Montana Bureau of Mines and Geology Open File 401Q

HYDROGEOLOGIC ASSESSMENT OF THE MILLER COLONY WATER SYSTEM FOR GROUND WATER UNDER THE DIRECT INFLUENCE OF SURFACE WATER

MILLER COLONY WATER SYSTEM
PWSID #01649
P.O. Box 210
Choteau, MT 59422

Prepared for

Montana Department of Environmental Quality
Water Quality Division

by
Peter Norbeck
Montana Bureau of Mines and Geology

July, 1999

INTRODUCTION AND PURPOSE

This report summarizes the hydrogeology of the Miller Colony public water supply system (PWSID #01649) located north of Choteau, Montana. The Montana Bureau of Mines and Geology (MBMG) is under contract with the Montana Department of Environmental Quality (DEQ) to conduct preliminary assessments and hydrogeologic assessments for selected community public water supplies. The project was funded under DEQ contract number 430007, task order 38.

The purpose of conducting this hydrogeologic assessment was to determine if the spring source (Source ID 005) is under the direct influence of surface water as defined in 40 CFR part 141. Completed PA forms (appendix A) indicate that Miller Colony's wells (source IDs 002 and 003) are not under the direct influence of surface water. A field inspection was completed on January 4, 1999 with Mr. David Hofer and Mr. John Waldner. The results of the hydrogeologic assessment indicate that the spring source may be under the direct influence of surface water as defined in 40 CFR part 141. Information on system location, construction, geology, hydrology, and water quality is summarized in this report. Conclusions and recommendations are presented at the end of the report. Additional data are provided as appendixes to the report.

BACKGROUND

The Surface Water Treatment Rule (SWTR) of the Federal Safe Drinking Water Act of 1986 requires each state to examine public water supplies which use ground water, to determine if there is a direct surface-water influence. In Montana, the Water Quality Division of DEQ is evaluating public water supplies for the SWTR. This program is known as the **Ground Water Under the Direct Influence of Surface Water (GWUDISW) program**. The SWTR defines ground water under the direct influence of surface water as:

Any water beneath the surface of the ground with:

- I) significant occurrence of insects or other macroorganisms, algae, or large diameter pathogens such as *Giardia lamblia*, or *Cryptosporidium*; or
- ii) significant and relatively rapid shifts in water characteristics such as turbidity, temperature, conductivity or pH, which closely correlate to climatological or surface water conditions.

The evaluation begins with a preliminary assessment (PA). If the PA indicates that the ground-water supply may be under the direct influence of surface water further study is required. Further study is required for the Miller Colony public water supply system.

PRELIMINARY ASSESSMENT

The Miller Colony PWS consists of two separate systems, a potable water system supplied by wells and a soft water system supplied by a developed spring. Completed PA forms for the Miller Colony water supply system are included as appendix A. The wells (source IDs 002 and 003) are not under the direct influence of surface water and are not considered further in this report. The spring (source ID 005) was assigned a score of 40 points for being a spring. The score of 40 points, out of a possible total of over 200, indicates the system is at risk of being under the direct influence of surface water. The site identification number used by the MBMG Ground Water Information Center (GWIC) is M:171113.

SYSTEM DESCRIPTION

The Miller Colony soft water supply system is classified as a community public water supply by DEQ. It serves approximately 100 people. The spring (source ID 005) was developed by means of a buried lateral and collector.

Location

Miller Colony and the water supply system are located in north-central Montana, in Teton County. The location of Teton County and Miller Colony are shown on figure 1. Miller Colony is approximately 9 miles northwest of the community of Choteau. The soft water source spring is located about 1 mile south of the colony. The legal description for the spring is SE_{1/4},NE_{1/4},SE_{1/4},SW_{1/4} sec. 17, T. 25 N., R. 05 W. The location of the spring, along with the topography of the surrounding area is shown on figure 2.

System Configuration

The system (source ID 005) is developed by means of 500 feet of 6 inch perforated PVC pipe buried about 20 feet and feeding to a 6 foot diameter collector. Stock water is conveyed directly to the point of use. Water used for washing is pumped to a 72,000 gallon storage tank with an overflow to an irrigation ditch. From this tank the water is passed through an ion exchange softener to an 18,000 gallon storage tank from which it is distributed to the family units, kitchen, laundry, dairy, and slaughter house.

Figure 1. Montana map showing the location of Teton County and Miller Colony.

GEOLOGY

Local Topography and Land Use

The topography of the area surrounding the sources for the Miller Colony water system is shown in figure 2. The Miller Colony water system source spring is located a few miles west of the Rocky Mountain front. Principal land use near the colony is small grains and cattle.

Geology

The Miller Colony water system spring is located in an ancestral channel of the Teton River referred to as the Ralston Gap. Patton (1991) described the surficial geology of the area. At one or more times during the geologic past, the Teton River drained through Ralston Gap depositing sediments in the gap and creating an alluvial fan to the east of the colony that forms the present-day Burton Bench. These sediments overlie Cretaceous sediments, possibly Telegraph Creek Formation and Colorado Shale. Sediments which supply water to the spring consist of 20 to 25 feet of alluvial sand and gravel overlain by up to 3 feet of silty clay-rich top soil (Patton, 1990). Figures 3a and 3b are geologic cross-sections of Ralston Gap showing the thickness of the sand and gravel aquifer which supplies the Miller Colony spring source.

