIUM	SAWYER	LOCAL	DEVELOPED
176	0.20		VOLUMETRIC		8.0			SAWYER	LOCAL	DEVELOPED
182	0.70		VOLUMETRIC	6.97	8.4		ALLUVIUM	SAWYER	LOCAL	DEVELOPED
183		NO FLOW					ALLUVIUM	SAWYER	LOCAL	UNDEVELOPED
565		NOT MEASURABLE					COLLUVIUM	SAWYER	LOCAL	DEVELOPED
560	0.30		VOLUMETRIC		11.9		SANDSTONE	SAWYER	LOCAL	DEVELOPED
189	0.30		VOLUMETRIC		7.7			SAWYER	LOCAL	DEVELOPED
166	0.10		VOLUMETRIC		6.2			SAWYER	LOCAL	
153	1.30		VOLUMETRIC		9.1		SANDSTONE	SAWYER	LOCAL	DEVELOPED
562	0.20		VOLUMETRIC	7.31	8.5	2094	ALLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
143	0.30		VOLUMETRIC	7.26	10.5	1534		CANYON/FERRY	LOCAL	DEVELOPED
557		DRY					SANDSTONE	CANYON/FERRY	LOCAL	DEVELOPED
561	0.40		VOLUMETRIC	7.02	12.0	2252	SANDSTONE	SAWYER	LOCAL	DEVELOPED
558	3.50		VOLUMETRIC		9.9		ALLUVIUM	SAWYER	LOCAL	DEVELOPED
559	1.80		VOLUMETRIC		11.0		ALLUVIUM	SAWYER	LOCAL	DEVELOPED
549	7.50		VOLUMETRIC		8.2		ALLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
170	0.20			6.76	10.9			CANYON/FERRY	LOCAL	
568	0.30		VOLUMETRIC		11.2		CLINKER	CANYON/FERRY	LOCAL	DEVELOPED
169	1.20		VOLUMETRIC		9.3		ALLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
103	0.60		VOLUMETRIC		10.7			CANYON/FERRY	LOCAL	DEVELOPED
140	0.00		VOLUMETRIC		8.7			CANYON/FERRY	LOCAL	DEVELOPED
149	0.30		VOLUMETRIC		9.7		CLINKER	CANYON/FERRY	LOCAL	DEVELOPED
152	0.30		VOLUMETRIC		<u> </u>		CLINKER	CANYON/FERRY	LOCAL	DEVELOPED
	0.70									
151	0.10		VOLUMETRIC		10.3				LOCAL	DEVELOPED
144		DDV	VOLUMETRIC	1.35	9.2	1180			LOCAL	DEVELOPED
192		DRY		0.00		0010		CANYON/FERRY	LOCAL	DEVELOPED
667	0.40		VOLUMETRIC	6.86	11.9	3610	COLLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
668								SAWYER	LOCAL	
664								SAWYER	LOCAL	
665								SAWYER	LOCAL	
666	0.20		VOLUMETRIC		14.8		COAL	SAWYER	LOCAL	DEVELOPED
663	0.10		ESTIMATED			3246	COAL	SAWYER	LOCAL	DEVELOPED
538		NOT MEASURABLE					ALLUVIUM	NONE	LOCAL	DEVELOPED
533	0.10		ESTIMATED				ALLUVIUM	NONE	LOCAL	
532	0.08		VOLUMETRIC		9.6		COAL	SAWYER	LOCAL	
574	5.50		VOLUMETRIC	6.81	13.3			SAWYER	LOCAL	
534		NOT MEASURABLE					COAL	SAWYER	LOCAL	DEVELOPED
535	0.40		VOLUMETRIC	7.22	12.4	3686	SANDSTONE	NONE	LOCAL	
536	0.10		VOLUMETRIC	7.16	13.1	1828	SANDSTONE	SAWYER	LOCAL	
179	0.30		ESTIMATED	6.99	10.3		COAL	SAWYER	LOCAL	DEVELOPED
180	0.50			6.87	11.3		SILTSTONE	WALL	LOCAL	DEVELOPED
556		NOT MEASURABLE						WALL	LOCAL	DEVELOPED
573	0.90		VOLUMETRIC	7.01	10.6	6242	SANDSTONE	WALL	LOCAL	DEVELOPED
554		NOT MEASURABLE				52.2	SANDSTONE	WALL	LOCAL	NOT MAINTAINED
296		NOT MEASURABLE		-				WALL	LOCAL	
297	0.40		ESTIMATED		4.6	0576	SANDSTONE		LOCAL	

						Specific			
Site	Measured					Conductance	Nearest Overlying		
Number	Discharge		Discharge		Temperature	(umhos/cm 🕲	Coalbed	Recharge	
see map)	(gpm)	Discharge Notes		рН	(Degrees C)	25 C) Source Litho		Origin	Site Status
551	0.10		VOLUMETRIC	7.16	10.0	1258 ALLUVIUM	WALL	LOCAL	DEVELOPED
542	0.30		VOLUMETRIC	7.30	7.4	1390 CLINKER	CANYON/FERRY	LOCAL	DEVELOPED
174		NO FLOW					CANYON/FERRY	LOCAL	NOT MAINTAINED
175	0.30		VOLUMETRIC	7.78	8.0	1433	CANYON/FERRY	LOCAL	DEVELOPED
173	0.06		VOLUMETRIC	7.05	6.1	1775 SILTSTONE	CANYON/FERRY	LOCAL	DEVELOPED
541	0.10		VOLUMETRIC	7.26	8.9	2293 SANDSTONE	CANYON/FERRY	LOCAL	DEVELOPED
145	1.50		VOLUMETRIC	7.23	11.8	1717	CANYON/FERRY	LOCAL	DEVELOPED
540	0.40		VOLUMETRIC	6.98	8.6	3073 COLLUVIUM	CANYON/FERRY	LOCAL	
146		DRY				SANDSTONE	CANYON/FERRY	LOCAL	DEVELOPED
147	0.80		VOLUMETRIC	7.69	12.2	1334	CANYON/FERRY	LOCAL	DEVELOPED
64	0.60		VOLUMETRIC		13.5	1516 SANDSTONE	CANYON/FERRY	LOCAL	DEVELOPED
650	0.90		VOLUMETRIC	6.56	11.5	2955 COLLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
62		NOT MEASURABLE			16.5	1546 ALLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
61	0.20		VOLUMETRIC		13.8	2034 ALLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
60	0.05		VOLUMETRIC		17.7	1824 SANDSTONE	CANYON/FERRY	LOCAL	DEVELOPED
65	0.40		VOLUMETRIC		16.8	2082 COLLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
543		NOT MEASURABLE				COLLUVIUM	CANYON/FERRY	LOCAL	NOT MAINTAINED
59		NOT MEASURABLE				SANDSTONE	CANYON/FERRY	LOCAL	NOT MAINTAINED
51	0.30		VOLUMETRIC		13.5	3400 ALLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
63	0.40		VOLUMETRIC		19.9	2431 COLLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
550	0.50		VOLUMETRIC	6 77	10.5	2794 COLLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
50	0.30		VOLUMETRIC	0.77	12.2	1643 COLLUVIUM	CANYON/FERRY	LOCAL	DEVELOPED
191	2.00			7.91	2.8	2600 ALLUVIUM	CANYON/FERRY	LOCAL	UNDEVELOPED
141	1.50			6.78	10.0		CANYON/FERRY	LOCAL	DEVELOPED
194		NOT MEASURABLE	VOLONILIINIO	0.70	10.0	SANDSTONE	CANYON/FERRY	LOCAL	UNDEVELOPED
193	1.20		VOLUMETRIC	7 1 2	4.8		CANYON/FERRY	LOCAL	DEVELOPED
195	0.10			6.70	5.3		CANYON/FERRY	LOCAL	DEVELOPED
552	0.10		VOLUMETRIC		9.6		CANYON/FERRY	LOCAL	DEVELOPED
552	0.50		VOLUMETRIC	1.11	9.0	2210 SANDSTONE	CANTON/FERRT	LUCAL	DEVELOPED
225	1.10		VOLUMETRIC		18.5	2728 COLLUVIUM	CANYON	LOCAL	DEVELOPED
235	-	NOT MEASURABLE	V OLUIVIE I KIU		10.5	SANDSTONE	CANYON	LOCAL	NOT MAINTAINED
236 589	1.30			7 24	40.0	3032 SANDSTONE	CANYON	LOCAL	DEVELOPED
233		NOT MEASURABLE	VOLUMETRIC	1.31	12.3 14.8	1610 CLINKER	CANYON	LOCAL	DEVELOPED
233		NOT MEASURABLE			14.8	COAL	CANYON	LOCAL	UNDEVELOPED
		NO FLOW				COAL			NOT MAINTAINED
240					45.0		CANYON	LOCAL	
241	0.80	DRY	VOLUMETRIC		15.2	1965 SANDSTONE	CANYON	LOCAL	
636						SANDSTONE	CANYON	LOCAL	DEVELOPED DEVELOPED
555		NOT MEASURABLE					WALL	LOCAL	DEVELOPED
292	0.10		VOLUMETRIC		7.6	2808 SANDSTONE	WALL	LOCAL	
293	0.60		VOLUMETRIC	0.00	8.7		WALL	LOCAL	
597	1.80		VOLUMETRIC		16.1	3958 COAL	WALL	LOCAL	DEVELOPED
585			VOLUMETRIC		13.1	3652 SANDSTONE	WALL	LOCAL	DEVELOPED
584	0.20		VOLUMETRIC	б.96	10.7	2525 SANDSTONE	CANYON	LOCAL	DEVELOPED
295			VOLUMETRIC				CANYON	LOCAL	
265		DRY					WALL	LOCAL	NOT MAINTAINED
294		NOT MEASURABLE					CANYON	LOCAL	DEVELOPED
263		NO FLOW					CANYON	LOCAL	DEVELOPED

Site Number (see map)	Measured Discharge (gpm)	Discharge Notes	Discharge Method	Hα	Temperature (Degrees C)	Specific Conductance (umhos/cm @ 25 C)	Source Lithology	Nearest Overlying Coalbed Association	Recharge Origin	Site Status
264		NOT MEASURABLE		P	(209.0000)			CANYON	LOCAL	UNDEVELOPED
275		NO FLOW						WALL	LOCAL	UNDEVELOPED
575	0.06		VOLUMETRIC	6 97		4185	COAL	WALL	LOCAL	DEVELOPED
273	0.30		VOLUMETRIC	0.01	11.3		SANDSTONE	WALL	LOCAL	
273		NO FLOW	VOLONILITIO		11.5	42.00	SANDSTONE	WALL	LOCAL	
270	0.10		VOLUMETRIC		11.4	5400	GANDOTONE	CANYON	LOCAL	
247		NO FLOW			11.4		ALLUVIUM	CANYON	LOCAL	UNDEVELOPED
247							SANDSTONE	CANYON	LOCAL	DEVELOPED
249 274		NO FLOW					SANDSTONE	WALL	LOCAL	DEVELOPED
274	0.30		VOLUMETRIC		11.7	4146	SANDSTONE	WALL	LOCAL	DEVELOPED
			VOLUIVIETRIC		11.7	4140				
251		NO FLOW		\vdash	45.0	0.070	ALLUVIUM	WALL WALL	LOCAL	
47	0.40		VOLUMETRIC		15.9		COLLUVIUM		LOCAL	NOT MAINTAINED
49	0.10		VOLUMETRIC			2685	SANDSTONE	WALL	LOCAL	NOT MAINTAINED
48		DRY					SANDSTONE	WALL	LOCAL	
158		NO FLOW					ALLUVIUM	CANYON	LOCAL	UNDEVELOPED
159	0.80		VOLUMETRIC	7.02	10.5	3193		WALL	LOCAL	DEVELOPED
161		DRY					SANDSTONE	WALL	LOCAL	DEVELOPED
160	0.10		VOLUMETRIC	7.14	12.3		ALLUVIUM	WALL	LOCAL	DEVELOPED
288	0.50		VOLUMETRIC		9.1	2693		WALL	LOCAL	
163		DRY					ALLUVIUM	CANYON	LOCAL	NOT MAINTAINED
162	0.60		VOLUMETRIC	7.37	11.0		SANDSTONE	WALL	LOCAL	DEVELOPED
277	0.70		VOLUMETRIC		9.9			WALL	LOCAL	
278	0.70		VOLUMETRIC		13.3			WALL	LOCAL	
289		NO FLOW					ALLUVIUM	CANYON	LOCAL	UNDEVELOPED
290		NO FLOW					ALLUVIUM	CANYON	LOCAL	UNDEVELOPED
291	0.60		VOLUMETRIC		7.2	3431		CANYON	LOCAL	
285	0.60		VOLUMETRIC		10.2	2669		CANYON	LOCAL	
286		DRY					CLINKER	WALL	LOCAL	NOT MAINTAINED
267	0.90		VOLUMETRIC		11.2	3092	SANDSTONE	WALL	LOCAL	
268	0.50		VOLUMETRIC		13.7	3715	SANDSTONE	WALL	LOCAL	
519		NO FLOW					SANDSTONE	CANYON	LOCAL	NOT MAINTAINED
510	0.80		ESTIMATED		8.1		COAL	SAWYER	LOCAL	
509	1.90		VOLUMETRIC		10.5		COAL	SAWYER	LOCAL	DEVELOPED
508	1.50		ESTIMATED		7.6		SANDSTONE	SAWYER	LOCAL	NOT MAINTAINED
57	1.80		VOLUMETRIC		16.6		ALLUVIUM	CANYON	LOCAL	
232		NOT MEASURABLE			19.2		CLINKER	CANYON	LOCAL	
590	1.10		VOLUMETRIC	7.68	10.8			ANDERSON/DIETZ	LOCAL	DEVELOPED
74		DRY					ALLUVIUM	CANYON	LOCAL	UNDEVELOPED
73	0.90		VOLUMETRIC	7.33	16.6	4015		CANYON	LOCAL	DEVELOPED
520	1.00		ESTIMATED		7.4		CLINKER	CANYON	LOCAL	DEVELOPED
58	1.50		VOLUMETRIC		9.5		ALLUVIUM		LOCAL	NOT MAINTAINED
43	0.40		VOLUMETRIC		18.4		SANDSTONE	CANYON	LOCAL	DEVELOPED
91	0.40		VOLUMETRIC	7 85	18.9		SANDSTONE	CANYON	LOCAL	
55	0.10		VOLUMETRIC	1.00	10.9		CLINKER	CANYON	LOCAL	DEVELOPED
55 72	0.30		VOLUMETRIC	7 06	16.8			CANYON	LOCAL	DEVELOPED
609	0.30		VOLUMETRIC		10.8		SANDSTONE		LOCAL	DEVELOPED

Site	Measured					Specific Conductance		Nearest Overlying		
Number	Discharge		Discharge		Temperature	(umhos/cm 🕲		Coalbed	Recharge	
(see map)	(gpm)	Discharge Notes	Method	рΗ	(Degrees C)	25 C)	Source Lithology	Association	Origin	Site Status
605		NOT MEASURABLE					ALLUVIUM	ANDERSON/DIETZ	LOCAL	UNDEVELOPED
32	0.20		VOLUMETRIC		10.4		COLLUVIUM		LOCAL	DEVELOPED
27	0.30		VOLUMETRIC		16.7	3043	SANDSTONE	CANYON	LOCAL	DEVELOPED
56		DRY							LOCAL	DEVELOPED
580		NOT MEASURABLE						CANYON	LOCAL	NOT MAINTAINED
579	0.30		VOLUMETRIC	7.39	12.1		CLINKER	CANYON	LOCAL	DEVELOPED
54	0.90		VOLUMETRIC		16.3	930	COLLUVIUM		LOCAL	DEVELOPED
287							ALLUVIUM	PAWNEE	LOCAL	
80	0.40		VOLUMETRIC	7.44	18.0	1677	SANDSTONE		LOCAL	DEVELOPED
96		DRY					ALLUVIUM	PAWNEE	LOCAL	UNDEVELOPED
79	0.70		VOLUMETRIC		18.3			PAWNEE	LOCAL	DEVELOPED
75	0.90		VOLUMETRIC		17.4		ALLUVIUM	PAWNEE	LOCAL	DEVELOPED
76	0.60		VOLUMETRIC	7.08	16.8	2670	ALLUVIUM		LOCAL	DEVELOPED
95		DRY					COLLUVIUM	PAWNEE	LOCAL	NOT MAINTAINED
93	0.50		VOLUMETRIC	7.46	17.1	2124	ALLUVIUM	PAWNEE	LOCAL	DEVELOPED
90		NO FLOW					SANDSTONE	PAWNEE	LOCAL	DEVELOPED
94	0.20		VOLUMETRIC	7.76		2802	SANDSTONE	PAWNEE	LOCAL	DEVELOPED
92	0.20		VOLUMETRIC	7.96	19.4	2889	SANDSTONE	PAWNEE	LOCAL	NOT MAINTAINED
245		NO FLOW					ALLUVIUM	PAWNEE	LOCAL	
243	0.10		VOLUMETRIC			3162		PAWNEE	LOCAL	
244		NOT MEASURABLE			18.8	454	ALLUVIUM		LOCAL	
246		NO FLOW					ALLUVIUM	PAWNEE	LOCAL	
242							ALLUVIUM	SAWYER	LOCAL	UNDEVELOPED
281	0.10		VOLUMETRIC		9.8	1554	SANDSTONE	SAWYER	LOCAL	DEVELOPED
282								SAWYER	LOCAL	
284	1.30		VOLUMETRIC		10.6	2259		PAWNEE	LOCAL	
142	0.30		VOLUMETRIC	7.55	11.9		SANDSTONE	PAWNEE	LOCAL	DEVELOPED
138	0.20		VOLUMETRIC		13.1		SANDSTONE	SAWYER	LOCAL	DEVELOPED
603	0.40		VOLUMETRIC		14.3		SANDSTONE	SAWYER	LOCAL	DEVELOPED
139	0.30		VOLUMETRIC		14.2		0,	SAWYER	LOCAL	DEVELOPED
256	1.40		VOLUMETRIC		15.0		ALLUVIUM	SAWYER	LOCAL	
257	0.40		VOLUMETRIC		14.8		COAL		LOCAL	
259	1.40		VOLUMETRIC		11.8		00112	SAWYER	LOCAL	
260	0.10		VOLUMETRIC		11.4		SANDSTONE	SAWYER	LOCAL	
261	0.50		VOLUMETRIC		10.0		SANDSTONE		LOCAL	
45		NOT MEASURABLE	VOLOMETRIO		10.0		COLLUVIUM	CANYON	LOCAL	DEVELOPED
283	0.60		VOLUMETRIC		12.2				LOCAL	
576	0.40		VOLUMETRIC	7 32	12.2		CLINKER	PAWNEE	LOCAL	DEVELOPED
130	0.40		VOLUMETRIC		12.1		SANDSTONE	PAWNEE	LOCAL	DEVELOPED
130	1.60		VOLUMETRIC		14.0		SANDSTONE		LOCAL	DEVELOPED
578		DRY		1.01	11.0	2000			LOCAL	NOT MAINTAINED
46		NO FLOW					COLLUVIUM		LOCAL	NOT MAINTAINED
40	0.10		VOLUMETRIC		19.2	2771			LOCAL	DEVELOPED
44	1.40		VOLUMETRIC		19.2		COLLUVIUM		LOCAL	DEVELOPED
			VOLUMETRIC	7 4 0						DLVELOFED
132	1.80				11.6		SANDSTONE		LOCAL	
133 140	1.00	DRY	VOLUMETRIC	7.11	11.1		SANDSTONE ALLUVIUM		LOCAL LOCAL	DEVELOPED NOT MAINTAINED