Figure 2. Topographic map of the Miller Colony water system source area showing the locations of the wells and developed spring. Source: U.S.G.S. Bynum 7.5 minute quadrangle map (1987).

Figure 3b. East-west cross-section axial to Ralston Gap.

Ground-Water Flow

The GWIC database at the MBMG contains records for 28 water-wells near Miller Colony completed in the shallow sand and gravel aquifer which is the source of water for the Miller Colony spring. Hydrogeologic data from Patton (1991) suggests that approximately 167,000 cubic feet per day of water flows through Ralston Gap. Geologic cross-sections on figure 3 (Patton, 1991) show the saturated thickness of the sand and gravel.

Water table elevation contours are shown in figure 4 (Patton, 1991). In the vicinity of the spring ground water flows generally northeast. Based on data published by Patton (1991) the estimated ground-water flow (Q) through Ralston Gap is 167,000 cu.ft./day.

Q = KAI = 167,000 cu ft/day where K = permeability = 580 ft/day A = cross-sectional flow area = 26,000 sq. ft. and I = hydraulic gradient rate = 0.011 ft/ft.

Table 1. Well and spring information, Miller Colony public water supply												
SITE	LOCATION	ELEV- ATION (ft)	DTW (ft)	WL ELEV (ft)	TD (ft)	BOTTOM ELEV (ft)	CASING DIAM (in)	Q (gpm)	Aquifer (1)			
Spring 1	T25N R05W Sec17CDBD	4030	10.86	4019.1	18.9	4011.1	-60		111ALVF			
Well 1	T25N R05W Sec18BCDC	4140	40.19	4099.8	74R	4066	6	R	Kv			
Well 2	T25N R05W Sec18CBBD	4150	48.56	4101.4	>58		8	16R	Kv			

(1) 111ALVF - shallow sand and gravel aquifer Kmr - Marias River Formation

Figure 4. Water table contours for the shallow sand and gravel aquifer (Patton, 1991).

WATER QUALITY

Water quality data for the Miller Colony spring were obtained from the GWIC database at the Montana Bureau of Mines and Geology. Additional data for the Miller Colony Wells were obtained from DEQ and are included in appendix B.

Inorganic and Radiological Chemistry

Based on analytical data gathered by Patton (1991), ground water in the sand and gravel aquifer supplying the Miller Colony spring is dominated by calcium, magnesium, and bicarbonate ions. Water in the sand and gravel aquifer is classified as very hard using the classification of Durfor and Becker (1964). Nitrate-nitrogen levels are low, ranging from 0.05 to 0.61 milligrams per liter (mg/L) with a mean value of 0.26 mg/L for 10 samples collected between June 9, 1983 and April 19, 1990. The analytical data also indicate that metals concentrations are low and within drinking water standards. No chemical constituents were found to exceed any of the National Primary Drinking Water Regulation maximum contaminant levels (EPA, 1998).

Figure 5 is a tri-linear plot showing ionic percentages of major cations and anions in water samples from the Miller Colony water system and from wells completed in the sand and gravel aquifer. Sample site locations are shown on figure 6. Samples numbered from 1 to 7 are from the sand and gravel aquifer, and samples A, B, and C are from the Miller Colony water supply. Although sample A is an incomplete analysis for the purposes of plotting because magnesium (Mg) was not analyzed, it's position on the plot suggests it was likely drawn from the wash water system which comes from the spring. Based on where they plot on figure 5, samples B and C are thought to represent water from a source other than the sand and gravel aquifer supplying the Miller Colony spring. The wells supplying the Miller Colony potable water system are thought to draw water from the Virgelle Sandstone. Total nitrogen (nitrate plus nitrite) was less than 1 mg/L in samples collected from Miller Colony on 06/09/83, 06/26/86, and 04/19/90. The sample collected on 06/09/83 is sample A on figure 5.

Bacteriological Water Quality

Bacterial samples collected through 1996 have all been okay (Brayton, 1999). It is not known whether the wash water system has been sampled, or if bacterial sampling represents only the potable system.

Figure 5. Ionic percentages in water samples from Miller Colony (samples A, B, & C) and from nearby wells (samples 1 - 7).

Figure 6. Sample sites for the data shown in figure 5.

CONCLUSIONS AND RECOMMENDATIONS

Determination of Direct Surface Water Influence

Based on the field inspection and literature review, the developed spring supplying the Miller Colony wash water public water supply may be under the direct influence of surface water as defined in 40 CFR part 141. The source of water for the spring supplying the wash water system is the shallow sand and gravel aquifer underlying Ralston Gap. Based on data presented by Patton (1991), the thickness of the aquifer is likely less than 25 feet thick at the spring.

Wells supplying the potable water system at the Colony are completed in the Virgelle Sandstone and are probably not under the direct influence of surface water.