						Specific				
Site	Measured					Conductance		Nearest Overlying		
Number	Discharge		Discharge		Temperature	(umhos/cm 🕲		Coalbed	Recharge	
see map)	(gpm)	Discharge Notes	Method	pН	(Degrees C)	25 C)	Source Lithology	Association	Origin	Site Status
42	0.50	Ŭ	VOLUMETRIC		19.2			PAWNEE	LOCAL	DEVELOPED
577	1.00		VOLUMETRIC	7.55	10.9		CLINKER	PAWNEE	LOCAL	DEVELOPED
129	1.00		VOLUMETRIC		11.5		SANDSTONE	PAWNEE	LOCAL	DEVELOPED
586	0.60		VOLUMETRIC		9.6		SANDSTONE	PAWNEE	LOCAL	DEVELOPED
604	0.20		VOLUMETRIC		12.8		CLINKER	PAWNEE	LOCAL	DEVELOPED
300		NO FLOW			.2.0		CLINKER	PAWNEE	LOCAL	
000		1012011					o ElitticEnt		200/12	
26		DRY						ANDERSON/DIETZ	LOCAL	
23		DRY					CLINKER	ANDERSON/DIETZ	LOCAL	DEVELOPED
22	0.30	Ditt	VOLUMETRIC		9.2		COLLUVIUM	ANDERSON/DIETZ	LOCAL	NOT MAINTAINED
514	1.10		VOLUMETRIC		5.9		SANDSTONE	ANDERSON/DIETZ	LOCAL	DEVELOPED
513	0.50		ESTIMATED		10.1	718	SANDSTONE	ANDERSON/DIETZ	LOCAL	
20		NO FLOW			10.1	, 10	SANDSTONE	ANDERSON/DIETZ	LOCAL	
512		NO FLOW					SANDSTONE	ANDERSON/DIETZ	LOCAL	DEVELOPED
30	0.60		VOLUMETRIC		19.7	616	COLLUVIUM	ANDERSON/DIETZ	LOCAL	DEVELOPED
31	1.40		VOLUMETRIC		15.3		CLINKER	ANDERSON/DIETZ	LOCAL	DEVELOPED
511	0.30		VOLUMETRIC		11.3		SANDSTONE	CANYON	LOCAL	DEVELOPED
522		NO FLOW	VOLUMETRIC		11.5	000	SANDSTONE	CANYON	LOCAL	DLVLLOFLD
29	0.40	NOTLOW	VOLUMETRIC		12.2	E / /	SANDSTONE	ANDERSON/DIETZ	LOCAL	DEVELOPED
	0.40		VOLUMETRIC	6 OF				ANDERSON/DIETZ	LOCAL	DEVELOPED
672 209	0.20				<u> </u>		CLINKER COAL	CANYON	LOCAL	DEVELOPED
		NO FLOW	VOLUMETRIC	7.00	14.0	007	COAL			DEVELOPED
210		NO FLOW		7 00	10.4	1040	SANDSTONE	_	NONE	
607	0.90		VOLUMETRIC	1.28	12.4		SANDSTONE	ANDERSON/DIETZ	LOCAL	
205		NO FLOW		7 00			COAL	ANDERSON/DIETZ	LOCAL	NOT MAINTAINED
203	0.80		VOLUMETRIC		14.1		COAL	ANDERSON/DIETZ	LOCAL	DEVELOPED
202	0.30		VOLUMETRIC	7.00	11.8		COAL	ANDERSON/DIETZ	LOCAL	UNDEVELOPED
521	0.50		ESTIMATED				CLINKER	ANDERSON/DIETZ	LOCAL	UNDEVELOPED
24	0.80		VOLUMETRIC		17.0		ALLUVIUM	ANDERSON/DIETZ	LOCAL	DEVELOPED
25	12.00		VOLUMETRIC				COLLUVIUM	ANDERSON/DIETZ	LOCAL	
516	1.40		VOLUMETRIC		4.3		CLINKER	ANDERSON/DIETZ	LOCAL	DEVELOPED
517	3.00		ESTIMATED		4.3		ALLUVIUM	ANDERSON/DIETZ	LOCAL	UNDEVELOPED
10	2.50		VOLUMETRIC		17.0		CLINKER	ANDERSON/DIETZ	LOCAL	UNDEVELOPED
9	0.10		VOLUMETRIC		17.5		COAL	CANYON	LOCAL	DEVELOPED
608	0.20		VOLUMETRIC		12.5		CLINKER	CANYON	LOCAL	DEVELOPED
606	0.60		VOLUMETRIC		14.5		SANDSTONE	CANYON	LOCAL	DEVELOPED
631	0.20		VOLUMETRIC		12.5				LOCAL	DEVELOPED
600	0.50		VOLUMETRIC		14.7		SANDSTONE	ANDERSON/DIETZ	LOCAL	DEVELOPED
601	0.10		VOLUMETRIC		14.0		SANDSTONE	ANDERSON/DIETZ	LOCAL	DEVELOPED
599	0.30		VOLUMETRIC		11.7		CLINKER		LOCAL	DEVELOPED
598	2.70		VOLUMETRIC	6.95	13.3			ANDERSON/DIETZ		DEVELOPED
19		DRY					ALLUVIUM	ANDERSON/DIETZ		NOT MAINTAINED
18	3.00		VOLUMETRIC		10.8		ALLUVIUM	ANDERSON/DIETZ		DEVELOPED
137	0.80		VOLUMETRIC		12.2			CANYON	LOCAL	DEVELOPED
135	0.90		VOLUMETRIC	7.41	13.4		COAL	CANYON	LOCAL	DEVELOPED
134	1.20		VOLUMETRIC	7.34	10.8	454	SANDSTONE	ANDERSON/DIETZ	LOCAL	DEVELOPED
136	0.30		VOLUMETRIC		14.5		SANDSTONE	CANYON	LOCAL	DEVELOPED
40		DRY						ANDERSON/DIETZ	LOCAL	

						Specific				
Site	Measured					Conductance		Nearest Overlying		
Number	Discharge		Discharge		Temperature	(umhos/cm 🕲		Coalbed	Recharge	
(see map)	(gpm)	Discharge Notes	Method	рΗ	(Degrees C)		Irce Lithology	Association	Origin	Site Status
37		DRY				ALLUVIUN		ANDERSON/DIETZ	LOCAL	
38	1.20		VOLUMETRIC		11.4	509 COLLUVIL		ANDERSON/DIETZ	LOCAL	DEVELOPED
583		NOT MEASURABLE		7.90	10.0	430 SANDSTC	DNE		LOCAL	
581	0.70		VOLUMETRIC	7.36	11.8	915 CLINKER			LOCAL	DEVELOPED
582		NOT MEASURABLE				SANDSTC	DNE		LOCAL	
39		NOT MEASURABLE			19.1	545 SANDSTC	DNE	ANDERSON/DIETZ	LOCAL	DEVELOPED
53	0.10		VOLUMETRIC		14.3	532 CLINKER		ANDERSON/DIETZ	LOCAL	DEVELOPED
52	3.50		VOLUMETRIC		13.6	401 SANDSTC	DNE	ANDERSON/DIETZ	LOCAL	DEVELOPED
67	1.50		VOLUMETRIC		16.4	469 SANDSTC	DNE	ANDERSON/DIETZ	LOCAL	NOT MAINTAINED
33	0.20		VOLUMETRIC			2816 COLLUVIL	JM	CANYON	LOCAL	
34	0.30		VOLUMETRIC		20.0	2420 SANDSTC	DNE	CANYON	LOCAL	DEVELOPED
6	0.50		VOLUMETRIC		10.3	397 ALLUVIUN			LOCAL	UNDEVELOPED
7	14.30		VOLUMETRIC		12.2	635 SANDSTC			LOCAL	NOT MAINTAINED
8	0.30		VOLUMETRIC		14.2	1042 SANDSTC			LOCAL	UNDEVELOPED
1	13.30		VOLUMETRIC		9.9	490 CLINKER			LOCAL	DEVELOPED
14		NO FLOW				SANDSTC	DNE	COOK	LOCAL	
13	7.50		VOLUMETRIC		10.8	1252 SANDSTC		COOK	LOCAL	DEVELOPED
36	0.10		VOLUMETRIC		17.0	3866 SANDSTC		CANYON	LOCAL	DEVELOPED
17	0.70		VOLUMETRIC		15.5	2430 SANDSTC		ANDERSON/DIETZ	LOCAL	DEVELOPED
16	0.90		VOLUMETRIC		11.9	526 CLINKER		ANDERSON/DIETZ	LOCAL	DEVELOPED
15	2.70		VOLUMETRIC		12.1	2072 SANDSTC	NE	CANYON	LOCAL	UNDEVELOPED
595	2.60		VOLUMETRIC	7 47	11.5	1241 SANDSTC		COOK	LOCAL	DEVELOPED
280	0.10		VOLUMETRIC	1.41	11.5	1189 SANDSTC		COOK	LOCAL	DEVELOPED
547	0.20		VOLUMETRIC	7 28	9.5	2325 SANDSTC		COOK	LOCAL	DEVELOPED
548		DRY	VOLONILINIO	1.20	5.5	2323 0410010		COOK	LOCAL	DEVELOPED
35	0.30	DITI	VOLUMETRIC		19.8	4656 COLLUVIL	IM	SAWYER		NOT MAINTAINED
125	0.30		VOLUMETRIC	6 73	13.0	2448 COAL		CANYON	LOCAL	DEVELOPED
123	0.20		VOLUMETRIC		11.1	3929 SANDSTC		COOK	LOCAL	DEVELOPED
123	0.10		VOLUMETRIC		11.3	3225 SANDSTC		COOK	LOCAL	DEVELOPED
545	0.10		VOLUMETRIC		9.8	2115 SANDSTC		CANYON	LOCAL	DEVELOPED
	1.20				<u> </u>	1092 CLINKER	JNE .	COOK	LOCAL	DEVELOPED
546	0.40		VOLUMETRIC		14.5	2674 SANDSTC		COOK	LOCAL	DEVELOPED
89			VOLUMETRIC					COOK	LOCAL	
126 544	1.00 0.50		VOLUMETRIC		11.5	3830 SANDSTC		COOK	LOCAL	DEVELOPED NOT MAINTAINED
			VOLUMETRIC		8.9	3671 SANDSTC				
526	0.50		VOLUMETRIC		7.9	3556 SANDSTC		COOK	LOCAL	DEVELOPED
111	1.10		VOLUMETRIC	1.22	15.1	3365 SANDSTC	JNE	CANYON	LOCAL	DEVELOPED
258	0.70		VOLUMETRIC	7.00	10.7	3409 CLINKER		CANYON	LOCAL	
594	0.60		VOLUMETRIC		14.1	1475 SANDSTC		CANYON	LOCAL	DEVELOPED
113	0.40		VOLUMETRIC		18.3	3416 SANDSTC		CANYON	LOCAL	DEVELOPED
110	0.80		VOLUMETRIC		15.1	2061 SANDSTC		CANYON	LOCAL	DEVELOPED
112	0.20		VOLUMETRIC	1.00	15.7	2085 SANDSTC		CANYON	LOCAL	DEVELOPED
105		NO FLOW				SANDSTC	DNE	COOK	LOCAL	UNDEVELOPED
596	1.00		VOLUMETRIC			3846 CLINKER		COOK	LOCAL	DEVELOPED
104	0.20		VOLUMETRIC	7.33	17.8	2942 SANDSTC		COOK	LOCAL	DEVELOPED
253		DRY				SANDSTC		COOK	LOCAL	DEVELOPED
524	1.00		VOLUMETRIC	7.04	5.2	3209 SANDSTC		CANYON	LOCAL	
593		DRY				ALLUVIUN	Λ	COOK	LOCAL	DEVELOPED

Site Number (see map)	Measured Discharge (gpm)	Discharge Notes	Discharge Method	рН	Temperature (Degrees C)	Specific Conductance (umhos/cm @ 25 C)	Source Lithology	Nearest Overlying Coalbed Association	Recharge Origin	Site Status
109	0.70		VOLUMETRIC	6.98	14.0	2023		CANYON	LOCAL	DEVELOPED
108	0.20		VOLUMETRIC	7.04	12.6	1846 SAN	DSTONE	CANYON	LOCAL	DEVELOPED
119		DRY				SAN	DSTONE	ANDERSON/DIETZ	LOCAL	NOT MAINTAINED
103	0.20		VOLUMETRIC	7.19	15.6	1708 SAN	DSTONE	CANYON	LOCAL	DEVELOPED
128	0.20		VOLUMETRIC	6.86	12.6	1532 SAN	DSTONE	CANYON	LOCAL	DEVELOPED
88	0.80		VOLUMETRIC	7.57	15.2	2382 ALLI	JVIUM	COOK	LOCAL	DEVELOPED
525	0.70		VOLUMETRIC	6.72	7.4	2960 COA	L	COOK	LOCAL	
588	15.00		VOLUMETRIC	6.99	12.0	680		ANDERSON/DIETZ	LOCAL	DEVELOPED
98		NOT MEASURABLE						CANYON	LOCAL	UNDEVELOPED
99		NOT MEASURABLE				ALLU	JVIUM	CANYON	LOCAL	UNDEVELOPED
97	0.40		VOLUMETRIC	7.16	18.5	758 SAN	DSTONE	ANDERSON/DIETZ	LOCAL	DEVELOPED
587	0.90		VOLUMETRIC	6.91	8.3	3600		CANYON	LOCAL	DEVELOPED
115	0.80		VOLUMETRIC	7.26	13.8	2520 CLIN	KER	KNOBLOCH	REGIONAL	DEVELOPED
116		NO FLOW				ALLU	JVIUM	CANYON	LOCAL	
117	0.60		VOLUMETRIC	6.86	14.6	3344 SAN		CANYON	LOCAL	DEVELOPED
118	0.70		VOLUMETRIC	6.83	13.1	2490 SAN	DSTONE	CANYON	LOCAL	DEVELOPED
100	0.60			7.62	16.3	1963 SAN		CANYON	LOCAL	DEVELOPED
591	0.20		VOLUMETRIC	7.78		2877 SAN	DSTONE	KNOBLOCH	REGIONAL	DEVELOPED
592	0.80		VOLUMETRIC	7.81	11.0	2402 COL	LUVIUM	COOK	REGIONAL	DEVELOPED
102	0.10		VOLUMETRIC	7.92		2188 CLIN	KER	KNOBLOCH	REGIONAL	DEVELOPED
204		NOT MEASURABLE				COA	1	ANDERSON/DIETZ	LOCAL	UNDEVELOPED
206		NO FLOW					JVIUM	CANYON	LOCAL	DEVELOPED
207		NO FLOW					JVIUM	CANYON	LOCAL	DEVELOPED
208		DRY					JVIUM	CANYON	LOCAL	DEVELOPED
106		DRY						CANYON		DEVELOPED
528	0.50		VOLUMETRIC	6.84	9.2	2815 CLIN	KER	CANYON		NOT MAINTAINED
530	1.30		VOLUMETRIC	6.96	10.1	2171 SAN		ANDERSON/DIETZ	LOCAL	
529	1.70			6.98	8.7	1920 CLIN			LOCAL	
201		NO FLOW			-		L/SANDSTONE		LOCAL	
634	0.20		VOLUMETRIC	7.39	19.7	1137 SAN			LOCAL	DEVELOPED
633	0.20		VOLUMETRIC	7.78	16.4	658			LOCAL	DEVELOPED
68	0.30			7.90	18.0	2181 SAN	DSTONE		LOCAL	DEVELOPED
69	0.30			7.19	14.8	1595 CLIN		ANDERSON/DIETZ	LOCAL	DEVELOPED
70	0.30			7.07	16.2	2763 SAN			LOCAL	DEVELOPED
71	0.80		VOLUMETRIC	7.68	16.0	2460 SAN			LOCAL	PARTIALLY DEVELOPED
238		NO FLOW				CLIN			LOCAL	DEVELOPED
624		DRY					KER		LOCAL	NOT MAINTAINED
627		NOT MEASURABLE				-			LOCAL	DEVELOPED
531		DRY						ANDERSON/DIETZ		
505		NOT MEASURABLE			5.8	1598 ALLI	JVIUM	CANYON	LOCAL	UNDEVELOPED
506		NOT MEASURABLE			7.3	2680 ALLI		CANYON	LOCAL	UNDEVELOPED
527			VOLUMETRIC	7.08		1530 SAN			LOCAL	
628			VOLUMETRIC		18.4	3495 SAN		ANDERSON/DIETZ		DEVELOPED
12		NO FLOW					DSTONE	CANYON	LOCAL	
11	0.60		VOLUMETRIC		19.8	3895 CLIN		CANYON	LOCAL	
625			VOLUMETRIC	7.72				ANDERSON/DIETZ		DEVELOPED

Site Number (see map)	Measured Discharge (gpm)	Discharge Notes	Discharge Method	рH	Temperature (Degrees C)	Specific Conductance (umhos/cm 20 25 C)	Source Lithology	Nearest Overlying Coalbed Association	Recharge Origin	Site Status
(300 map) 626	0.90	Discharge Notes		7.43	13.1		CLINKER	ANDERSON/DIETZ	LOCAL	DEVELOPED
4	0.30		VOLUMETRIC	7.40	17.8		SANDSTONE	CANYON		DEVELOPED
629		DRY	VOLONIETINO		17.0	0020	6/ TECTONE	ANDERSON/DIETZ	LOCAL	DEVELOPED
673		DRY					ANDERSON COAL CLINKER	ANDERSON/DIETZ	LOCAL	DEVELOPED
5		DRY					CLINKER	ANDERSON/DIETZ	LOCAL	DEVELOPED
3		NO FLOW						NONE	NONE	
120	0.20	1012011	VOLUMETRIC	6.76	12.9	3206	SANDSTONE	CANYON	LOCAL	DEVELOPED
127	0.40		VOLUMETRIC		8.6		SANDSTONE	CANYON	LOCAL	DEVELOPED
618	0.20		VOLUMETRIC		15.9		SANDSTONE	CANYON	LOCAL	DEVELOPED
623	0.20		VOLUMETRIC		16.4		CLINKER	CANYON	LOCAL	DEVELOPED
674	0.06		VOLUMETRIC				COLLUVIUM	COOK		DEVELOPED
677	0.30		VOLUMETRIC	6.80	11.5	2465	SANDSTONE	CANYON	LOCAL	DEVELOPED
676	1.80		VOLUMETRIC		13.4		SANDSTONE			DEVELOPED
675	0.30		VOLUMETRIC		12.8		COAL	COOK		DEVELOPED
2	0.90		VOLUMETRIC		12.2		COAL	COOK		DEVELOPED
630	0.10		VOLUMETRIC	7.11			SANDSTONE	CANYON	LOCAL	DEVELOPED
671	0.30		VOLUMETRIC		11.2		SANDSTONE	CANYON		DEVELOPED
622	0.90		VOLUMETRIC		16.4		SANDSTONE	COOK		DEVELOPED
121	1.30			6.87	13.2		COAL	ANDERSON/DIETZ	LOCAL	DEVELOPED
87		NO FLOW						ANDERSON/DIETZ	LOCAL	
122	0.30		VOLUMETRIC	7.00	12.4	2833	SANDSTONE	CANYON	LOCAL	DEVELOPED
86	0.60		VOLUMETRIC	7.38	14.0	1438		CANYON	LOCAL	DEVELOPED
85	0.80		VOLUMETRIC	7.25	15.4	2995	SANDSTONE	CANYON	LOCAL	DEVELOPED
81	0.80			7.37	12.4	3204	SANDSTONE	CANYON	REGIONAL	
83		DRY					CLINKER	ANDERSON/DIETZ	LOCAL	
670		DRY					CLINKER	ANDERSON/DIETZ	LOCAL	DEVELOPED
621	0.60		VOLUMETRIC		16.1	3245	SANDSTONE	CANYON	LOCAL	DEVELOPED
620	1.10		VOLUMETRIC	7.20	12.4	2585	SANDSTONE	CANYON	LOCAL	DEVELOPED
619	1.00		VOLUMETRIC	7.21	16.4	2634	SANDSTONE	CANYON	LOCAL	
114	0.40		VOLUMETRIC		11.7		CLINKER	CANYON	REGIONAL	DEVELOPED
615	0.10		VOLUMETRIC				COLLUVIUM	COOK	LOCAL	DEVELOPED
616	0.10		VOLUMETRIC	7.47			CLINKER	COOK	LOCAL	DEVELOPED
614	0.20		VOLUMETRIC		19.8		COAL	KNOBLOCH		DEVELOPED
613	0.70		VOLUMETRIC	6.91	12.5	3670	COLLUVIUM	KNOBLOCH	REGIONAL	DEVELOPED
612		NOT MEASURABLE					SANDSTONE	CANYON		NOT MAINTAINED
82	0.60		VOLUMETRIC	7.42	13.0			CANYON	REGIONAL	DEVELOPED
84	0.60		VOLUMETRIC	7.31	14.5	3071	CLINKER	CANYON	REGIONAL	
617	0.60		VOLUMETRIC	7.28	12.8	4040	CLINKER	CANYON		DEVELOPED
635	0.01		ESTIMATED	8.15		2864		CANYON	REGIONAL	DEVELOPED

Appendix B. Spring Inventory Data for the Ashland Ranger District, 2002 and 2003

Site Number (see map)	Well Name	Township	Range	Section	Tract	GWIC ID	Latitude	Longitude	Altitude (ft)	Site Number (see map)
697	COTTONWOOD WELL	02S	45E	3	BBBC	98567	45.69835	-106.16999	3350	697
692	WHITETAIL WELL	02S	47E	20	CBBD	205090	45.64436	-105.96245	3850	692
698	MANNING WELL	02S	48E	19	BCCA	98663	45.64847	-105.85740	3550	698
694	EAST FORK WELL	03S	45E	10	BACD	100472	45.59349	-106.16425	3210	694
693	WEST HOME WELL	03S	46E	6	AADA	205091	45.60566	-106.08473	3265	693
691	LOWER HOME WELL	03S	46E	14	DBBB	205089	45.57130	-106.01218	3355	691
690	SCHOOL HOUSE WELL	03S	46E	23	AAAC	205088	45.56373	-106.00357	3345	690
680	LEMONADE WELL	03S	47E	28	ACAC	205081	45.54526	-105.92670	3605	680
699	KING CREEK WELL	04S	44E	23	DACC	101944	45.47243	-106.25936	3635	699
701		04S	44E	32	ABAA	199563	45.44016	-106.32175	3265	701
689	NEWELL WELL	04S	45E		DADD	7589	45.47275	-106.21431	3290	689
688	TENMILE WELL	04S	46E		CBCA	161284	45.43997	-106.11218	3215	688
700		04S	46E	35	BADA	199674	45.44707	-106.02258	3660	700
695	PADGET CREEK WELL	05S	44E	22	BBBD	103155	45.39398	-106.29401	3385	695
696	CHROMO WELL	05S	45E	5	AAAA	205092	45.43798	-106.19566	3295	696
686	WATT WELL	05S	46E	21	CDCD	205087	45.38027	-106.06660	3295	686
687	SKINNER GULCH WELL	05S	47E	3	CBAC	183565	45.42755	-105.91705	3725	687
681	SPRING CREEK PIPELINE WELL	05S	47E	20	ACAC	205082	45.38829	-105.95375	3630	681
682	MASON WELL	06S	48E	32	DDBC	205083	45.26370	-105.86149	3680	682
683	INDIAN WELL	07S	46E	10	AADD	205084	45.24936	-106.07604	3615	683
684	STEWART WELL	07S	46E	10	ADAD	205085	45.24777	-106.07581	3505	684
685	TAYLOR CREEK WELL	07S	47E	16	CCCB	205086	45.22624	-105.99395	3770	685

Appendix C–Well Inventory Data for the Ashland Ranger District, 2002 and 2003

			Measured			Specific Conductanc	Oxygen Reduction	
Site Number			Discharge		Temperature	e (umhos/	Potential	Measuring Point
(see map)	USGS Quadrangle	Inventory Date	(gpm)	рН	(Degrees C)	cm @25 C)	(mv)	Description
697	COOK CREEK RESERVOIR	7/16/2003	3.0	7.01	13.3	² 1955		
692	STACEY	6/22/2003						
698	ELK RIDGE	7/15/2003						TOP OF CASING
604	WILLOW CROSSING	6/22/2003		8.69	16.8	1650	58	
	BEAVER CREEK SCHOOL	6/22/2003		0.09	10.0	1000	90	
	HOME CREEK BUTTE	6/21/2003		7.67	11.8	3025	25	
	HOME CREEK BUTTE	6/21/2003		1.07	11.0	3023	20	
	HOME CREEK BUTTE	6/2/2003						TOP OF CASING
	GREEN CREEK	9/5/2002	2.0		15.3	3070		
	GREEN CREEK		NO FLOW					
	KING MOUNTAIN	6/21/2003		7.80		219	88	
	YAGER BUTTE	6/21/2003						
700	YAGER BUTTE	10/7/2002						
695	GREEN CREEK	6/26/2003						
696	KING MOUNTAIN	7/16/2003						TOP OF CASING
686	YAGER BUTTE	6/21/2003						TOP OF CASING
	THREEMILE BUTTES	6/21/2003						TOP OF CASING
681	THREEMILE BUTTES	6/2/2003						
682	HODSON FLAT	6/19/2003						TOP OF CASING
683	REANUS CONE	6/20/2003						
	REANUS CONE	6/20/2003						
685	SAYLE	6/20/2003						

Appendix C–Well Inventory Data for the Ashland Ranger District, 2002 and 2003

Site Number (see map)	Static Water Level (ft)	Site Number (see map)	Measuring Point Above Land Surface (ft)	Casing Diameter (inches)	Site Notes
697		697			STOCK WELL. WINDMILL AND GAS PUMP JACK.
692		692			PUMPING. NO DISCHARGE POINT NEAR WELL.
698	97.35	698	2.00	4.00	NOT PUMPING. WINDMILL
694		694			PUMPING. DISCHARGE TO TANK 50 FEET WEST
693		693			WELL HEAD INACCESSIBLE.
691		691			PUMPING. DISCHARGE TO TANK NEAR WELL
690		690			PUMPING. NO DISCHARGE POINT NEAR WELL
680	8.70	680	0.80		ELECTRIC PPUMP, NOT CURRENTLY PUMPING.
699		699			WINDMILL. NO TD MEASUREMENT.
701		701			SANDSTONE OUTCROP ON CLIFF TO NORTH
689		689			PUMPING. DISCHARGE TO TANK NEAR WELL
688		688		8.00	DEPTH TO WATER EXCEEDS PROBE LENGTH.
700		700			STOCK WELL WITH PUMP AND TANK, NEAR
695		695			PUMPING. NO DISCHARGE POINT NEAR WELL
696	179.97	696	1.79		CURRENTLY NOT BEING PUMPED.
686		686	1.20	8.00	WELL IS FENCED NEXT TO TANK.
687	51.79	687	3.12		WELL IS FENCED.
681		681		8.50	WELL WAS BEING PUMPED.
682		682	1.80		WELL WAS BEING PUMPED. PUMPING WATER
683		683			WINDMILL. WELL HEAD INACCESSIBLE.
684		684			WINDMILL. DISCONNECTED. WELL HEAD
685		685			WINDMILL. PUMPING. WELL HEAD

Appendix C–Well Inventory Data for the Ashland Ranger District, 2002 and 2003

Site Number	Discharge	Oxygen Reduction	lron, Total	Iron, ferrous	Alkalinity (mg/L as	Calcium Hardness (mg/L as	Total Hardness (mg/L as	Magnesium Hardness (mg/L)	
(see map)	(gpm)	Potential (mv)	(mg/L)	(mg/L)	CaCO ₃)	CaCO₃)	CaCO₃)	as CaCO₃)	GWIC ID
72	0.3		0.07	0.01					197880
75	0.9		1.48	0.36					7767
81	0.8		0.01						197871
85	0.8		0.04	0.02					197867
103	0.2	137							197665
104	0.2	160							197663
108	0.2	159	0.03	0.01	522	396	496	100	199569
109	0.7	53	0.85	0.08	502	368	380	12	199565
110	0.8	18	0.56	0.1	630	325	635	210	199566
111	1.1	163	0.02	0.02	526	380	700	320	198891
112	0.2	162	0.05	0.02	690	372	464	92	198892
113	0.4	175	0.02	0.02	862	544	808	264	198893
114	0.4	110	1.42	0.01	282	200	182	<1.0	205093
115	0.8	157	0.01	<0.01	496	368	680	312	199570
117	0.6	75	0.63	0.01	740	480	576	96	199572
118	0.7	50	3.9	<0.01	616	380	380	<1.0	199573
120	0.2	165	0.04	<0.01	620	740	1060	320	199575
121	1.3	54	0.7	0.27	284	152	120	<1.0	199576
122	0.3	103	0.02	<0.01	480	468	612	144	199577
123	0.1	106	0.01	<0.01	430	328	612	284	199578
124	0.1	94	0.08	<0.01	322	674	1952	1278	199579
125	0.2	157	0.04	0.01	341	500	872	372	199567
126	1.0	177	0.01	<0.01	294	556	1404	848	199568
127	0.4	201	0.01	<0.01	588	384	944	560	199580
128	0.2	112	0.41	0.02	410	308	500	192	199581
129	1.0	169	0.02		310	264	332	68	199582
130	0.4	161	0.02		604	312	660	348	199583
131	1.6	111			606				199584
132	1.8	161			898				199585
133	1.0	130			898				199586
134	1.2	131	0.21	<0.01	178	112	112		199587
135	0.9	180	0.05	0.01	966	304	812	508	199588
136	0.3	129	0.11	0.04	658	350	350	<1.0	199589
137	0.8	183		<0.01	546	440	920	480	199590
138	0.2	-147	2.64	2.64	868	636			7796
139	0.3	119	0.02	<0.01	922	676			7800
141	1.5	84			540				198766
142	0.3	85							198768

Appendix D–Additional field-water-quality data for selected springs on the Ashland Ranger District, 2002

Site Number (see map)	Discharge (gpm)	Oxygen Reduction Potential (mv)	lron, Total (mg/L)	Iron, ferrous (mg/L)	Alkalinity (mg/L as CaCO₃)	Calcium Hardness (mg/L as CaCO3)	Total Hardness (mg/L as CaCO₃)	Magnesium Hardness (mg/L) as CaCO₃)	GWIC ID
143	0.3	151			570	-			198777
144	0.6	157							198810
145	1.5	16			581				198811
147	0.8	111			432				198813
148	0.6	166							198817
149	0.3	27							198819
150	0.7	144	0.01		442				198821
151	0.1	108			472				198822
152	0.5	148							7253
153	1.3	55			358				7249
154	0.6	87			540				199594
159	0.8	87							198862
160	0.1	110							199596
162	0.6	103							198889
164	0.2	58							199597
165	1.2	90							204932
166	0.1	145							199598
167	0.1	178							7247
168	1.1	184							199600
169	1.2	177							199601
170	0.2	124							199602
171	0.1	194							199603
173	0.06	136							199606
175	0.3	107							199608
176	0.2	125							199609
177	0.04	181							199610
179	0.3	66							199612
180	0.5	154							7418
181	0.3	131							199614
182	0.7	142							7246
184	0.3	103							199617
186	0.4	89							199619
189	0.3	55							199622
190	0.2	58							199623
191	2.0	134							199625
193	1.2	90							199626
195	0.1	180							199628
524	1.0	-35							204951

Appendix D–Additional field-water-quality data for selected springs on the Ashland Ranger District, 2002

Site Number (see map)	Discharge (gpm)	Oxygen Reduction Potential (mv)	Iron, Total (mg/L)	Iron, ferrous (mg/L)	Alkalinity (mg/L as CaCO₃)	Calcium Hardness (mg/L as CaCO ₃)	Total Hardness (mg/L as CaCO₃)	Magnesium Hardness (mg/L) as CaCO₃)	GWIC ID
525	0.7	81							204952
526	0.5	124							204953
527	6.7	156							204954
528	0.5	136							204955
529	1.7	-35							204956
530	1.3	1							204957
532	0.08	35							7565
535	0.4	106							204961
536	0.1	114							204962
540	0.4	25							204964
541	0.1	119							204965
542	0.3	77							204966
544	0.5	24							204968
545	0.2	43							204969
546	1.2	29							204970
547	0.2	60							204971
549	7.5	113							204973
550	0.5	68							204974
551	0.1	73							204975
552	0.5	63							204976
558	3.5	58							204981
559	1.8	84							204982
560	0.3	68							204983
561	0.4	70							204984
562	0.2	63							204985
563	1.1	66							204986
564	1.5	73							204987
567	0.3	146							204990
568	0.3	118							204991
569	0.2	131							204992
571	0.9	65							204994
573	0.9	119							204996
574	5.5	29							204997
575	0.06	172							204998
576	0.4	120							204999
577	1.0	109							205000
579	0.3	102							205002
581	0.7	106							205004

Appendix D–Additional field-water-quality data for selected springs on the Ashland Ranger District, 2002

Site Number (see map)	Discharge (gpm)	Oxygen Reduction Potential (mv)	Iron, Total (mg/L)	Iron, ferrous (mg/L)	Alkalinity (mg/L as CaCO ₃)	Calcium Hardness (mg/L as CaCO ₃)	Total Hardness (mg/L as CaCO ₃)	Magnesium Hardness (mg/L) as CaCO₃)	GWIC ID
583		91							205006
584	0.2	54							205007
585	0.5	60							205008
586	0.6	68							205009
587	0.9	-10							205010
588	15.0	117							205011
589	1.3	86							205012
590	1.1	82							205013
591	0.2	53							205014
592	0.8	78							205015
594	0.6	100							205017
595	2.6	79							205018
596	1.0	102							205019
597	1.8	156							205020
598	2.7	126							205021
599	0.3	108							205022
600	0.5	150							205023
601	0.1	138							205024
602	0.1	121							205025
603	0.4	127							205026
604	0.2	95							205027
606	0.6	140							205029
607	0.9	34							205030
608	0.2	98							205031
609	0.8	31							205032
613	0.7	36							205034
614	0.2	-54							205035
615	0.1	75							205036
616	0.1	-40							205037
617	0.6	130							205038
618	0.2	173							205039
619	1.0	23							205040
620	1.1	30							205041
621	0.6	47							205042
622	0.9	36							205043
623	0.2	134							205044
625	0.6	112							205046
626	0.9	112							205047

Appendix D–Additional field-water-quality data for selected springs on the Ashland Ranger District, 2002

Appendix D–Additional field-water-quality data for selected springs on the Ashland Ranger District, 2002

Site Number (see map)	Discharge (gpm)	Oxygen Reduction Potential (mv)	lron, Total (mg/L)	Iron, ferrous (mg/L)	Alkalinity (mg/L as CaCO₃)	Calcium Hardness (mg/L as CaCO ₃)	Total Hardness (mg/L as CaCO ₃)	Magnesium Hardness (mg/L) as CaCO₃)	GWIC ID
628	0.6	111							205049
630	0.1	-30							205051
631	0.2	153							205052
633	0.2	132							205053
634	0.2	139							205054
635	0.01	118							205055

Site	
Number	Site Notes
1	3 DEVELOPMENTS ON WEST SLOPE COMBINE TO FORM STREAM.
2	2 TANKS OF W SIDE OF OTTER CK RD. BASE OF SANDSTONE CLIFF IN COAL OUTCROP BELOW COAL BED.
3	STOCK WATER CATCHMET BASIN, WITH POOL IN SHELTER
	ISSUES FROM SANDSTONE ON SW SIDE OF VALLEY 100 FEET FROM STOCK TANK. BELOW CLINKER RIDGE TOP.
	DRY; DEVELOPMENT IS ABOUT 50 FEET W OF TANK; SOURCE WAS CLINKER ON RIDGE TOP.
	NORTH BRANCH TO RESERVOIR. SEEP FROM BANK IN TERRACE FED BY CLINKER RIDGES TO N AND W. FORMS POOLS.
7	MINOR OLD WORK. SPRING ISSUES FROM SLUMP OF OUTCROP OF SANDSTONE BELOW CLINKER RIDGE.
8	ISSUES FROM SLOPE - SANDSTONE FLOAT - CLINKER ON RIDGE -
	ISSUES FROM COAL SEAM. MUD INDICATES ADDITIONAL SEEPAGE NOT IN DEVELOPED FLOW. IRON RICH.
10	3 SEEPAGE POINTS ON NORTH BANK OF STREAM VALLEY. ISSUING FROM CLINKER HILLSIDE AND LOOSE SLOPE WASH.
	V-SHAPED DRAINAGE; SOURCE IS ALLUVIUM BELOW CLINKER. SUPPORTS WET SPOT IN CREEK.
12	SPRING IS MINOR SEEPAGE FROM SANDSTONE BELOW COAL. BLACK WATER WITH OILY SHEEN. SEVERAL SMALL SEEPS.
-	AT BERM OF COW CREEK RD. FLOW MEASURED FROM SMALL CHANNEL NEXT TO PIPE. SANDSTONE IN ROAD CUT.
	SIDE DRAINAGE TO COW CREEK. SPRING AT THE BASE OF SANDSTONE. DRY. WATER IN COW TRACKS.
	AT BASE OF SANDSTONE. SEVERAL SEEPS WHERE SANDSTONE SUBCROP CROSSES CREEK.
	STEEP V-SHAPED DRAINAGE. OLD BOARDS AND PIPE. SERIOUS LEAFY SPURGE - KNAPWEED AND THISTLE PROBLEM.
	DEVELOPED. SANDSTONE SUBCROP ABOVE COLLECTION POINT. CLINKER ABOVE SANDSTONE.
18	SPRING ABOVE RESERVOIR; 2 TANKS. COLLECTION PIPES IN ALLUVIUM. SMALL DAM ABOVE SITE IS DRY.
	BELOW RESERVOIR FOR 18 IN ALLUVIAL BOTTOM. TANK IS RUSTED OUT. OLD STEEL PIPE SYSTEM BROKEN. NO WATER.
	SITE IS BELOW CLINKER AND SANDSTONE. TWO POOLS IN DRAINAGE BOTTOM; NO FLOW.
	COLLAPSED WOODEN STOCK TANK. SIGN ON TREE. COWS DRINK FROM DISCHARGE. WOODEN SPRING BOX. COLLUVIUM.
	DRY; LARGE COVERED FIBERGLASS TANK AT FORK IN CREEK. WET AREA IN CREEK BOTTOM; DAMP; NO FLOW.
	WESTERN OF TWO SPRINGS (24-25). COLLUVIUM/ALLUVIUM; NOT MAINTAINED. OLD WOODEN COLLECTION DAMS.
	EASTERN OF 2 SPRINGS AT SITE. 300 FT SEEP AREA IN CREEK BOTTOM. GOOD FLOW. COLLUVIUM W/SANDSTONE FLOAT.
	DRY. CLINKER AT TOP OF DRAINAGE; SANDSTONE ABOVE SPRING SITE. NO WATER. (MAY HAVE MISSED THE SPRING)
	ON ODELL CREEK RD. SPRING IS AT THE BASE OF SANDSTONE.
	WOODEN TANK, GOOD CONDITION; NOT USED. 200 FEET LONG SEEP IN CREEK ABOVE TANK. SOURCE IS SANDSTONE.
	LOWER OF 2 SPRINGS (30, 31). STOCK TANK ON COLLUVIAL SLOPE. CLINKER FLOAT. MAY BE FROM UPPER SPRING.
	UPPER OF 2 SPRINGS. RECENTLY REBUILT W/18 INCH PVC COLLECTOR. COAL AND CLINKER IN EXCAVATION.
-	NOT MAINTAINED. COLLAPSED WOODEN STOCK TANK. SANDSTONE. CLINKER OUTCROP LESS THAN 100 FEET ABOVE.
	SPRING IS FROM A SIDE DRAINAGE TO STAG ROCK CREEK. NO SURFACE FLOW. BELOW CLINKER RIDGE.
	RECENT REDEVELOPMENT; ALL WATER COLLECTED. FLOW FORM SANDSTONE. STOCK TANK/18 INCH STANDPIPE PVC.
	BURIED WOODEN STOCK TANK FULL OF CATTAILS. SOURCE IS FROM MOUND BUILT UP IN COLLUVIUM AND SANDSTONE.
	SANDSTONE ABOVE SPRING. COLLUVIUM AT SPRING. LOW FLOW; TANK IS ONLY 1/4 FULL. STAGNANT H2S ODOR.
	1 FOOT DEEP HOLES IN CREEK BOTTOM ARE DRY; SITE IS IMMEDIATELY BELOW RIDGETOP CLINKER.
	REBUILT W/18-IN COLLECTOR. COLLECTION GALLERY ALONG COLLUVIAL SLOPE. CLINKER AND SANDSTONE IN COLLUVIUM.
39	SANDSTONE. STEEP DRAINAGE. BURIED WOODEN TANK IN CREEK BOTTOMNOT ALL FLOW CAPTURED.

40 ONLY SITE LOCATED IS A DAMP SPOT BELOW CLINKER AND SANDSTONE. STEEP DRAINAGE. (MAY HAVE MISSED SITE)
41 SITES 41, 42, 44. UPPER MOST SPRING. PROBABLY SUPPLIES MIDDLE TANK. COLLUVIUM SOURCE.
41 SITES 41, 42, 44. OFFER MOST SPRING. PROBABLY SOFFLIES MIDDLE TANK. COLLOVION SOURCE. 42 SITES 41, 42, 44. HIGHEST ELEVATION STOCK TANK- BUT 2D HIGHEST SPRING AT SITE.
43 OLDER TANK SITS ON SANDSTONE AT BASE OF CLINKER FROM RIDGETOP. SPRING FLOWS FROM ABOVE SANDSTONE.
44 SITES USFS 41, 42, 44. 3D STOCK TANK DOWN DRAINAGE LOWEST SITE. VERY LOW FLOW TO TANK.
44 SITES 03F3 41, 42, 44. 3D STOCK TARK DOWN DRAINAGE LOWEST SITE. VERT LOW FLOW TO TARK. 45 COLLUVIUM SOURCE. NOT ALL FLOW CAPTURED; 300 FEET OF MUDDY CREEK BOTTOM ABOVE TARK. LITTLE FLOW.
46 STOCK TANK IS BROKEN. FLOW FROM COLLUVIAL HILLSIDE ON SILT AND CLINKER RIDGES. WATER IN COW PRINTS.
47 COLLAPSED WOODEN TANK; 18 INCH STANDPIPE. DAMMED DISCHARGE FLOW ABOVE TANK. SANDSTONE IN COLLUVIUM.
48 WOODEN STOCK TANK IN GOOD CONDITION BUT OVERGROWN. PIPE NOT CONNECTED TO TANK. NO FLOW. VERY DRY.
49 OLD WOODEN TANK; ABANDONED. SPRING ON SLOPES ABOVE CREEK BOTTOM. COLLUVIUM BELOW SANDSTONE.
50 SITE IS WELL-MAINTAINED AND IN GOOD CONDITION. COLLUVIUM.
51 24 INCH PVC STANDPIPE VISIBLE FROM HIGHWAY. PUMP INSIDE STANDPIPE. STOCK TANK IS ABOVE SITE ABOUT 50 YDS.
52 STREAM FLOW IN CREEK BOTTOM ABOVE TANK. STEEP DRAINAGE BELOW CLINKER. SANDSTONE FLOAT.
53 PIPE BROKEN. SITE AT BASE OF 1ST CLINKER RIDGE; CHANNEL ABOVE IS DEEPLY INCISED INTO CLINKER.
54 SPRING DEVELOPED IN COLLUVIUM ALONG CREEK BANK; 2 STOCK TANKS FULL. ALL FLOW CAPTURED. GOOD CONDITION.
55 OLD WOODEN STOCK TANK COLLAPSED AND BURNED. 2 SOURCES, (NEW TANK USFS-43 IS UPPERMOST IN DRAINAGE).
56 FIBERGLASS TANK DRY; DRAINAGE BELOW SITE IS DRY. CORRUGATED METAL COVER OVER FENCED SPRING BOX.
57 DRAINAGE BADLY WASHED OUT FROM FIRES; SITE IS BELOW BURNED AREA. SPRING IS WHERE ROAD CROSSES CREEK.
58 BURNED AREA. TANK AND PIPE BROKEN AT SOURCE. STOCK TANK AT FENCELINE. GOOD FLOW FROM PIPE.
59 SEEP FROM HILLSIDE 15 FEET ABOVE CREEK BOTTOM. SANDSTONE. COLLAPSED WOODEN STOCK TANK NEAR ROAD.
60 FIBERGLASS STOCKTANK. STEEP DRAINAGE. VERY LOW FLOW. COLLECTION PIPE IN COLLUVIUM AT FORK IN DRAINAGE.
61 DEVELOPED SPRING; NEWER INSTALLATION. TANK IS FULL; WATER IN STANDPIPE IS CLEAR. LOWER OF 2 AT SITE.
62 OVAL CORRUGATED STEEL STANDPIPE; 36 INCH WIDE- RUSTY. WATER APPEARS STAGNANT. UPPER OF 2 AT SITE.
63 WOODEN STOCK TANK DRY. WET AROUND TANK. BROKEN POLY PIPE RUNNING ON GROUND. SPRING ABOVE CREEK.
64 STOCK TANK ON ROAD; GOOD CONDITION- IN USE. SANDSTONE; SILTY OUTCROP ON BANK ABOVE COLLECTION AREA.
65 STOCK TANK IN GOOD CONDITION. SANDSTONE AT ROAD ABOVE SPRING. SOURCE IS ALLUVIUM AND COLLUVIUM.
66 UNDERCUT- LEDGE FORMING SANDSTONE AT SPRING 3-4 FOOT OVERHANG. 3 SPRING SEEPS.
67 UPPER SITE TO 52. WOODEN STOCK TANK- GOOD CONDITION; SANDSTONE AT BASE OF CLINKER. FLOW NOT CAPTURED.
68 STOCK SPRING ISSUING FROM SANDSTONE. DEVELOPMENT IS 100 FEET NORTH OF TANK ON WEST SIDE OF DRAW.
69 DEVELOPED STOCK SPRING ISSUING AT BASE OF CLINKER. DEVELOPMENT APPEARS TO BE 20 FEET SE OF TANK.
70 DEVELOPED STOCK SPRING ISSUING FROM SANDSTONE BELOW CLINKER.
71 PARTIALLY DEVELOPED STOCK SPRING ISSUING FROM SANDSTONE BELOW CLINKER AND ALLUVIUM FED BY SANDSTONE.
72 SPRING DEVELOPED IN HAY CREEK ALLUVIUM. SANDSTONE ON VALLEY WALLS TOPPED BY THIN CLINKER BED.
73 SPRING DEVELOPED IN COLLUVIUM. YELLOW TO LT. TAN SANDSTONE BEDS IN OUTCROP ABOVE SPRING.
74 UNDEVELOPED. AT HEAD OF DRY WASH. SANDSTONE ON EITHER SIDE OF CREEK.
75 STREAM DEVELOPED IN ALLUVIAL BOTTOM FILL. SANDSTONE TO NW ABOVE COAL.
76 STREAM DEVELOPED IN ALLUVIAL BOTTOM FILL. SANDSTONE TO NW ABOVE COAL.
79.5 MILE DOWNSTREAM FROM BRIAN SPRING 2. SANDSTONE NORTH OF SPRING. SPRING IN ALLUVIAL VALLEY FILL.
80 SANDSTONE NORTH OF HOLDING TANK NEAR WHERE SPRING IS DEVELOPED.

81	SANDSTONE. 1000 FEET TO SW OF SPRING ARE COAL OUTCROPS, 20-40 FEET TOPOGRAPHICALLY ABOVE SPRING.
82	SANDSTONE NORTH OF SPRING. SPRING DEVELOPED IN ALLUVIAL VALLEY FILL.
83	CLINKER BEDS OUTCROP TO SE OF SPRING.
84	CLINKER BED OUTCROPS AS RIDGE ABOVE SPRING. SANDSTONE BELOW.
85	SANDSTONE ON VALLEY WALLS. SPRING DEVELOPED IN ALLUVIAL FILL.
86	SANDSTONE OUTCROPS IN VALLEY WALLS. SPRING DEVELOPED IN ALLUVIAL FILL ABOVE COAL.
87	SEEP BELOW SLOUGH GRASS RESERVOIR. DESIGNATED BY SPRING SYMBOL ON USFS MAP AND TOPO SHEET.
88	SANDSTONE TO THE NE OF SPRING. SPRING DEVELOPED IN ALLUVIAL FILL.
89	SPRING APPEARS TO BE LOCALIZED AT CONTACT BETWEEN MUDSTONE AND SANDSTONE BEDS.
90	SPRING BOX IS DRY. SPRING RUN WET, STANDING WATER IN PLACES. SANDSTONE AND MUDSTONE FORM VALLEY WALL.
91	SANDSTONE LEDGE CUTTING STEEP-SIDED VALLEY. OLD PLASTIC PIPE AND BOARDS BELOW SPRING.
92	UNMAPPED SPRING .5 MILE BELOW PERRY SPRING. OLD COLLAPSED STEEL TANK. SANDSTONE ALONG WALLS.
93	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. SANDSTONE UNDERLYING CLINKER ABOVE SPRING.
	SPRING DEVELOPED ON HILLSIDE. SANDSTONE AND CLINKER ABOVE SPRING.
95	SPRING DRY. PIECES OF OLD WOODEN TANK AND PILE OF EXCAVATED DIRT MARK SITE. SOME WATER IN THALWEG.
96	DRY SPRING. SANDSTONE ABOVE SPRING. SANDSTONE ON HILL TOP. (MAY HAVE MISSED THE SITE.)
	SANDSTONE OUTCROPS ON HILLSIDES. TANK NEARLY EMPTY.
	LOW HILLS- NO OUTCROPS. AREA OF GROUNDWATER SEEPS APPROX 25 FEET IN DIAMETER. NO DESCRIBABLE FLOW.
	SEEPS ALONG STREAM BOTTOM. STANDING WATER IN DEPRESSIONS FOR 400 FEET. NO MEASURABLE FLOW.
	SPRING BOX 50 FEET DUE SOUTH OF SPRING. SANDSTONE ON HILLSIDE.
102	SPRING BOX BELOW CLINKER. NEW RESERVOIR 300 FEET WEST OF SPRING WITH SOLAR-POWER PUMP STATION.
	SPRING BOX NEAR CONTACT OF SANDSTONE OVERLAYING MUDSTONE.
104	SPRING DEVELOPED BELOW CLINKER- SANDSTONE AND MUDSTONE ABOVE CLINKER.
105	SPRING ISSUES FROM SANDSTONE. SMALL POOL AND WET GROUND FOR 100 FEET BELOW SPRING.
	SPRING BOX AND TANK ARE DRY. DEVELOPED IN ALLUVIAL VALLEY FILL. CLINKER BEDS WITH SANDSTONE BELOW.
	SPRING DEVELOPED BELOW OUTCROP OF SANDSTONE.
	SPRING DEVELOPED IN VALLEY BOTTOM ALLUVIAL FILL BELOW OUTCROPS OF SANDSTONE.
	DEVELOPED BELOW SANDSTONE NEAR CONTACT WITH MUDSTONE.
	SANDSTONE OUTCROPS NEAR SPRING . WOODEN TANK.
	DEVELOPED NEAR SANDSTONE OVERLYING MUDSTONE, WITH THIN COAL SEAMS. WOODEN AND FIBERGLASS TANKS.
	SPRING DEVELOPED AT HEAD OFCOULIE FORMED BY SANDSTONE. FIBERGLASS TANK 350 FEET BELOW OUTCROP.
	SPRING DEVELOPED NEAR VALLEY WALL WHERE CLINKER AND SANDSTONE OUTCROP.
	SPRING DEVELOPED BELOW CONTACT BETWEEN CLINKER AND SANDSTONE. WET 500 FT BELOW SPRING BOX.
	STANDING WATER IN DEPRESSIONS ALONG SPRING RUN. NO OUTCROPS IN AREA.
	SPRING DEVELOPED BELOW SANDSTONE. STOCK TANK 150 FEET BELOW SPRING BOX.
	SPRING DEVELOPED ALONG HILLSIDE. NO OUTCROPS, HILL UNDERLAIN BY SANDSTONE AND MUDSTONE.
-	NO MEASURABLE FLOW ALTHOUGH GROUND WET. LOW OUTCROP OF SANDSTONE AND MUDSTONE NEAR SPRING AREA.
	SPRING DEVELOPED BELOW CLIFF OF SANDSTONE.
121	SPRING DEVELOPED BELOW LOW HILL OF MUDSTONE WITH THIN COAL BEDS BELOW SPRING.

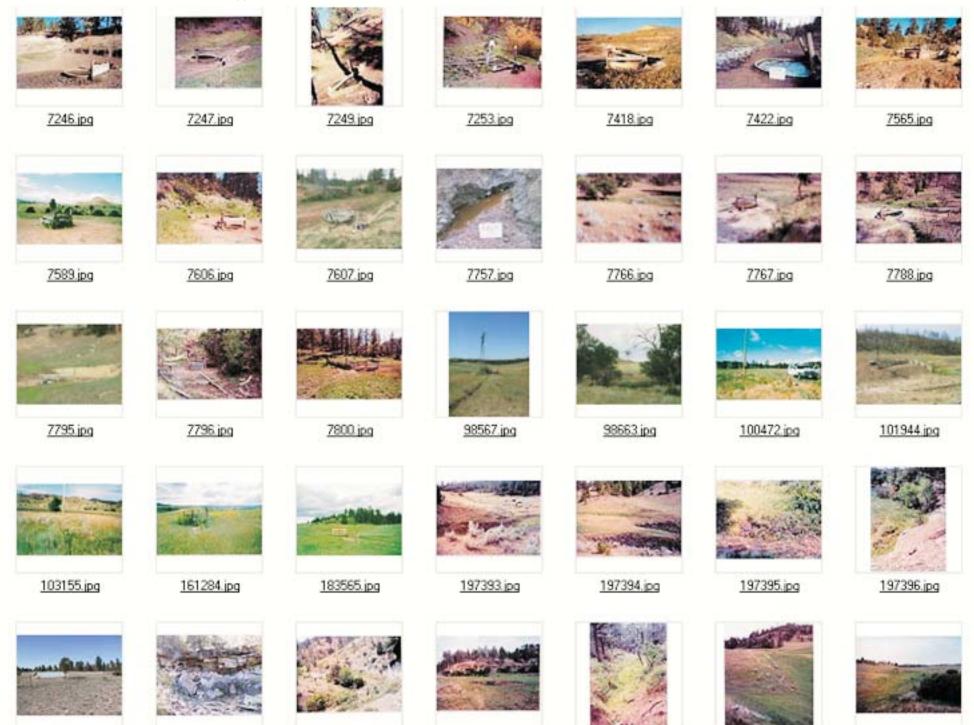
122 SPRING DEVELOPED ALONG VALLEY WALL NEAR OUTCROP OF SANDSTONE 123 SPRING DEVELOPED IN A STEEP GULCH. SANDSTONE OUTCROPS NEAR SPRING. FLOW FROM TWO PIPES. 123 IS WEST. 124 SPRING DEVELOPED IN A STEEP GULCH. SANDSTONE NEAR SPRING. FLOW IS FROM TWO PIPES. 124 IS SOUTH. 125 SPRING DEVELOPED BELOW OUTCROP OF UNBURNED COAL UNDERLYING SANDSTONE.
124 SPRING DEVELOPED IN A STEEP GULCH. SANDSTONE NEAR SPRING. FLOW IS FROM TWO PIPES. 124 IS SOUTH.
125 SPRING DEVELOPED BELOW OUTCROP OF UNBURNED COAL UNDERLYING SANDSTONE.
126 SPRING DEVELOPED BELOW SANDSTONE. CLINKER EXPOSED ALONG STREAM BANK 200 FEET UPSTREAM.
127 SPRING DEVELOPED BELOW BAKED SANDSTONE INTERBEDDED WITH THIN BEDS OF CLINKER.
128 SPRING DEVELOPED BELOW MUDSTONE AND SILTSTONE INTERBEDDED WITH THIN LAYERS OF SANDSTONE.
129 SPRING DEVELOPED BELOW LOW RIDGE OF SANDSTONE.
130 SPRING DEVELOPED BELOW SLABS OF SANDSTONE. GROUND AROUND SPRING WET - NOT ALL FLOW DIVERTED TO TANK.
131 CLIFFS OF MUDSTONE CAPPED BY SANDSTONE WEST OF SPRING. SPRING BOX 200 FEET UPSTREAM FROM SPRING.
132 SANDSTONE FORMS VALLEY WALLS.
133 SANDSTONE FORMS VALLEY WALLS.
134 SPRING DEVELOPED BELOW POORLY EXPOSED OUTCROP SANDSTONE.
135 SPRING IN VALLEY WITH SANDSTONE, MUDSTONE AND CLINKER BEDS ABOVE. UNBURNED COAL AT SOURCE.
136 SPRING DEVELOPED NEAR THIN SLABS OF SANDSTONE INTERBEDDED WITH MUDSTONE.
137 SPRING DEVELOPED IN ALLUVIUM. HILLS OF SANDSTONE, MUDSTONE CAPPED BY CLINKER. NO OUTCROPS NEARBY.
138 SPRING DEVELOPED IN ALLUVIAL FILL BELOW SANDSTONE OUTCROPS. IRON PRECIPITATES IN TANK. SULFUR SMELL.
139 SPRING DEVELOPED BELOW HILLS OF POORLY EXPOSED SILTSTONE AND MUDSTONE CAPPED BY CLINKER.
140 SPRING ABANDONED AND DRY. REMNANTS OF OLD WOODEN TANK MARK APPROXIMATE LOCATION IN VALLEY BOTTOM.
141 SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. HILLS SURROUNDING VALLEY HAVE OUTCROPS OF COAL AND CLINKER.
142 SPRING DEVELOPED IN STEEP VALLEY, SANDSTONE OUTCROPS. SPRING BOX LOCATED 325 FEET UPSTREAM FROM TANK.
143 SPRING DEVELOPED IN ALLUVIAL FILL. A FEW THIN BEDS OF SANDSTONE AND SILTSTONE NORTH OF SPRING.
144 SPRING DEVELOPED BELOW OUTCROP OF CLINKER AND UNBURNED COAL
145 SPRING DEVELOPED IN ALLUVIAL FILL . NO OUTCROPS NEAR. SPRING BOX LOCATED 300 FEET UPSTREAM FROM TANK.
146 SPRING DEVELOPED BUT CURRENTLY DRY. TANK LOCATED BELOW SANDSTONE LEDGE.
147 SPRING DEVELOPED NEAR SIDE OF VALLEY. BOULDERS OF CLINKER FLOAT ABOVE SPRING.
148 SPRING DEVELOPED IN COLLUVIUM ON WEST SIDE OF CHANNEL. NORTHERN OF TWO PIPES LEAD TO TANK.
149 SPRING DEVELOPED IN COLLUVIUM ON WEST SIDE OF CHANNEL. SOUTHERN OF TWO PIPES LEAD TO TANK.
150 SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. TOP OF TWO PIPES. OLD ABANDONED WOODEN TANK 100 FEET UPSTREAM.
151 SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. BOTTOM OF TWO PIPES ENTERING TANK.
152 SPRING FREE FLOWS THROUGH PUMP HOUSE TO CONCRETE TANK WITH OVERFLOW TO WOODEN TANK. ALLUVIUM.
153 OLDER DEVELOPMENT WITH WOODEN TANK. INTERBEDDED SANDSTONE, MUDSTONE AND CLINKER
154 SPRING DEVELOPED BELOW EARTH DAM IN ALLUVIAL VALLEY FILL. NO APPARENT SPRING BOX AND NO OUTCROPS IN AREA.
155 UNDEVELOPED. STANDING WATER IN DEPRESSIONS IN CHANNEL BOTTOM.
156 UNDEVELOPED- 100 FEET SLOUGH WITH STANDING WATER UP TO 1 FOOT DEEP IN PLACES. SAME GEOLOGY AS USFS155.
157 UNDEVELOPED SPRING ISSUES FROM BANK IN COLLUVIAL MATERIAL. RUN HAS STANDING WATER FOR SEVERAL 100 FEET.
158 SPRING ABOVE EARTH DAM. STANDING WATER BELOW SPRING AND ABOVE DAM. SANDSTONE NORTHWEST OF SPRING.
159 SPRING DEVELOPED IN ALLUVIAL VALLEY FILL BELOW HILLS UNDERLAIN BY SANDSTONE AND CAPPED BY CLINKER.
160 SPRING DEVELOPED IN ALLUVIAL VALLEY FILL BELOW HILLS UNDERLAIN BY SANDSTONE AND MUDSTONE, CLINKER CAP.

161	DEVELOPED BELOW SANDSTONE THAT OUTCROPS TO NORTH. SPRING AND TANK ARE DRY. CAPPED BY CLINKER.
162	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL BELOW SANDSTONE CAPPED BY CLINKER BEDS.
	ABANDONED DEVELOPED SPRING. DRY. REMNANTS OF WOODEN TANK. ALLUVIAL VALLEY FILL.
164	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. SURROUNDING HILLS CAPPED CLINKER.
165	100 FEET SOUTH OF USFS 164. GEOLOGIC DESCRIPTION SAME AS FOR USFS 164
	BELOW HILLS CAPPED BY CLINKER BEDS.
167	SPRING DEVELOPED. SOURCE MAY BE CLINKER. WATER IS COFFEE COLORED.
	SPRING DEVELOPED BELOW MUDSTONE OUTCROP.
169	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. TWO TANKS - OLDER WOODEN TANK AND NEWER FIBERGLASS TANK.
170	NO OUTCROPS IN AREA OF SPRING.
171	FIBERGLASS TANK BROKEN PIPE RUNNING ON GROUND. SPRING RUN WET SOME WATER . SANDSTONE ABOVE SPRING.
172	SPRING ISSUES IN VALLEY BOTTOM ALLUVIUM. CHANNEL WET FOR SEVERAL HUNDRED FEET. NO MEASURABLE FLOW.
173	SPRING DEVELOPED BELOW EARTH DAM. OUTCROPS OF MUDSTONE AND SILTSTONE EXPOSED ALONG VALLEY WALLS.
	ABANDONED. SEVERAL OLD TIMBERS AND BOARDS MARK LOCATION. STANDING WATER FOR SEVERAL FEET IN CHANNEL.
175	SPRING DEVELOPED ALONG SIDE OF STREAM CHANNEL 200 FEET ABOVE USFS174. CLINKER FLOAT IN STREAM CHANNEL.
176	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. NO OUTCROPS IN AREA OF SPRING.
177	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. BELOW CLINKER INTERBEDDED WITH SANDSTONE. COFFEE COLORED.
178	SPRING ABANDONED. METAL PIPES METAL TANK MARK LOCATION. GROUND AROUND TANK WET, NO MEASURABLE FLOW.
	SPRING DEVELOPED BELOW COAL UNDERLAIN BY SANDSTONE, OVERLAIN BY MUDSTONE. PIPE BROKEN ABOVE TANK.
	SPRING DEVELOPED BELOW OUTCROP OF SILTSTONE AND MUDSTONE. EVAPORITIC SALT DEPOSITS BELOW SPRING.
181	SPRING DEVELOPED BELOW RESERVOIR TANK LOCATED 100 FEET NORTH OF FS BOUNDARY ON STATE LAND.
	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL.
183	SPRING 500 FT ABOVE 182. STANDING WATER IN RUN. NO MEASURABLE FLOW. ISSUES FROM UNCONSOLIDATED ALLUVIUM.
184	UNDEVELOPED SPRING . WEST OF THE SPRING HILLS ARE CAPPED BY THIN CLINKER BEDS.
	UNDEVELOPED SPRING 300 FEET BELOW 184. SPRING ISSUES FROM UNCONSOLIDATED COLLUVIUM ON EAST BANK.
186	SPRING 1/2 MILE BELOW USFS185. APPEARS TO BE CLINKER.
	SPRING ISSUES FROM THIN COAL BED. GROUND AROUND SPRING WET AND FROZEN/ NO MEASURABLE FLOW.
	OLDER DEVELOPED SPRING- CURRENTLY DRY. WOODEN TANK WITH PIPE ENTERING FROM BELOW OUTCROP OF SANDSTONE.
	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL . RIDGE 200 FEET ABOVE SPRING CAPPED BY THICK CLINKER BED.
	SPRING DEVELOPED WITH FOUR PIPES ENTERING TANK. IN BAD REPAIR. SPRING ISSUES FROM AREA OF SANDSTONE.
	UNDEVELOPED SPRING ADJACENT TO HWY 212. ISSUES FROM EARTHEN DAM. FROZEN, UNABLE TO MEASURE FLOW.
	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL. CURRENTLY DRY. CLINKER FLOAT ALONG STREAM CHANNEL.
	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL BELOW SANDSTONE. TWO PIPES. PARAMETERS AVERAGE OF TWO PIPES.
	SPRING ISSUING FROM BOTH SIDES OF DRAINAGE. NO MEASURABLE FLOW. FREE FLOWING WATER ABOVE SEEP.
195	SPRING DEVELOPED IN ALLUVIAL VALLEY FILL BELOW OUTCROP OF MUDSTONE UNDERLYING SANDSTONE.
	SOURCE MAY BE COAL OR SANDSTONE AND COAL TO N; LARGE CLINKER RIDGE TO N.
202	UNDEVELOPED SPRING, 3 SEEPS FROM COAL IN SOUTH BANK BETWEEN 2 SHALE LAYERS.
203	DEVELOPED; ISSUE POINT NOT CLEAR; MAY BE N65E- 250 FEET. APPEARS TO BE FROM SANDSTONE OR COAL AS AT 204.
204	UNDEVELOPED SPRING: SEEP FROM SOUTH BANK COAL.

205 ABANDONED DUGOUT SPRING; SEEPS FROM NE BANK FROM COAL BELOW SANDSTONE. SAME COAL AS 204. 206 DUGOUT SPRING- SOURCE IS ALLUVIUM. NO DISCHARGE. 207 DUGOUT SPRINGS: SOURCE IS ALLUVIUM, NO DISCHARGE, UPPER DUGOUT IS PRIMARY MEASUREMENTS TAKEN THERE. 208 DUGOUT SPRING; DRY. CLINKER RIDGE TOP AND SANDSTONE AND COAL ARE FORMING AN ACTIVE HYDROLOGIC SYSTEM. 209 DEVELOPED SPRING ISSUING FROM EXPOSED COAL BED. ABOVE COAL IS SANDSTONE THEN CLINKER. 210 STOCK WATER CATCHMENT BASIN, VERY SMALL POOL IN SHELTER. 220 SOURCE IS A 2-3 FEET COAL SEAM 15 FEET BELOW UPPER COAL SEAM. 1 CLINKER BED AT TOP OF RIDGE. 221 SOURCE IS GULLY SIDEWALLS COMPRISED OF FRACTURED SANDSTONE AND POSSIBLY CLINKER ON BENCH ABOVE. 222 SOURCE IS A SIDE RIDGE WITH SANDSTONE BEDS AND POSSIBLY CLINKER UNDERNEATH. 223 DRIP ONLY. HORIZONTAL WELL. SOURCE IS SANDSTONE BELOW 3D CLINKER BED BELOW RIDGE TOP. 225 SOURCE IS COHESIVE SANDSTONE BED ABOVE. 226 ABANDONED SPRING. 227 NO FLOW MEASURED. 228 SOURCE IS SANDSTONE UNDERNEATH THE 2D MAJOR CLINKER BED UNDER RIDGE. 230 SOURCE IS THIN COAL SEAM AND SANDSTONE. 232 SOURCE IS CLINKER BED IN SOUTH HILLSLOPE OVERLAYING SANDSTONE. 233 SPRING IS POTHOLE SCOURED IN SHALE SUBSTRATE BY EPHEMERAL FLOWS. SOURCE IS CLINKER ABOVE ON RIDGE. 235 SOURCE IS COLLUVIUM AND ALLUVIUM. ESTIMATED SOURCE LOCATION BASED ON PROXIMITY OF OLD STOCK TANK. 236 ABANDONED STOCK TANK. SOURCE IS SANDSTONE ABOVE THE SPRING AND POSSIBLY A THIN CLINKER. LITTLE FLOW. 238 DUGOUT SPRING IN ALLUVIUM ADJACENT TO CLINKER. CLINKER TO SOUTH AND EAST SHOULD PROVIDE RECHARGE. 239 FORMS AT HEADCUT IN THALWEG. ALLUVIUM IN DRAINAGE. SOURCE IS PROBABLY ADJACENT COAL SEAM. 240 SOURCE IS COAL. FIRST BELOW RIDGE AND CLINKER ADJACENT TO COAL OUTCROP. SC/TEMP TAKEN IN POOL. 241 SOURCE IS SANDSTONE. WATER ISSUES FROM FRACTURES AT BASE AT UNCONFORMING CONTACT WITH SHALE. 242 SEEP. DRAINAGE COMPRISED OF ALLUVIUM AND LARGE BOULDER-SIZED SANDSTONE. 243 HORIZONTAL WELL LOCATED IN A DRAINAGE COMPRISED OF ALLUVIUM. 244 SOURCE APPEARS TO BE ALLUVIUM OVERLAYING FRACTURED SANDSTONE BEDS IN THE STEEP V-DRAINAGE. 245 ALLUVIUM AND BOULDER-SIZED FRACTURED SANDSTONE. 246 SOURCE IS ALLUVIUM AND PROBABLE FRACTURED SANDSTONE. 247 SPRING IN CHANNEL OF PARABOLIC DRAINAGE. SOURCE IS SANDSTONE AND CLINKER. SC- TEMP FROM POOL. 249 SPRING BOX; NORTH OF YAGER WELL. SANDSTONE BED ADJACENT TO CLINKER RIDGES. SC- TEMP TAKEN IN POOL. 251 SPRING HAS BEEN BULLDOZED. CREATED DEEPER HOLES. LOCATED IN NARROW DRAINAGE. CLINKER BEDS CAP RIDGES. 253 TANK IS DRY. SOURCE IS FRACTURED SANDSTONE BEDS ON RIDGES ABOVE WATERSHED CAPPED BY CLINKER. 256 SOURCE IS CLINKER RIDGE OVERLAYING SANDSTONE AND CLINKER ALLUVIUM. LARGE AMOUNT OF SALT AROUND TANK. 257 SPRING FROM COAL SEAM; OUTCROPS UP CHANNEL IN GULLY 50 FEET. SANDSTONE OVERLIES CLINKER IN RIDGES. 258 HIGHLY FRACTURED CLINKER BEDS; AND SANDSTONE TO ENE. 259 FRACTURED CLINKER RIDGES ABOVE; TANK IN A NARROW V-SHAPED DRAINAGE. 260 SPRING IN BOTTOM OF NARROW DRAINAGE; SANDSTONES BEDS CAP RIDGES ABOVE. 261 FRACTURED SANDSTONE BEDS IN ADJACENT HILLS; SPRING IS AT BASE OF STEEP HILLS IN A CHANNEL BOTTOM. 262 UNDEVELOPED; VERY NARROW V-SHAPED DRAINAGE; COHESIVE CLINKER BEDS ON RIDGES WNW OF SPRING.

000	SPRING HAS BEEN BULLDOZED TO WIDEN DEEPEN CHANNEL AND CREATE A BERM. UPLAND VEGETATION DAMAGED.
	SEEP UPCHANNEL FROM WATT DRAW #1. UNDEVELOPED. IN NARROW V-SHAPED DRAINAGE WITH MINIMAL ET. ABANDONED WOODEN TANK MID-WAY DOWNSLOPE IN A WIDE PARABOLIC DRAINAGE. CLINKER ALLUVIUM IN DRAINAGE.
	SANDSTONE, CLINKER ALLUVIUM IN DRAINAGE BOTTOM. NORTHERN ASPECT.
	RIDGES ABOVE COMPRISED OF SANDSTONE- HIGHLY WEATHERED. NARROW DRAINAGE.
	SANDSTONE- HIGHLY WEATHERED. NARROW DRAINAGE. CLINKER ALLUVIUM IN RIDGES AND CHANNEL. SPRING IS AT THE CONFLUENCE OF 2 NARROW DRAINAGES.
	SOURCE IS SANDSTONE IN STEEP DRAINAGE. SANDSTONE FROM HIGHLY FRACTURED BEDS BELOW CLINKER BED ON RIDGE. VERY NARROW DRAINAGE.
	OLD WOODEN TANK. SANDSTONE BEDS ON RIDGES; CLINKER TO N; TANK IS APPROX. 2 CLINKER BEDS DOWN.
	SEEP ONLY: NO FLOW.
	LOCATED IN NARROW DRAINAGE; SANDSTONE BEDS OVERLAYING CLINKER IN RIDGES; CLINKER ALLUVIUM.
	SANDSTONE RIDGES CAPPING CLINKER. CLINKER COLLUVIUM AT BASE OF BEDS; ALLUVIUM IN DRAINAGE.
	AT BASE OF 100-120 FEET OF COHESIVE SANDSTONE; DRAINAGE NARROWS ABOVE SPRING. TALL VEGETATION.
	DEVELOPED SPRING IN MED- PARABOLIC DRAINAGE; SANDSTONE ALLUVIUM IN DRAINAGE.
	SPRING IS 2 CLINKER UNITS FROM RIDGETOP; CLINKER ALLUVIUM IN WIDE DRAINAGE.
	SANDSTONE CAPPING CLINKER BEDS IN RIDGES; CLINKER ALLUVIUM AND COLLUVIUM IN GULLY SIDEWALLS.
	MEDIUM- PARABOLIC DRAINAGE COMPRISED OF SANDSTONE AND CLINKER ALLUVIUM
-	SPRING IS BELOW RIDGETOP IN A NARROW V-SHAPED DRAINAGE COMPRISED OF SANDSTONE ALLUVIUM.
	OLD WOODEN TANK IN DRAINAGE COMPRISED OF CLINKER COLLUVIUM AND ALLUVIUM. CLINKER BEDS ON RIDGES.
	UNDEVELOPED SPRING; CLINKER ALLUVIUM. SANDSTONE SUBSTRATE. (MAY HAVE MISSED THE SITE.)
	WIDE- PARABOLIC DRAINAGE- 2 CLINKER BEDS ABOVE ON RIDGES; UPPER BED CAPPED WITH SANDSTONE.
289	SEEP IN A NARROW V-SHAPED DRAINAGE COMPRISED OF SANDSTONE ALLUVIUM.
290	SPRING LOCATED MID-CHANNEL IN AN EPHEMERAL STREAM. SANDSTONE ALLUVIUM. SANDSTONE BEDS W OF SPRING.
291	MEDIUM- PARABOLIC DRAINAGE COMPRISED OF SANDSTONE ALLUVIUM. SANDSTONE BEDS IN RIDGES ABOVE.
292	SPRING AT BASE OF RIDGE IN WIDE- PARABOLIC DRAINAGE WITH SANDSTONE ALLUVIUM. SANDSTONE BEDS IN RIDGES.
293	SOURCE IS COAL SEAM. SPRING LOCATED IN MEDIUM PARABOLIC DRAINAGE COMPRISED OF SANDSTONE ALLUVIUM.
294	SPRING IN CHANNEL- BROAD DRAINAGE; BERMED TO CAPTURE FLOW. SOURCE IS SANDSTONE AND CLINKER.
295	TWO POSTS SUNK IN SOIL. MEDIUM PARABOLIC DRAINAGE WITH SANDSTONE ALLUVIUM. NO FIELD PARAMETERS.
296	SPRING IS CLINKER DOWN IN V-SHAPED NARROW DRAINAGE COMPRISED OF SANDSTONE ALLUVIUM. WATER IS FROZEN.
	PIPE SUBMERGED, FLOW IS ESTIMATED. SPRING IS CLINKER IN DRAINAGE COMPRISED OF SANDSTONE ALLUVIUM.
	DAMP SPOT IN DRAINAGE BELOW CLINKER AT SANDSTONE. UNDEVELOPED/UNUSED. WATER IN ANIMAL PRINTS.
	SOURCE IS ALLUVIUM JUST BELOW CLINKER. MAJOR CLINKER IN UPLAND AREAS UNDERLAIN BY MASSIVE SANDSTONE.
	ISSUES FROM SEVERAL DIFFUSE COLLUVIAL SOURCES ABOUT 40 FEET BELOW CLINKER. SOURCE IS ON PRIVATE.
	TANK BOTTOM BROKEN, FLOW BYPASSING. SOURCE IS ALLUVIUM AND SANDSTONE FROM EAST.
	SOURCE IS THIN COALBED AT BASE OF SANDSTONE. SOME FLOW BYPASSING SYSTEM.
	SOURCE IS THIN COAL UNDER SANDSTONE BLUFF, SAME AS USFS508 AND USFS509. DISCHARGE IS IN STREAM CHANNEL.
	STOCK SPRING. WOODEN TANK. SOURCE IS SANDSTONE BELOW CLINKER KNOB.
512	STOCK SPRING. TWO TANKS. SOURCE IS SANDSTONE. FLOW FROM NORTH SIDE OF DRAW. SOME STANDING WATER.

513	STOCK SPRING. SOURCE IS SANDSTONE NEAR SLOPE BREAK.
514	STOCK SPRING. WOODEN TANK. SOURCE IS SANDSTONE BELOW CLINKER ON RIDGE TO NORTH.
516	STOCK SPRING. SOURCE IS MASSIVE CLINKER ABOUT 100 FEET THICK.
517	SPRING. ALLUVIUM. SANDSTONE AND CLINKER BOULDERS IN HEADCUT. SUPPORTS OVER 100 YARDS OF LIVE STREAM.
519	STOCK SPRING. SOME BROKEN PIPES AND A WET SPOT. SOURCE IS SANDSTONE.
	DUGOUT STOCK SPRING. FLOW FROM SOUTH BANK. SOURCE IS CLINKER UNDER SANDSTONE.
	SPRING. SOURCE IS CLINKER ON RIDGE CAP. ROAD CULVERT NOT SEALED. ALL FLOW SEEPS UNDER CULVERT.
522	FROZEN WATER BELOW SANDSTONE OUTCROP. 1500 FEET UPSTREAM IS POSSIBLE DRY SPRING HEAD.
	SPRING SOURCE IS SANDSTONE. WATER CONDITION CLEAR - COLORLESS - ODORLESS.
	SPRING ORIGINATES FROM COAL BED WHICH IS OVERLAIN BY MUDSTONE AND SANDSTONE.
526	SPRING BOX 30 FEET UPSTREAM FROM TANK. SOURCE IS SANDSTONE.
527	SPRING ISSUES FROM SANDSTONE. WATER CONDITION CLEAR - COLORLESS - ODORLESS.
528	SPRING FROM CLINKER OVERLAIN BY MUDSTONE AND SANDSTONE. STOCKS TANK ARE DRY. ONE IS WOOD.
529	SOURCE APPEARS TO BE CLINKER OVERLAIN BY SANDSTONE AND MUDSTONE. POOR OUTCROP EXPOSURE.
	ISSUES FROM SANDSTONE.
	SOURCE APPEARS TO BE ALLUVIUM.
532	SOURCE FROM LOWER CONTACT BETWEEN 10 FEET THICK COAL BED OVERLAIN BY MUDSTONE AND SANDSTONE.
	UNABLE TO GET FLOW OR FIELD PARAMETER. AREA AROUND DISCHARGE POINT FLOODED. ALLUVIUM BELOW RESERVOIR.
	OLD WOODEN TANK, NO INFLOW PIPE. SEVERAL SEEPS IN AREA BUT NO MEASURABLE FLOW. ORIGINATES BELOW COAL.
	SOURCE IS SANDSTONE INTERBEDDED WITH MUDSTONE. HIGHLY DISSECTED TOPOGRAPHY.
536	SPRING ISSUES FROM BELOW OUTCROP OF SANDSTONE.
538	STOCK TANK FULL. INLET PIPE COMES IN FROM BOTTOM. NO FLOW OR FIELD PARAMETERS COULD BE OBTAINED.
	SOURCE IS COLLUVIUM BELOW HILL OF SANDSTONE CAPPED BY CLINKER.
	OLD WOODEN TANK SOURCE IS BELOW STANDSTONE OUTCROP.
542	TWO TANKS UPPER TANK CASCADES TO LOWER TANK. SPRING ORIGINATES IN CLINKER NEAR TOP OF HILL.
	COLLUVIAL SOURCE. OLD WOODEN TANK. PIPE BROKEN, WATER SEEPING AROUND PIPE. NO FIELD PARAMETERS.
	SPRING ORIGINATES IN SANDSTONE. OLD WOODEN TANK 100 FEET UPSTREAM.
	ORIGINATES BELOW CLIFF OF SANDSTONE.
	ORGINATES FROM CLINKER NEAR BASE OF COAL.
	IN VALLEY FLOOR BELOW CLIFF OF SANDSTONE WITH SANDY MUDSTONE.
	ALLUVIAL VALLEY FILL. SPRING DRY. TWO PIPES. WOOD TANK.
	IN ALLUVIAL VALLEY FILL. SURROUNDED BY HILLS COVERED BY CLINKER.
	WOODEN TANK PARTIALLY COLLAPSED. SOURCE IS COLLUVIUM BELOW CLINKER CAPPED HILL.
	SPRING ORIGINATES IN VALLEY FILL ALLUVIUM BELOW SANDSTONE.
	SPRING BELOW HILL CAPPED BY SANDSTONE. OLD WOODEN TANK. SPRING IS ABOVE UNMAPPED RESERVOIR.
	SLABBY SANDSTONE OVERLAIN BY CLINKER. OLD METAL TANK ABANDONED AND FILLED WITH VEGETATION.
555	FIBERGLASS TANK FILLED WITH SEDIMENT. NO MEASURABLE FLOW. GROUND AROUND TANK WET.
	DEVELOPED. POOR REPAIR. MINIMAL FLOW. UNABLE TO GET DISCHARGE OR FIELD PARAMETERS.
557	NO DISCHARGE TO TANK. SPRING RUN WET. TWO TANKS - FIBERGLASS AND WOODEN. BELOW SANDSTONE LEDGE.


550	SPRING BELOW SMALL RESERVOIR. TANK BROKEN. SOURCE ALLUVIAL MATERIAL.
	ON PRAIRIE DOG CREEK. SOURCE ALLVUIAL VALLEY FILL. OLD DEVELOPMENT. WOOD TANK. SPRING ORIGINATES BELOW SANDSTONE.
	BROKEN FIBERGLASS TANK, SMALLER TANK INSIDE. ORIGINATES IN ALLUVIAL FILL BELOW SANDSTONE AND RESERVOIR.
	SOURCE IS ALLUVIUM BELOW HILL OF SANDSTONE AND CLINKER. POOR EXPOSURE.
	SOURCE IS ALLOVION BELOW HILL OF SANDSTONE AND CLINKER. FOOR EXPOSURE.
	TWO TANKS. DIFFICULT TO GET FLOW. SOURCE IS ALLUVIUM.
	OLD DEVELOPMENT. WOOD TANK BELOW SMALL RESERVOIR IN STREAM CHANNEL. STANDING WATER ONLY.
	DEVELOPMENT: WOOD TANK BELOW SMALL RESERVOIR IN STREAM CHANNEL. STANDING WATER ONLT. DEVELOPED. ABANDONED. OLD WOOD TANK. STANDING WATER NEAR TANK BUT NO MEASURABLE FLOW.
	SPRING SOURCE FROM HILLSIDE COMPOSED OF CRUMBLY CLINKER AND BAKED SANDSTONE.
	BAD REPAIR SOURCE IS CLINKER AND SANDSTONE FORMING A LOW HILL TO SOUTHEAST.
	SPRING BOX 150 FEET UPSTREAM BELOW HILL COMPOSED OF CLINKER AND YELLOW ORANGE SANDSTONE.
	UNDEVELOPED SPRING. STANDING WATER IN LOW SPOTS BUT NO MEASURABLE FLOW. SOURCE IS ALLUVIUM
	DEVELOPED SOURCE IS ALLUVIAL VALLEY FILL.
	ABANDONED WOOD TANK. WET AREA AND STANDING WATER BELOW MUDSTONE BANK WITH THIN COAL SEAM.
	DEVELOPED SOURCE IS LOW HILL COMPOSED OF INTERBEDDED SANDSTONE AND MUDSTONE CAPPED BY CLINKER.
	SPRING ISSUES FROM HILLSIDE WEST OF RESERVOIR FROM MUDSTONE.
	NO TANK GALV PIPE. SPRING ISSUES FROM COAL BANK OVERLAIN BY MUDSTONE WITH SANDY CLINKER ABOVE.
	SOURCE IS ALLUVIAL VALLEY FILL BELOW CLIFF OF BLOCKY SANDSTONE AND SANDY CLINKER
	AREA IS OVERGROWN. SOURCE IS BELOW HILL OF SANDY CLINKER.
	ABANDONED, TWO METAL TANKS.
	DEVELOPED TANK MOSTLY BURIED IN MUD SOURCE IS CLINKER.
580	ABANDONED, PARTS OF WOOD TANK. FLOW NOT MEASURABLE.
581	DEVELOPED SOURCE IS CLINKER AND SANDY CLINKER
582	SEEPAGE AROUND ABANDONED STOCK TANK FLOW UNMEASURABLE EXPOSURE OF SANDSTONE ABOVE SPRING AREA.
583	ESTIMATED FLOW OF GREATER THAN 1 GPM FROM SEVERAL SEEPS BELOW SANDSTONE OVERLAIN BY CLINKER.
584	SOURCE IS BELOW POOR EXPOSURE OF SANDSTONE
585	SOURCE IS SANDSTONE
586	SOURCE IS SANDSTONE
	DEVELOPED APPEARS ORIGINATE IN ALLUVIAL MATERIAL. LOW ORP INDICTES A DEEPER SOURCE.
588	DEVELOPED ALONG ALLUVIAL VALLEY - SMALL OUTCROP OF SANDSTONE NEARBY
	SOURCE IS SANDSTONE
	DEVELOPED IN NARROW VALLEY.
	SOURCE IS BELOW OUTCROP OF SANDSTONE.
	SOURCE IS COLLUVIUM
	DRY, APPARENT SOURCE IS ALLUVIUM.
	SPRING BOX 150 FEET UPSTREAM FROM TANKS. 2 TANKS. ONLY ONE SPRING SOURCE IS BELOW SANDSTONE.
	SOURCE IS THIN BEDDED LIGHT YELLOW TO GRAY SANDSTONE
596	SOURCE IS CLINKER AND THIN BEDDED SANDY CLINKER.

	NO TANK. PIECES OF TANK SEEN DOWNSTREAM. SOURCE IS COAL BED OVERLAIN BY MUDSTONE.
	DEVELOPED. SOURCE APPEARS TO BE COLLUVIUM
	SOURCE IS CLINKER. SPRING NEAR TOP OF HILL.
	UPPER SITE HAS FIBERGLASS TANK WITH OVERFLOW PIPE TO LOWER SITE WITH NO TANK. SOURCE IS SANDSTONE.
	SOURCE IS SANDSTONE.
	SOURCE IS CLINKER, LITTLE FLOW.
	SOURCE IS SANDSTONE OVERLAIN BY MUDSTONE.
	SOURCE IS SANDY CLINKER.
	SERIES OF SMALL CHANNEL DAMS. NO MEASURABLE FLOW. STANDING WATER BEHIND DAMS AND IN LOW SPOTS.
	BELOW THIN RIDGE OF SANDSTONE.
	OLD SITE, PART OF WOODEN TANK NEAR SPRING BOX. FIBERGLASS TANK 105 FEET DOWN CHANNEL. SANDSTONE.
	SOURCE IS SANDY CLINKER. SPRING IS ON HILLSIDE.
	TWO PIPES. OLD WOOD TANK. SOURCE IS SANDSTONE.
	UNABLE TO OBTAIN FLOW. TANK ABANDONED. GROUND WET. SOURCE IS BELOW SANDSTONE.
	SPRING ORIGINATED IN COLLUVIUM BELOW RIDGE OF CLINKER.
	SPRING IS THIN COAL SEAMS CAPPED BY RIDGE FORMING SANDSTONE.
	SOURCE IS COLLUVIUM BELOW CLIFF OF CLINKER AND SANDY CLINKER.
	SOURCE IS BELOW CLIFF COMPOSED OF CLINKER AND SANDY CLINKER.
	SOURCE IS BELOW LOW RIDGE OF SANDY CLINKER.
	SOURCE IS SANDSTONE.
	MAY BE ON PRIVATE LAND. SOURCE IS SAME AS USFS 620 ON FOREST. SANDSTONE.
	SAME SOURCE AS USFS 619. SANDSTONE.
-	SANDSTONE.
	SOURCE IS SANDSTONE.
	SOURCE IS SANDY CLINKER UNDERLAIN BY MUDSTONE.
-	ABANDONED. WET AREA AROUND TANK BELOW RIDGE OF CLINKER.
	SOURCE IS BELOW CLINKER RIDGE.
	SOURCE IS CLINKER.
	TANK FULL, NO INLET PIPE TO SAMPLE WATER COMES THROUGH HYDRANT VALVE UNABLE TO GET PARAMETERS.
	SOURCE IS INTERBEDDED MUDSTONE AND SANDSTONE.
	DEVELOPED. DRY.
	SOURCE IS SANDSTONE LEDGE.
	DEVELOPED. TIRE FOR TANK. OVERGROWN.
	DEVELOPED. NO OUTCROP NEARBY.
	SOURCE IS SANDSTONE OVERLYING MUDSTONE.
	DEVELOPED. ABANDONED OLD WOODEN TANK. OVERGROWN.
	DRY. APPARENT SOURCE IS FROM SANDSTONE.
	STOCK SPRING. SOURCE IS COLLUVIUM. SPRING IS BELOW THICK CLINKER.
652	STOCK SPRING. SOURCE IS COLLUVIUM.

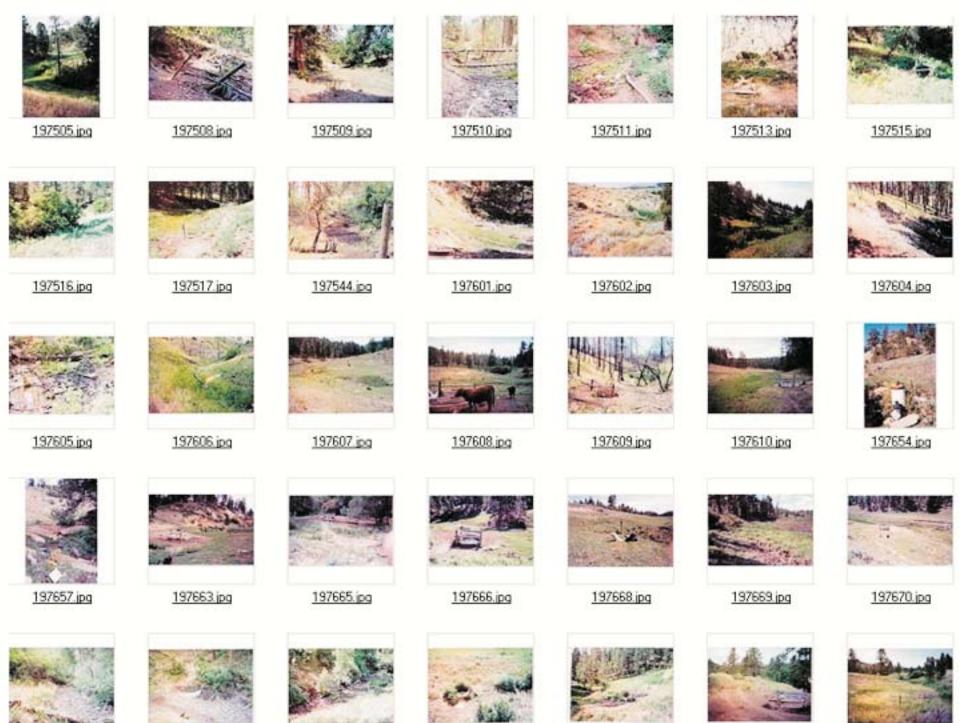
653 STOCK SPRING. SOURCE IS ALLUVIUM. ADJACENT TO THIN COAL.
655 STOCK SPRING. SOME WATER BY PASSING TANK. MUDDY SMALL POOLS. SOURCE IS SANDSTONE FEEDING COLLUVIUM.
657 STOCK SPRING. NO FLOW. SOME WATER STANDING IN COW TRACKS. SOURCE IS SANDSTONE BELOW COAL.
658 SPRING IN ALLUVIUM. ADJACENT TO SANDSTONE BELOW COAL. WATER SLIGHTLY MURKY.
660 STOCK SPRING. COLLAPSED WOODEN TANK. WET SOIL ADJACENT TO TANK. SOURCE IS COAL.
661 WET AREA WITH BROKEN PIPES AND ABANDONED TANK. SOURCE COLLUVIUM. ADJACENT TO SANDSTONE.
662 STOCK SPRING. SOURCE IS CLINKER. APPEARS TO BE CLINKER.
663 DEVELOPED BUT POORLY MAINTAINED STOCK SPRING. SOURCE IS THICK COAL, PARTLY BURNED.
664 BUFFALO IN THIS PASTURE PRECLUDED DIRECT SITE VISIT. DISCUSSED WITH STOCK GROWER.
665 PRESENCE OF BUFFALO PRECLUDED HIKING TO SITE. LOCAL GROWER REPORTS THAT A SPRING FEEDS THIS RESERVOIR.
666 STOCK SPRING. DEVELOPMENT AS HORIZONTAL WELL. SOURCE IS COAL.
667 STOCK SPRING. STOCK GROWER REPORTS THIS SPRING IS ACTUALLY ON PRIVATE LAND.
668 DUE TO BUFFALO AT SPRING COULD NOT COMPLETE SITE INVENTORY. DISCUSSED WITH STOCK GROWER.
669 STOCK SPRING. NO LONGER MAINTAINED. SOME WATER STANDING IN THALWAG. SOURCE IS COAL.
670 STOCK SPRING. NO FLOW, COLLECTION BOX IS DRY. SOURCE IS CLINKER.
671 STOCK SPRING. SOURCE IS SANDSTONE.
672 STOCK SPRING. SOURCE IS CLINKER.
673 STOCK SPRING. DRY. SOURCE IS CLINKER.
674 STOCK SPRING. SOURCE IS COLLUVIUM.
675 STOCK SPRING. SOURCE IS COAL.
676 STOCK SPRING. SOURCE IS SANDSTONE.
677 STOCK SPRING. SOURCE IS SANDSTONE.
680 ELECTRIC PUMP, NOT CURRENTLY PUMPING.
681 WELL WAS BEING PUMPED.
682 WELL WAS BEING PUMPED. PUMPING WATER LEVEL 3.17 FT BELOW TOC.
683 WINDMILL. WELL HEAD INACCESSIBLE.
684 WINDMILL. DISCONNECTED. WELL HEAD INACCESSIBLE.
685 WINDMILL. PUMPING. WELL HEAD INACCESSIBLE.
686 WELL IS FENCED NEXT TO TANK.
687 WELL IS FENCED.
688 DEPTH TO WATER EXCEEDS PROBE LENGTH.
689 PUMPING. DISCHARGE TO TANK NEAR WELL SITE.
690 PUMPING. NO DISCHARGE POINT NEAR WELL
691 PUMPING. DISCHARGE TO TANK NEAR WELL PUMP HOUSE
692 PUMPING. NO DISCHARGE POINT NEAR WELL. WELL HEAD INACCESSIBLE.
693 WELL HEAD INACCESSIBLE.
694 PUMPING. DISCHARGE TO TANK 50 FEET WEST OF WELL.
695 PUMPING. NO DISCHARGE POINT NEAR WELL
696 CURRENTLY NOT BEING PUMPED.

697	7 STOCK WELL. WINDMILL AND GAS PUMP JACK.
698	8 NOT PUMPING. WINDMILL
699	9 WINDMILL. NO DEPTH MEASUREMENT.
700	0 STOCK WELL WITH PUMP AND TANK, NEAR ERICKSON SPRING.
701	1 SANDSTONE OUTCROP ON CLIFF TO NORTH.

Appendix F–Photographs of springs inventoried on the Ashland Ranger District, 2002 and 2003. The numbers on the thumbnails, correspond to the GWIC ID number. To view full size image, click on file in the Appendix F Photos folder on the CD.

197453.jpg

197454 jpg


197459.jpg

197469.jpg

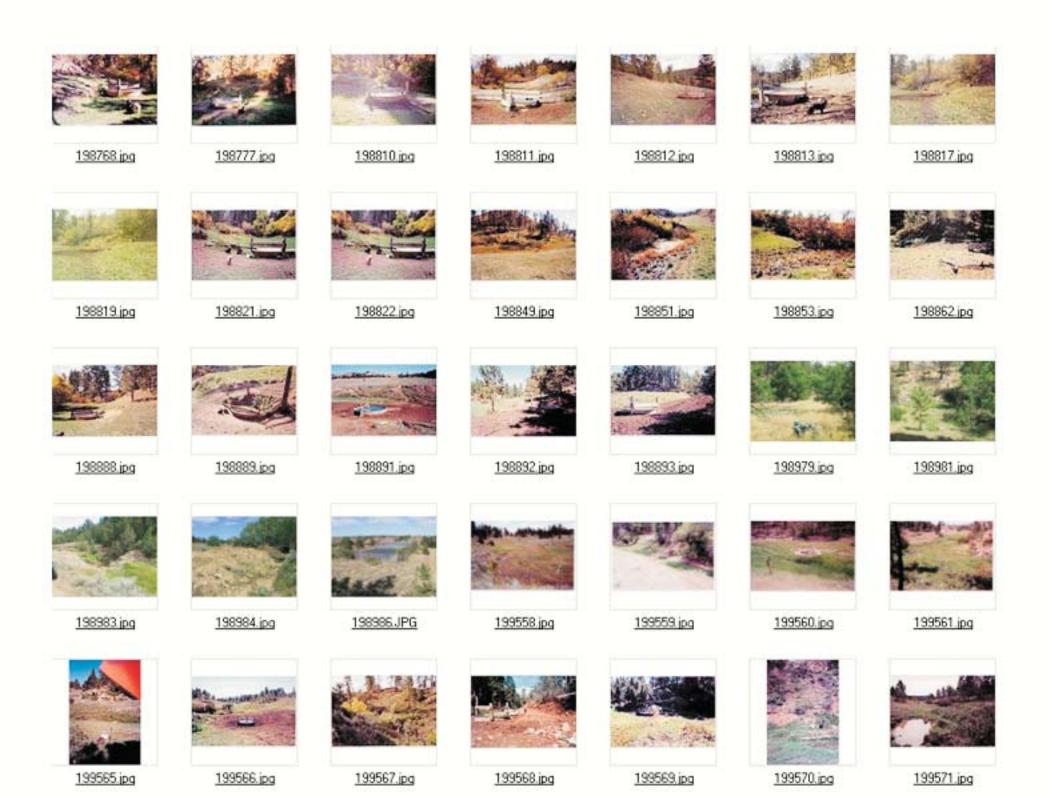
197471.jpg

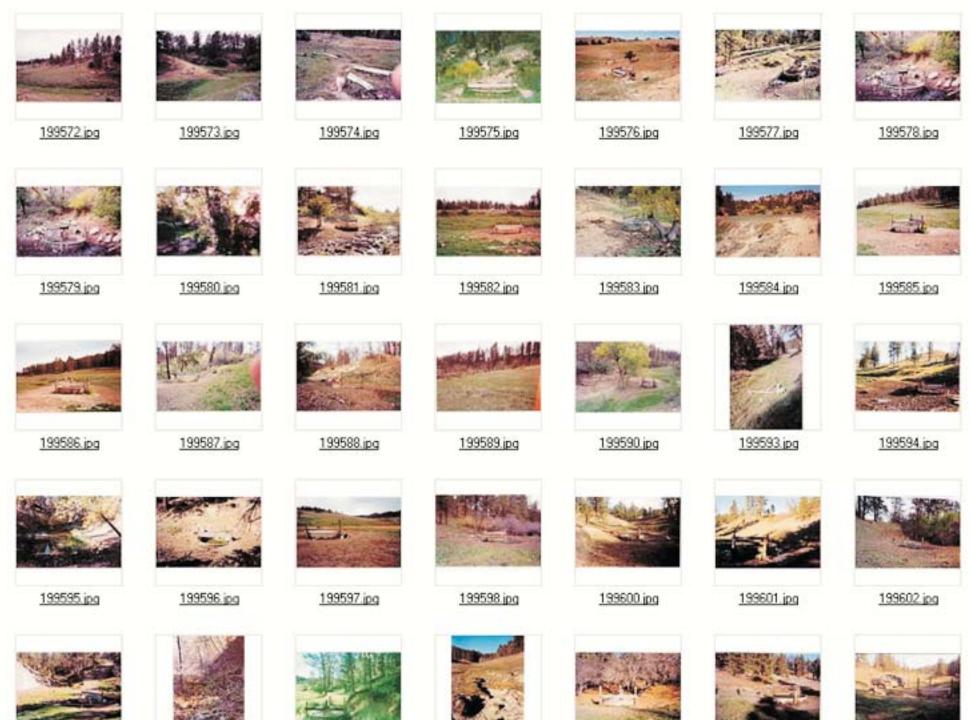
197498.jpg

197704 jpg

197706.jpg

197707.jpg

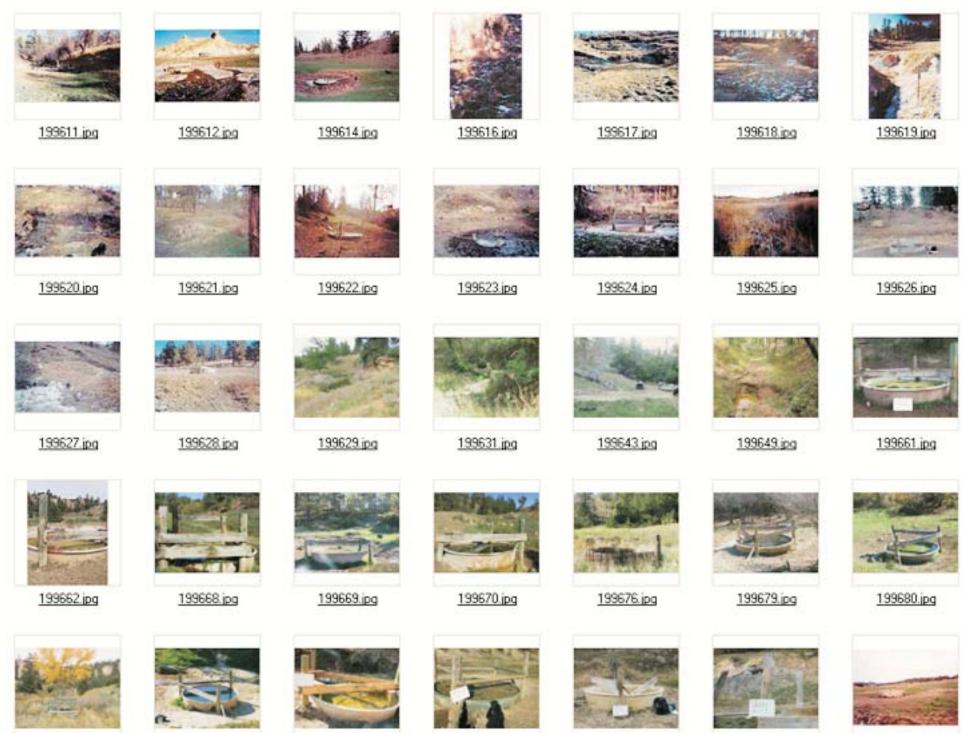

197708.jpg


197709.jpg

197710.jpg

199603.jpg

199605.jpg

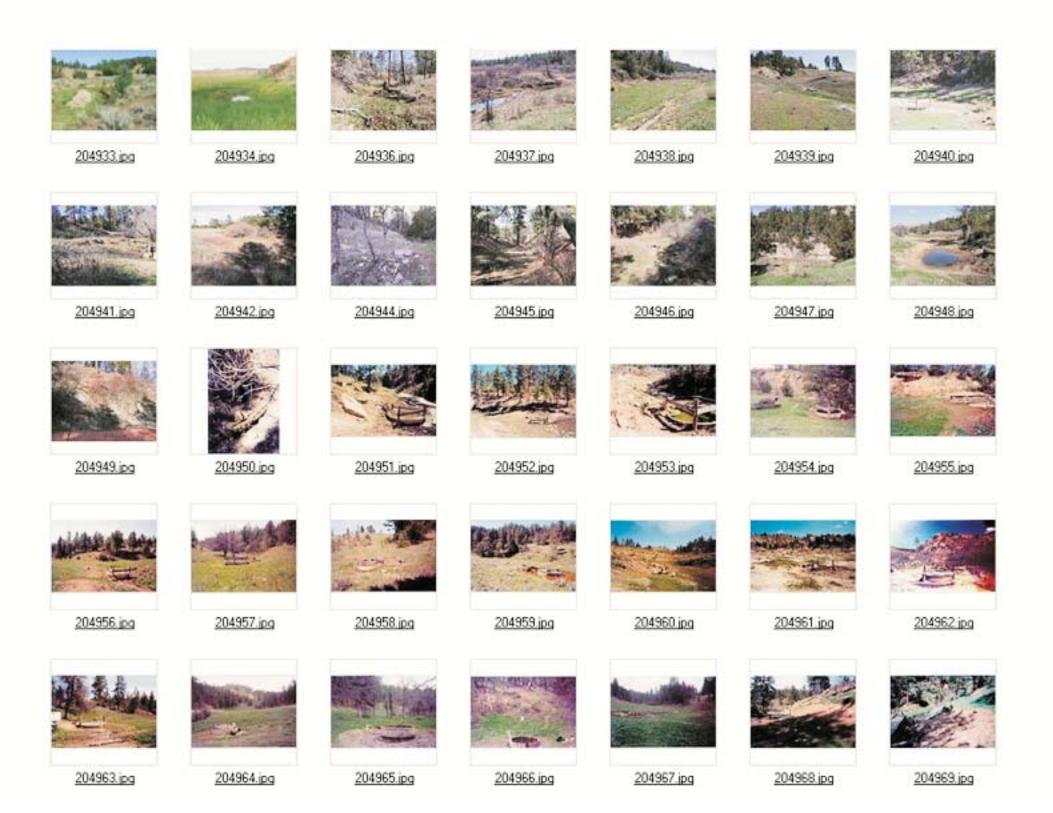

199606.jpg

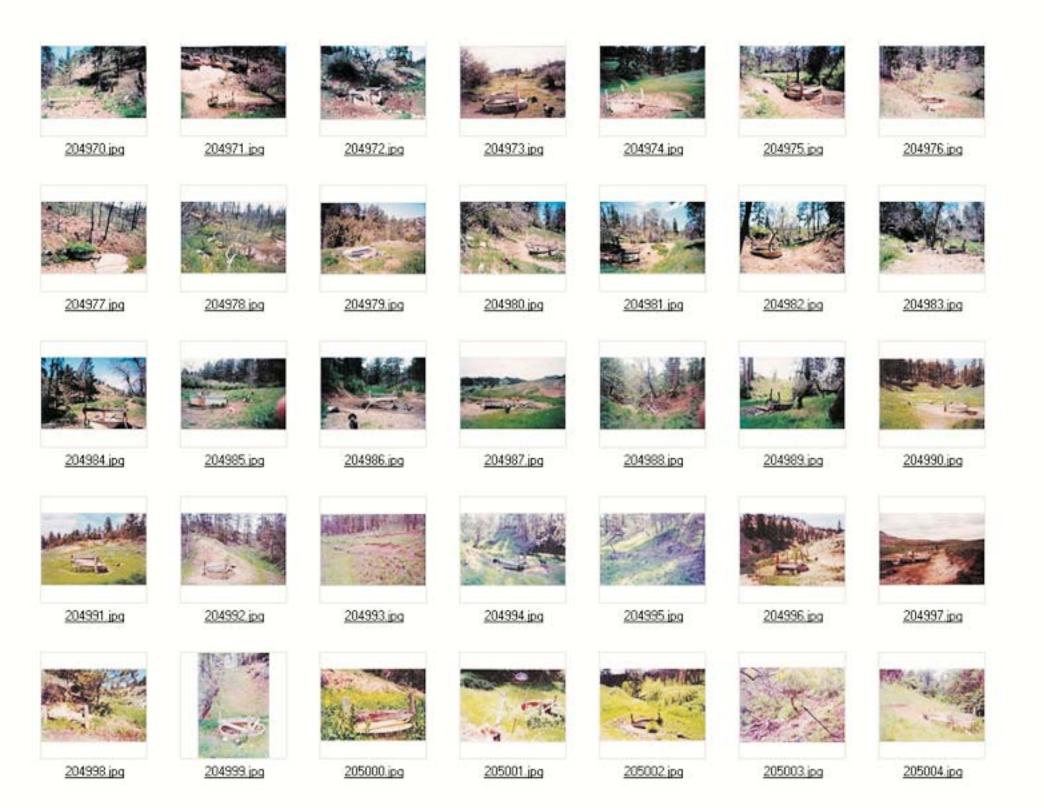
199607.jpg

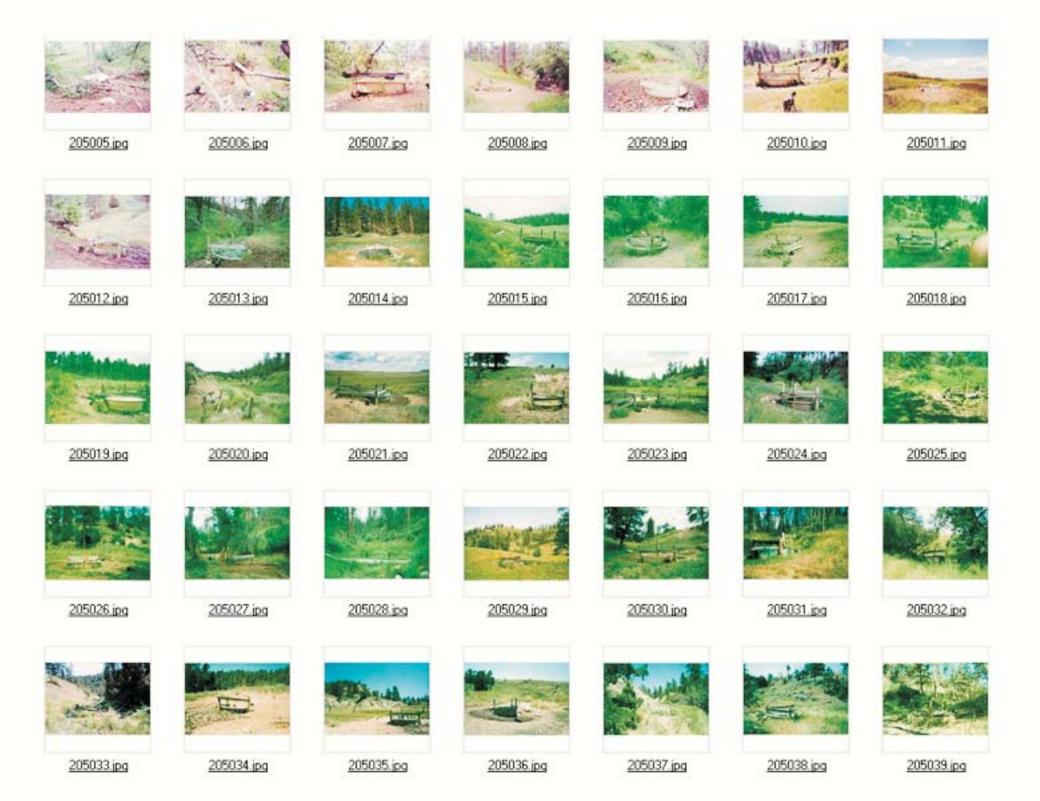
199608.jpg

199609.jpg

199682 jpg


199685.jpg


199687.jpg


199693.jpg

199694.jpg

204932.jpg

205040.jpg

127

205041.jpg

1

205043.jpg

205044.jpg

205046.jpg

205047.jpg

205050.jpg

205051.jpg

205052 jpg

205045.jpg

205053 jpg

205054.jpg

205055.jpg

205056.jpg

205057.jpg

205059.jpg

205060.jpg

205063.jpg

205064.jpg

205069.jpg

205073.jpg

205074.jpg

205075.jpg

205076.jpg

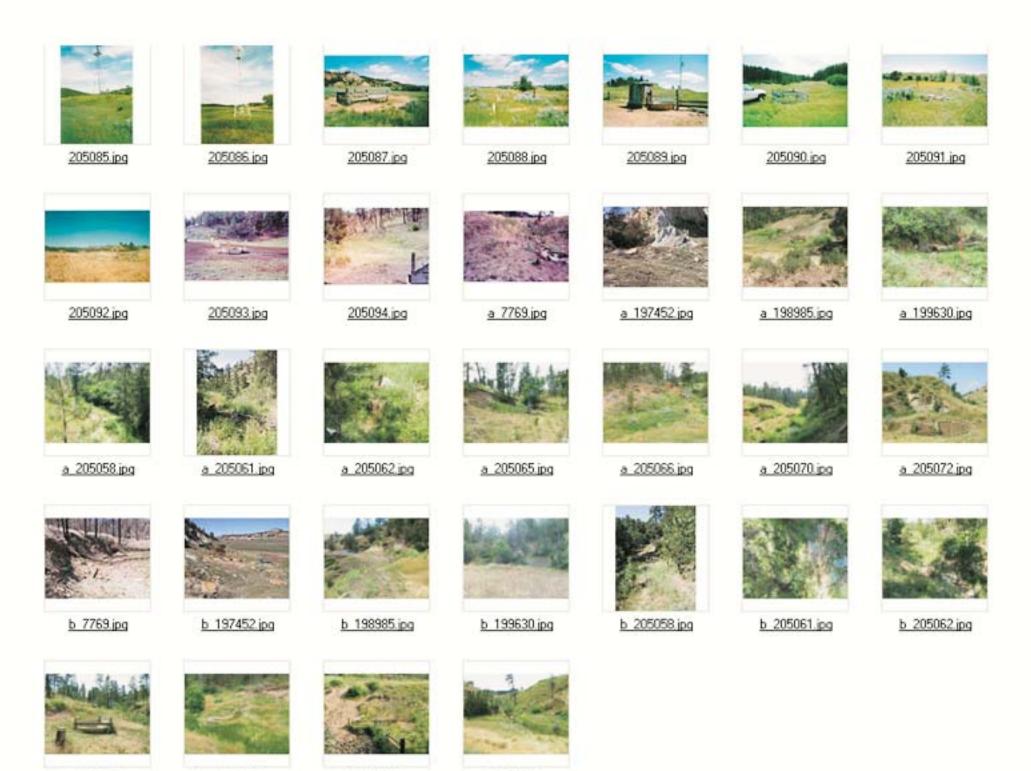
205077.jpg

205078.jpg

205079.jpg

205080.jpg

205082.jpg


205083.jpg

205084.jpg

b 205065.jpg

b 205066.jpg

<u>b 205070.jpg</u>

b 205072.jpg

		Ī							
Site									
Number									
	Spring Name	Township	Pango	Section	Tract	GWIC ID	Latitude	Longitude	USGS Quadrangle
(see map)	DEVAULT SPRING	01S	Range 46E		BADC	204994	45.75252		HAYES POINT
571	DEVAOLT SPRING	013	40L	10	BADC	204994	45.75252	-100.05901	TIATES FOINT
168		02S	46E	13	BACD	199600	45.66381	-105.99662	STACEV
	BIDWELL SPRING NORTH PIPE	02S	47E		CCCC	198819	45.64039	-105.96278	
	HOLIDAY SPRING	02S	47E		CDDB	7253	45.63929	-105.97421	
152		020		13		7200	+0.00929	-100.07421	STACET
180	COAL BANK SPRING	03S	46E	18	BDAD	7418	45.57397	-106 09590	COLEMAN DRAW
	FRARY SPRING	03S	47E		AADC	198811	45.59050		HOME CREEK BUTTE
	LEMONADE SPRING	03S	47E		ACAA	198766	45.54553		HOME CREEK BUTTE
		000		20	/ (0/ 0/ (100700	10.0 1000	100.02001	
273	MINERAL YAGER SPR ING	04S	46E	28	DAAB	7606	45.45578	-106 05491	YAGER BUTTE
210		0.0	102	20	BIULD	1000	10.10070	100.00101	
75	LOWER BRIAN 2 SPRING	05S	45E	18	AACC	7767	45.40665	-106 21769	KING MOUNTAIN
	EAST FORK SPRING	05S	46E		ACBA	198777	45.63373	-105.99103	
	WILEY USE SPRING	05S	46E		ABAC	7796	45.39274		YAGER BUTTE
136	ROCK JOB SPRING	06S	45E	3	DADD	199589	45.34201	-106.19891	FORT HOWES
	HAGEN 2 SPRING	06S	45E		ACDC	205004	45.34499		POKER JIM BUTTE
13		06S	45E		DCDC	197395	45.29533		FORT HOWES
	HEDUM SPRING	06S	46E		CDBA	199568	45.28231		GOODSPEED BUTTE
	TWO TROUGH SPRING	06S	47E		BDCC	199566	45.31576		PHILLIPS BUTTE
	PIPER DRAW SPRING	06S	47E		DACD	204951	45.29899		GOODSPEED BUTTE
	JOE ANDERSON SPRING	06S	47E		CABA	205011	45.27145		PHILLIPS BUTTE
	NORTH FORK SPRING	06S	48E		BDCA	205010	45.29962		HODSON FLATS
	WILLOW SPRING	06S	48E		DBBA	199573	45.28307		PHILLIPS BUTTE
530	CLARK DRAW 2 SPRING	07S	43E	24	BCAA	204957	45.21624	-106.41474	STROUD CREEK
	CLARK DRAW 1 SPRING	07S	43E		CADA	204956	45.21106	-106.40957	STROUD CREEK
	STOCKER DRAW SPRING	07S	44E		CDCC	204954	45.20897		STROUD CREEK
628	CHIPMUNK SPRING	07S	44E		CCBB	205049	45.21198	-106.36105	HAMILTON DRAW
2		07S	46E		BACD	197452	45.19141	-106.15005	
121		07S	47E	2	AACD	199576	45.26121	-105.92070	PHILLIPS BUTTE
620	SCHOOL HOUSE SPRING	07S	47E	32	BABA	205041	45.19444	-106.00808	REANUS CONE
613	WATER GAP SPRING	07S	48E		AADB	205034	45.22991		BLOOM CREEK
84	WOLF DEN SPRING	07S	48E	29	DBCC	197868	45.19265	-105.86749	BLOOM CREEK

Appendix G–Regular monitoring sites on the Ashland Ranger District

Appendix G–Regular monitoring sites on the Ashland Ranger District

Photo Point
S85W, 25 FT FROM TANK
S80W, 50 FT FROM TANK
N30E, 50 FT FROM TANK
S70E, 25 FT FROM CONCRETE TANK
S25W, 25 FT FROM TANK
S75E, 25 FT FROM TANK
S15W, 50 FT FROM TANK
S65E, 50 FT FROM TANK
S70E, 50 FT FROM TANK
S45W, 50 FT FROM TANK
N30E, 100 FT FROM TANK
S80W, 25 FT FROM TANK
S, 10 FT FROM THALWEG S85E, 50 FT FROM TANK
N, 50FT FROM TANK
N25W, 25 FT FROM TANK
S60E, 25 FT FROM TANK
N70W, 25 FT FROM TANK
S55E, 125 FT FROM TANK
N10E, 50 FT FROM TANK
N5E, 50 FT FROM TANK
E, 50 FT FROM TANK N, 25 FT FROM TANK
E, 50 FT OF SOURCE AREA, 2ND PHOTO SW, 75 FT FROM TANK
S75E, 50 FT FROM TANK
S60E, 25 FT FROM TANK
N70E, 25 FT FROM TANK
N35W, 75 FT FROM TANK

Appendix H–Sprin	g and Well Data on File for the As	shland Ranger District for Sites	not Inventoried During the 2002-2003

GWIC ID	Site Name	Latitude	Longitude	Geomethod	Township	Range	Section	Tract	Site Type
160991	USDA CUSTER NATIONAL FOREST	45.78040			01S	46E		DB	WELL
94661	CUSTER NATIONAL FOREST LISCOM WELL	45.77820		NAV-GPS	01S	46E		DBAA	WELL
94662	CUSTER NATIONAL FOREST*WELL#4	45.78070	-106.05030	MAP	01S	46E	4	AD	WELL
160988	USDA FOREST SERVICE	45.77270			01S	46E	4	DC	WELL
	USDA FOREST SERVICE	45.78600	-106.07950	MAP	01S	46E	5	BA	WELL
	GRISH RANCHS INC	45.76130	-106.07520	MAP	01S	46E		DBA	WELL
160990	USDA FOREST SERVICE	45.76410	-106.03510	MAP	01S	46E	10	AC	WELL
94665	CUSTER NATIONAL FOREST*WELL#1	45.75280	-106.00330	MAP		46E	13	BB	WELL
94666	CUSTER NATIONAL FOREST COYOTE WELL	45.75240	-106.05050	NAV-GPS		46E	16	AACC	WELL
	ROONEY INC.	45.73620			01S	46E		CAA	WELL
94694	L J GREEN RANCH	45.75220	-105.97960	MAP	01S	47E	18	BAC	WELL
	WILSTE GARY L	45.71110				47E	32		WELL
	WILSTE GARY	45.71110				47E	32		WELL
	GASKILL DICK	45.71930			01S	48E		CA	WELL
94741	MERCHANT DALLAS AND SON	45.70520	-105.82820	TRS-TWN	01S	48E	32	DA	WELL
						-	-		
98566	TERRETT JULIAN	45.69570	-106.15020	TRS-TWN	02S	45E	2	В	WELL
	TERRETT JULIAN JR.	45.67630			02S	45E		BC	WELL
	USFS COLBERT COULEE* .5 MI W SHY RESERVOIR	45.65970			02S	45E			WELL
	COOK CREEK * 6.5 MI SW BEAVER CK SCHOOL	45.64500	-106.18470		02S	45E		CABC	STREAM
	*GASKILL R. * 5.1 M NW HOME CREEK SCHOOL	45.61910	-106.11860			45E		ACBA	SPRING
	KOLKA RANCH	45.68990	-106.01240		02S	46E		AC	WELL
	U S FOREST SERVICE * CUSTER	45.68990	-106.01240		02S	46E	2	AC	WELL
	U S FOREST SERVICE * CUSTER	45.68720				46E		CA	WELL
	USFS * 2.5 M SW BEAVER CREEK SCHOOL	45.69190			02S	46E		AACB	WELL
	U S FOREST SERVICE * CUSTER WELL 1	45.69170			02S	46E	5		WELL
	GASKILL RAY	45.69450				46E		ADA	WELL
	U S FOREST SERVICE * CUSTER NO 4	45.67880	-106.05290			46E		AB	WELL
	WOODS O.C. & ELVY M.*WELL 1	45.68280	-106.03110			46E	11	BB	WELL
	U S FOREST SERVICE * CUSTER	45.66410				46E		AB	WELL
	USFS * 4.2 M S BEAVER CREEK SCHOOL	45.66500			02S	46E			SPRING
	DOUBLE H. RANCH*WELL 8	45.62460			02S	46E		CC	WELL
898395	OTTER CREEK #2	45.62130			02S	46E			PETWELL
	HANSON DARREL	45.62020			02S	46E		BAD	WELL
	DOUBLE H. RANCH	45.61720			02S	46E		BC	WELL
	DOUBLE H. RANCH*WELL 5	45.61720	-106.05100			46E		BC	WELL
	BUTTS CALVIN	45.66620			02S	47E	16		WELL
	BUTTS CALVIN*2	45.66620				47E	16		WELL
	KOLKA CATTLE CO.*5	45.66230	-105.94070			47E	16		WELL
	N P RY CO. #1-A	45.64090			02S	47E		СС	PETWELL
-	CUSTER NATIONAL FOREST WHITETAIL RANGER STATION	45.64040			02S	47E			WELL
	USDA FOREST SERVICE	45.64220				47E		DDA	WELL
	KOLKA RANCH	45.64430	-105.95020			47E	21	CBC	WELL
	HANSON DELBERT*4	45.61490			02S	47E		DA	WELL
	GASKILL ANDY	45.63450			02S	48E		BD	WELL
191032	GOLD JOHN H.	45.61550	-105.84260		02S	48E	31	DA	SPRING
7364	CUSTER NAT'L FOREST * ASHLAND RANGER STAT.	45.59330	-106.27130	MAP	03S	44E	11	BCAB	WELL
	SCHOENOVER JOHN	45.60660			03S	45E			WELL
	U S FOREST SERVICE * CUSTER	45.56940	-106.14770		03S	45E		CCAC	
7000		10.000-0	100.14770		1.00	10-		50/10	

GWIC ID	Site Name	Latitude	Longitude	Geomethod	Township	Range	Section	Tract	Site Type
100474 F.H. RANCH CO.		45.57060	-106.14370	TRS-TWN	03S	45E	14		WELL
100492 PHILLIPS JAMES JR.		45.55770				45E	24	AD	WELL
911415 USA MT-035009 #24X-	1	45.59600	-105.99490	MAP	03S	46E	1	CD	PETWELL
7406 DOUBLE H RANCH IN	C	45.60740	-106.06720	MAP	03S	46E	5	AAB	WELL
920893 OTTER CREEK UNIT 1	-5	45.59500	-106.08150	MAP	03S	46E	5	CCD	PETWELL
7409 U S FOREST SERVICE	* CUSTER	45.59000	-106.08880	MAP	03S	46E	7	ADBB	WELL
7410 GOV NO. 35-46 * DST	NO. 1 * BOTTOM SAMPLE*	45.58800	-106.07580	UNKNOWN	03S	46E	8	BD	WELL
895007 ANSCHUTZ DRILLING	CO ANSCHUTZ NO. 1 GO	45.58800	-106.07630	MAP	03S	46E	8	BD	PETWELL
895023 ANSCHUTZ DRILLING	COANSCHUTZ NO. 1 GOV'T	45.59190	-106.07580	MAP	03S	46E	8	BD	PETWELL
895271 ANSCHUTZ DRILLING	CO * ANSCHUTZ NO. 1 GO	45.58800	-106.07630	MAP	03S	46E	8	BD	PETWELL
911155 GOVT. #35-46		45.58660	-106.08590	TRS-TWN	03S	46E	8	BD	PETWELL
100506		45.57820	-106.07420	TRS-TWN	03S	46E	8	DDD	WELL
100507 TRUSSLER TOM		45.57420	-106.00150	TRS-TWN	03S	46E	13	ACB	WELL
133487 TRUSSLER TOM		45.57220	-105.99480	MAP	03S	46E	13		WELL
100509 HANIC ANTHONY		45.56520	-106.03070	TRS-TWN	03S	46E	14	CC	WELL
7416 U S FOREST SERVICE	* CUSTER	45.57300	-106.04690			46E	16	ADCB	WELL
100513		45.57340	-106.06760	MAP	03S	46E	17	ADB	WELL
100515 WIECHMAN W.C.		45.56460				46E	17	DC	WELL
899021 GOVT.MULLINNIX #1		45.56840	-106.09320		03S	46E	18	DBBD	PETWELL
7419 U S FOREST SERVICE	* CUSTER	45.56020	-106.09220		03S	46E			WELL
100519 U S FOREST SERVICE		45.55570	-106.07200	MAP	03S	46E	20	DBAB	WELL
100521 U S FOREST SERVICE	* SHEEP WAGON WELL	45.55300	-106.05820	MAP		46E	21	CACD	WELL
100520 U S FOREST SERVICE		45.55560	-106.06100		03S	46E		CBBA	WELL
100522 WIECHMAN W.C.		45.55980	-106.03780	TRS-TWN	03S	46E	22	A	WELL
100523 CUSTER NATIONAL F	OREST	45.56190	-106.00560	MAP	03S	46E	23	AA	WELL
100524 U S FOREST SERVICE		45.56190	-106.00560			46E		AA	WELL
7421 U S FOREST SERVICE		45.54220				46E	30		WELL
100526 CAIN OSCAR		45.60620				47E		В	WELL
100529 KNUDSON RANCH CC).	45.55540	-105.98360			47E	19	CAA	WELL
155049 MT DEPT OF HWYS *		45.55670				47E	19		BOREHOLE
155047 MT DEPT OF HWYS *	CAMPS PASS-EAST #1	45.55750	-105.89820			47E	23		BOREHOLE
100530 SAMUELSON BROS.		45.55540				47E		DB	WELL
100532 FORTNER TIM		45.54540				47E		BDA	WELL
122348 KNUDSON RANCH CC)	45.54070				47E		DAA	WELL
100533 CUSTER N.F.		45.54050				47E		DB	WELL
917555 GOVT. #35-47		45.52080	-105.93220			47E		DD	PETWELL
100535 KNUDSON RANCH CC).	45.53270				47E		BA	WELL
		10100210	100102200				0.	2.1	
101937 US DEPT OF AGRICU	_TURE*USFS	45.50390	-106.25140	TRS-TWN	04S	44E	12	В	WELL
101936 MCKELVEY GLEN		45.50820	-106.24850			44E		BA	WELL
101938 SCHAUDEL ROBERT	G AND MARGIE B	45.48650				44E	15		WELL
101943 CUSTER NATIONAL F		45.48200	-106.28030			44E			WELL
101945 U S FOREST SERVICE		45.46360	-106.30890			44E		BADA	WELL
101962 BADGETT KIRK	-	45.48030	-106.21730		04S	45E		DD	WELL
101963 BADGETT KIRK & WAI	LACE	45.48030	-106.21730		04S	45E		DD	WELL
101965 CAPRA LOUIS		45.46890	-106.21580			45E		DAD	WELL
101966 USFS*CUSTER NF		45.46610	-106.21720			45E		DD	WELL
7590 THEX-GASKILL SARA		45.46630	-106.21060			45E		CCAD	
7599 CUSTER NF * 19 MI E	SONNETTE MT	45.44220	-106.20750			45E		CADC	
		70.74220	100.20130	1 1 1 1 1	0-0		52		

Appendix H - Spring and Well Data on File for the Ashland Ranger District for Sites not Inventoried During the 2002-2003

GWIC ID	Site Name	Latitude	Longitude	Geomethod	Township	Range	Section	Tract	Site Type
174014 POWDER RIVER	COUNTY*S9-B9-38		-106.00760		04S	46E	1		WELL
101976		45.51510	-106.09300	TRS-TWN	04S	46E	5	BCB	WELL
7600 USFS * CUSTER	NF * THREE MILE WELL		-106.09270		04S	46E		BCBC	
101978 TARTER DH		45.50980	-106.10720		04S	46E		CAC	WELL
	NF * MCLATCHY DRAW WELL	45.49670			04S	46E		CBCC	WELL
898347 G.A.R.FEDERAL #		45.49410			04S	46E			PETWELL
	NF * MIDDLE PASTURE WELL	45.50360			04S	46E	9		WELL
161285 USFS * CUSTER		45.49740	-106.03350		04S	46E	10	DA	WELL
7604 USFS * CUSTER		45.49790			04S	46E			WELL
149839 USFS * CUSTER		45.50930	-106.02820		04S	46E			WELL
101983 SHY GEORGE		45.50580	-106.00780		04S	46E		BBA	WELL
921039 TRUSLER #1-13		45.47850	-106.01010	TRS-TWN	04S	46E		CD	PETWELL
101985 CUSTER NATION	IAL FOREST	45.47990	-106.04870		04S	46E		CC	WELL
	NF * SHORTY RIDGE WELL	45.47990	-106.04870		04S	46E		CC	WELL
921170 ATLANTIC-FED #		45.46820	-106.09190		04S	46E		CB	PETWELL
	NF * LOWER 3 MILE WELL	45.45780	-106.04860		04S	46E		BD	WELL
101988		45.45680	-106.11010			46E		BCD	WELL
101990 NEWCOMER EAF	RI& OLA LUF*WELL#2	45.44180			04S	46E	31		WELL
101991 NEWCOMER EAR		45.44180			04S	46E	31		WELL
101992 NEWCOMER EAR		45.44180	-106.10380		04S	46E	31		WELL
101993 NEWCOMER EAF		45.44210			04S	46E	32		WELL
101994 USFS*CUSTER		45.43640			04S	46E		СС	WELL
101995 CUSTER NATION	IAL FOREST	45.43640				46E		CC	WELL
149840 ROONEY LEWIS		45.44210			04S	46E	33		WELL
	NF * NEWCOMER SPRING	45.44630			04S	46E			SPRING
102003 KNUDSEN RANC		45.46160			04S	47E	-	BB	WELL
915376 MONT. 3260 #28-		45.45030	-105.94370		04S	47E		CC	PETWELL
		10.10000	100.01010		0.0		20	00	
898919 CALVERT-FED 12	2-14	45.40330	-106.39500	MAP	05S	43E	14	BCDB	PETWELL
103153 U S FOREST SER		45.42680	-106.33440		05S	44E		C	WELL
103154 U S FOREST SER		45.41430			05S	44E		CA	WELL
	RVICE * ASHLAND DISTRICT	45.40820				44E		ABB	WELL
204776 BULL GARY		45.39620	-106.30540		05S	44E	-	DC	WELL
921523 FEDERAL 1-19		45.38360			05S	44E	19		PETWELL
921264 TRI-COUNTY-1		45.38540	-106.27440		05S	44E		CB	PETWELL
103156 U S FOREST SER	RVICE	45.37840			05S	44E		AA	WELL
897434 M-4212-1		45.36910			05S	44E			PETWELL
897421 MT. 3-4210-1		45.36410			05S	44E		BB	PETWELL
103158 U S FOREST SER	RVICE	45.43260			05S	45E		A	WELL
	ERVICE - CHROMO SPRING	45.42940			05S	45E			SPRING
103159 U S FOREST SER		45.41680			05S	45E		AC	WELL
7758 BR. SPRING * 20		45.41750			05S	45E			SPRING
7770 USGS RESEARCI		45.39220			05S	45E		ABCA	
	* WO #9 ON USFS LAND	45.39250			05S	45E		ABCA	WELL
7775 USGS RESEARCI		45.39250			05S	45E			WELL
	* WO NO. 1 ON USFS LAND	45.39470			05S	45E		BBAA	
	* WO NO. 2 ON USFS LAND	45.39470	-106.14940		05S	45E		BBAA	
	* WO NO. 3 ON USFS LAND	45.39470	-106.14940		05S	45E		BBAA	
	NF * LOWER PADGET WELL	45.37440	-106.16690		05S	45E		BDDA	
	NF * UPPER PADGET WELL		-106.19270			45E		BBBA	
1101 USPS CUSTER	NI UFFERFADGET WELL	43.30020	-100.19270	IVIAE	000	400	28	DDDA	VVELL

Appendix H - Spring and Well Data on File for the Ashland Ranger District for Sites not Inventoried During the 2002-2003

GWIC ID	Site Name	Latitude	Longitude	Geomethod	Township	Range	Section	Tract	Site Type
103173	DUNNING SIDNEY F	45.37270	-106.22450		05S	45E	30		WELL
	USFS * CUSTER NF * PERRY WELL	45.36380	-106.20730	TRS-TWN	05S	45E	32	BA	WELL
103179	TRUSLER W.C.	45.42610	-106.02990		05S	46E	2	СВ	WELL
	WATT WINSTON DAVID & RUTH	45.42610	-106.05780	TRS-TWN	05S	46E			WELL
103183	U S FOREST SERVICE * CUSTER	45.43140	-106.08940		05S	46E		В	WELL
	* CUSTER NF * 1.3 M W SONNETTE MT	45.43250	-106.08690		05S	46E			WELL
	HORSE CREEK RANCH	45.41060	-106.08130	MAP	05S	46E	8	DC	WELL
	SHOCKEY ARTHUR	45.41830	-106.03610		05S	46E	10	AC	WELL
	SHOCKEY ARTHUR	45.41830			05S	46E		AC	WELL
	SHOCKEY ARTHUR	45.41830	-106.03610	MAP	05S	46E	10	AC	WELL
	FED.MONT.065073 1-15	45.39940	-106.04380		05S	46E	15	DBBD	PETWELL
103188		45.39630	-106.06100		05S	46E		DCC	WELL
159928	USDA FOREST SERVICE	45.39840	-106.08180		05S	46E		DB	WELL
918942	USA M-5276 10 MILE	45.40540	-106.11100		05S	46E		BB	PETWELL
	LEI JOHN*WELL #1	45.38480	-106.03820		05S	46E			WELL
	SMITH GEORGE D.	45.38480	-106.04320		05S	46E			WELL
	PHILLIPS H.I.*WELL #2	45.38840	-106.01900		05S	46E		AD	WELL
103200	SMITH GEORGE D.	45.38690	-106.02620		05S	46E	23		WELL
	SMITH AMANDA*WELL #1	45.38520	-105.99940		05S	46E		DB	WELL
	DUNNING SIDNEY	45.38060	-105.99240		05S	46E		DD	WELL
	FIFTEEN-MILE CREEK*14 MI SW SONNETTE MT.	45.38000	-106.07940		05S	46E			STREAM
	SMITH STEPHEN	45.42050	-105.93650		05S	47E		CDD	WELL
	SMITH STEPHEN B.* WELL #1	45.42140	-105.96020		05S	47E	5	CD	WELL
	SMITH STEPHEN B. * WELL #3	45.42140	-105.96020		05S	47E		CD	WELL
	SMITH STEPHEN B.*WELL #6	45.43260			05S	47E		AB	WELL
	CUSTER NAT. FOREST * WELL #4	45.41370	-105.92100		05S	47E		BD	WELL
	CUSTER NAT. FOREST*WELL #1	45.38940	-105.98810	TRS-TWN	05S	47E		BB	WELL
	SMITH GEORGE	45.38290	-105.96940		05S	47E		DAA	WELL
	GOV. 1-29	45.37610	-105.95070		05S	47E			PETWELL
	PHILLIPS CARL	45.35410	-105.96710		05S	47E		CBB	WELL
						=			
104218	TAKENAKA KISAKA	45.33060	-106.45510	TRS-TWN	06S	43E	10		WELL
	US FOREST SERVICE * BLACKS POND	45.34860			06S	44E		ACAC	
	CANYON CREEK #1		-106.30330		06S	44E			PETWELL
	MT 5096 FED #1	45.31980	-106.33610		06S	44E	15		PETWELL
	JACKSON A.J. *	45.28270	-106.39160		06S	44E		BD	WELL
	USA M-5164-A#1	45.26880	-106.29520		06S	44E		CC	PETWELL
	USA M4018 #1	45.35050	-106.23720		06S	45E			PETWELL
	USA M-4188-1	45.33520	-106.24080		06S	45E			PETWELL
	FED M-4098 1-10	45.33510	-106.21090		06S	45E		BA	PETWELL
	US FOREST SERVICE * COW CREEK	45.31130	-106.24640		06S	45E		DCDB	
	USDA FOREST SERVICE	45.28920	-106.26080		06S	45E			WELL
	U.S.D.A.*2	45.26800	-106.18230	TRS-TWN	06S	45E	35		WELL
	FLETCHER RANCHES*5	45.33340	-106.15360		06S	46E	7		WELL
	U.S.D.A.*2	45.33330	-106.10300		06S	46E	9		WELL
	U.S.D.A.*6	45.31120	-106.12300		06S	46E	17		WELL
	U.S.D.A.*1	45.27490	-106.13280		06S	46E	32		WELL
	HOWES LEVI S.*5	45.27110	-106.12760		06S	46E	32		SPRING
	STEVENS MARCUS*2	45.27030	-106.08760		06S	46E	34		WELL
									WELL
191423	PHILLIPE CARL	45.34200	-105.94170	TRS-TWN	06S	47E	2		WELI

Appendix H - Spring and Well Data on File for the Ashland Ranger District for Sites not Inventoried During the 2002-2003

GWIC ID	Site Name	Latitude	Longitude	Geomethod	Township	Range	Section	Tract	Site Type
898932	USA VINCENT L.WHITE1		-105.96900			47E			PETWELL
104252	KAPESAK FRANK*1	45.30330	-105.92860	TRS-TWN	06S	47E	24	BB	WELL
911328	KOHLMAN FEDERAL #1	45.28170	-105.95430	MAP	06S	47E	27	CD	PETWELL
922633	USA M-3253-A 1	45.28290	-106.02810	MAP	06S	47E	30	CC	PETWELL
104253	LEI JOHN*2	45.26990	-105.93570	MAP	06S	47E	35	СВ	WELL
104262	LEVEQUE P.V.*8	45.29020	-105.90410	TRS-TWN	06S	48E	19	CC	WELL
104999	FOREST SERVICE USDA	45.23970	-106.44770	MAP	07S	43E	10	DBCD	WELL
897493	U.S. WILD HOG #1	45.25440	-106.31580	MAP	07S	44E	2	CC	PETWELL
204832	HOOVER LOIS	45.23590	-106.34670	TRS-TWN	07S	44E	16	AB	WELL
8008	HOOVER DONALD * HOOVER NO. 02	45.19580	-106.27940	MAP	07S	44E			SPRING
195293		45.18480			07S	44E		DADB	
196305	BC-02 (WELL NO. 0-6)	45.18480			07S	44E	36	DADB	WELL
	HAGGN DOROTHY *FRANK HAGGN	45.25500			07S	45E			WELL
	FOREST SERVICE U.S.D.A. *NO.1	45.24730	-106.23150		07S	45E		В	WELL
	USA M-4095-A #1		-106.23360		07S	45E		CC	PETWELL
	OTTER NORTH AND SOUTH *1076E		-106.16330		07S	45E			WELL
	MDOT * OTTER NORTH AND SOUTH *1076E	45.25130			07S	45E			BOREHOLE
	MDOT * OTTER NORTH AND SOUTH *1076E	45.25130			07S	45E		AAB	BOREHOLE
	USFS * CUSTER NATIONAL FOREST TOOLEY CREEK WELL	45.21530			07S	45E			WELL
	MDOT * OTTER NORTH AND SOUTH *1076E	45.21490			07S	45E			BOREHOLE
	HOWARD INGEBORG E. AND ROBERT L. *NO.2	45.21950				45E	24		WELL
	HOWARD INGEBORG E ANDROBERT L. *NO.1	45.21950			07S	45E	24		WELL
	FLETCHER RANCHES *NO.3	45.20740			07S	45E		BB	WELL
	LBC-21 (WELL NO. 0-7)	45.18960			07S	45E			WELL
	WHITHAM JOHN L.		-106.22980		07S	45E	33		WELL
	WHITHAM JOHN L. *NO.2	45.18410			07S	45E	33		WELL
	HORSE CREEK RANCH *HAGEN DORTHY AND BARBARA AND FRANK	45.18970			07S	45E		BD	WELL
	RIESEBERG FREEDO V. AND BARBARA H.	45.19060	-106.20630		07S	45E		BDA	WELL
	USA M-3819 #1	45.26350			07S	46E		AA	PETWELL
	STEVENS HOWES DOROTHY *NO.2	45.24320			07S	46E	8		WELL
	FOREST SERVICE U.S.D.A. *NO.3	45.24590			07S	46E	10		WELL
	FOREST SERVICE U.S.D.A. *NO.6	45.24590			07S	46E	10		WELL
192994	HEINSCH KEN *FTY RANCH	45.24410			07S	46E		AC	WELL
	USA MT.042657-1	45.23770			07S	46E			PETWELL
	FOREST SERVICE U.S.D.A.	45.24060			07S	46E		DA	WELL
	BURNSDIES HARRY M. *NO.4	45.23470			07S	46E	-	BB	WELL
	BURNSIDES HARRY M. *NO.3	45.23150			07S	46E		BD	WELL
	BURNSIDES HARRY M. *NO.2	45.23150			07S	46E		BD	WELL
	USA M-3891-1	45.21210			07S	46E			PETWELL
	BLANKENSHIP BUD	45.21790			07S	46E	24		WELL
	KRAFT CHARLES M. AND DANIEL R. *NO.3	45.20340			07S	46E		AC	WELL
	KRAFT CHARLES M. AND DANIEL R. *NO.4	45.20340			07S	46E		AC	WELL
	KRAFT CHARLES M. AND DANIEL R. *NO.2	45.20640			07S	46E		BB	WELL
	BURNSIDES HARRY M. *NO.1	45.20660			07S	46E		BB	WELL
	GOVT 32-4	45.25630			07S	47E			PETWELL
	MT.07286-C 1	45.24970	-105.98250		07S	47E		CD	PETWELL
	WOODS MERLE	45.25200				47E			WELL
124995		45.24380				47E		ACA	WELL
	FED.036457-1		-105.97110			47E			PETWELL

Appendix H - Spring and Well Data on File for the Ashland Ranger District for Sites not Inventoried During the 2002-2003

GWIC ID	Site Name	Latitude	Longitude	Geomethod	Township	Range	Section	Tract	Site Type
903063	US-M3128A-PAM-AM 6-1	45.24960	-105.94180	MAP	07S	47E	10	AA	PETWELL
898713	MONT.06732-1	45.22900	-105.93140	MAP	07S	47E	14	CACD	PETWELL
105038	LEI JAMES	45.23440	-106.01030	MAP	07S	47E	17	BCB	WELL
145511	LEI JIM	45.23490	-106.02090	MAP	07S	47E	18	ABC	WELL
105041	HUEFFER JOHN A. *NO.3	45.21580	-105.97250	TRS-TWN	07S	47E	21	AC	WELL
105042	HUEFFER JOHN A. *NO.1	45.21580	-105.96740	TRS-TWN	07S	47E	21	AD	WELL
105043	FOREST SERVICE U.S.D.A. *NO.4	45.21950	-105.95380	MAP	07S	47E	22	В	WELL
174026	POWDER RIVER COUNTY	45.21780	-105.93000	MAP	07S	47E	23	BDDB	WELL
105044	FOREST SERVICE U.S.D.A. *NO.5	45.19700	-105.94910	TRS-TWN	07S	47E	27	D	WELL
902897	USA M-3132-1	45.20620	-106.02840	MAP	07S	47E	30	BB	PETWELL
905804	USA M-3132 OIL INC	45.20620	-106.02840	MAP	07S	47E	30	BB	PETWELL
903026	GOVT TAYLOR CR.24-35	45.18180	-105.93610	TRS-TWN	07S	47E	35	CD	PETWELL
105045	GAY H.H.	45.22150	-105.82980	MAP	07S	48E	15	AC	WELL
8017	GAY H.H. * 9.5 MI E SAYLE MONTANA	45.22770	-105.82330	MAP	07S	48E	15	ACAB	WELL
898655	MT014032GOVT H.GAY#1	45.20020	-105.80080	MAP	07S	48E	25	BBC	PETWELL
105047	FOREST SERVICE U.S.D.A. *NO.3	45.19270	-105.87310	MAP	07S	48E	29	С	WELL
898729	MCALISTER ETAL#34-14	45.17440	-105.83470	MAP	07S	48E	34	CDDC	PETWELL

Appendix H - Spring and Well Data on File for the Ashland Ranger District for Sites not Inventoried During the 2002-2003

USGS Quadrangle
HAYES POINT
BEAVER CREEK SCHOOL
NORTH STACEY SCHOOL
STACEY
STACEY
ELK RIDGE
ELK RIDGE
COOK CREEK RESERVOIR
COLEMAN DRAW
BEAVER CREEK SCHOOL
COLEMAN DRAW
STACEY
HOME CREEK BUTTE
ELK RIDGE
SAMUELSON RANCH
ASHLAND
WILLOW CROSSING
WILLOW CROSSING

USGS Quadrangle
WILLOW CROSSING
COLEMAN DRAW
HOME CREEK BUTTE
COLEMAN DRAW
HOME CREEK BUTTE
SAMUELSON RANCH
HOME CREEK BUTTE
HOME CREEK BUTTE
HOME CREEK BUTTE
HOME CREEK BUTTE
HOME CREEK BUTTE
ASHLAND
WILLOW CROSSING
GREEN CREEK
GREEN CREEK
GREEN CREEK
KING MOUNTAIN
HOME CREEK BUTTE

USGS Quadrangle
HOME CREEK BUTTE
COLEMAN DRAW
COLEMAN DRAW
COLEMAN DRAW
YAGER BUTTE
YAGER BUTTE
COLEMAN DRAW
YAGER BUTTE
YAGER BUTTE
COLEMAN DRAW
COLEMAN DRAW
YAGER BUTTE
THREEMILE BUTTES
THREEMILE BUTTES
BIRNEY DAY SCHOOL
GREEN CREEK
POKER JIM BUTTE
POKER JIM BUTTE
KING MOUNTAIN
FORT HOWES
KING MOUNTAIN

USGS Quadrangle
FORT HOWES
FORT HOWES
YAGER BUTTE
YAGER BUTTE
YAGER BUTTE
YAGER BUTTE
YAGER BUTTE
THREEMILE BUTTES
THREEMILE BUTTES
YAGER BUTTE
THREEMILE BUTTES
PHILLIPS BUTTE
BROWNS MOUNTAIN
POKER JIM BUTTE
POKER JIM BUTTE
POKER JIM BUTTE
BROWNS MOUNTAIN
POKER JIM BUTTE
FORT HOWES
FORT HOWES
FORT HOWES
FORT HOWES
POKER JIM BUTTE
FORT HOWES
FORT HOWES
GOODSPEED BUTTE
FORT HOWES
FORT HOWES
FORT HOWES
GOODSPEED BUTTE
PHILLIPS BUTTE

USGS Quadrangle
PHILLIPS BUTTE
PHILLIPS BUTTE
PHILLIPS BUTTE
GOODSPEED BUTTE
PHILLIPS BUTTE
PHILLIPS BUTTE
STROUD CREEK
POKER JIM BUTTE
HAMILTON DRAW
HAMILTON DRAW
HAMILTON DRAW
HAMILTON DRAW
POKER JIM BUTTE
OTTER
OTTER
FORT HOWES
FORT HOWES
FORT HOWES
HAMILTON DRAW
OTTER
OTTER
OTTER
OTTER
HAMILTON DRAW
OTTER
OTTER
OTTER
OTTER
GOODSPEED BUTTE
REANUS CONE
OTTER
OTTER
OTTER
REANUS CONE
REANUS CONE
REANUS CONE
REANUS CONE
REANUS CONE
PHILLIPS BUTTE
PHILLIPS BUTTE
PHILLIPS BUTTE
REANUS CONE
SAYLE
k

USGS Quadrangle
SAYLE
SAYLE
REANUS CONE
REANUS CONE
SAYLE
REANUS CONE
REANUS CONE
SAYLE
BLOOM CREEK