Supporting Evidence for GWUDISW Determination: Miller Colony Spring, 01649-005

The primary evidence supporting the above determination are:

- 1. The spring is developed in a shallow sand and gravel aquifer that is likely less than 25 feet thick.
- 2. The depth to water in the spring was 12.3 feet from the top of the culvert on February 22, 1999.
- 3. Logs of wells completed in the shallow sand and gravel aquifer do not indicate the presence of a continuous aquitard or aquiclude above the water bearing zone.

Supporting Evidence for GWUDISW Determination: Miller Colony Wells, $01649-002\ \&\ 003$

1. The wells serving the potable system are over 50 ft deep with depths to water greater than 40 feet and are probably completed in the Virgelle Sandstone.

Recommendations

- 1. The purpose of the spring system is to supply wash water to the Colony, and the system is separate from the potable system. Care should be taken to ensure that the water is not used for drinking or cooking, and to maintain the system as a totally separate non-potable supply.
- 2. An MPA analysis might resolve the question of whether the spring is actually under the influence of surface water.
- 3. The fencing around the spring is in good repair and should be maintained in that condition.

References

- Patton, T. W., 1991. Geology and hydrogeology of the Burton and Teton Valley aquifers. Montana Bureau of Mines and Geology Open-File Report 238.
- Durfor, C. N., and Becker, E., 1964. Public Water Supplies of the 100 Largest Cities in the United States, 1962: U.S. Geological Survey Water-Supply Paper 1812.
- EPA, 1998. Current Drinking Water Standards, http://www.epa.gov/OGWD/wot/appa.html.
- GWIC, 1998. Montana Bureau of Mines and Geology, Ground Water Information Center, Butte, Montana.
- Waldner, John, 1999. Personal communication during site visit.
- U.S. Geological Survey, 1987. Topographic map, Bynum, Montana-Teton County, 7.5-minute Topographic Quadrangle map; U.S. Geological Survey map; 1:24,000.

Appendix A

Preliminary Assessment Forms for the Miller Colony Water Supply Wells 1 and 2, and spring

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY Metcalf Building 1520 E. 6th St. Helena, MT 59620-0901

Preliminary Assessment of Groundwater Sources that may be under the Direct Influence of Surface water

SOU	TEM NAME Miller Colony PWS ID # 01649 RCE NAME Well #1 (002) COUNTY Teton E 5/27/99 NC NTNC C POPULATION 100	
Α.	TYPE OF STRUCTURE (Circle One)	<u>ıts</u>
	Well	1 B 40 40
В.	HISTORICAL PATHOGENIC ORGANISM CONTAMINATION	
	History or suspected outbreak of <i>Giardia</i> , or other pathogenic organisms associated with surface water with current system configuration No history or suspected outbreak of <i>Giardia</i>	40 <u>0</u>
C.	HISTORICAL MICROBIOLOGICAL CONTAMINATION (Circle all that apply)	5
	Record of acute MCL violations of the Total Coliform Rule over the last 3 years (circle the one that applies) No violations	0 5 10 15
	Record of non-acute MCL violations of the Total Coliform Rule over the last 3 years (circle the one that applies) One violation or less	0 5 10
	DHES-verified complaints about turbidity	5
D.	HYDROLOGICAL FEATURES	
	Horizontal distance between a surface water and the source greater than 250 feet	0 5 10 15 15

Poorly constructed well (uncased, or casing not sealed to depth of at least 18 feet below land surface), or casing construction is unknown	15
In wells tapping unconfined or semiconfined aquifers, depthelow land surface to top of perforated intervals or screen greater than 100 feet	0 5 10 15 15
F. WELL INTAKE CONSTRUCTION	
In wells tapping unconfined or semiconfined aquifers, dept to static water level below land surface greater than 100 feet	0 5 10 10
Poor sanitary seal, seal without acceptable	1.5
material, or unknown sanitary seal type	15
TOTAL SCORE	15
PRELIMINARY ASSESSMENT DETERMINATION (Circle the one that appl.	!\
I) PASS: Well is classified as groundwater. ii) FAIL: Well must undergo further GWUDISW determination. iii) FAIL: Spring or Infiltration Gallery; must undergo furt GWUDISW determination. iv) FAIL: Well will PASS if well construction deficiencies (section E or F) are repaired. v) FAIL: Well may PASS if well construction details (section E or F) become available. ANALYST Peter Norbeck ANALYST AFFILIATION MBMG	
 I) PASS: Well is classified as groundwater. ii) FAIL: Well must undergo further GWUDISW determination. iii) FAIL: Spring or Infiltration Gallery; must undergo furt GWUDISW determination. iv) FAIL: Well will PASS if well construction deficiencies (section E or F) are repaired. v) FAIL: Well may PASS if well construction details (section E or F) become available. 	
<pre>I) PASS: Well is classified as groundwater. ii) FAIL: Well must undergo further GWUDISW determination. iii) FAIL: Spring or Infiltration Gallery; must undergo furt</pre>	
<pre>I) PASS: Well is classified as groundwater. ii) FAIL: Well must undergo further GWUDISW determination. iii) FAIL: Spring or Infiltration Gallery; must undergo furt</pre>	
<pre>I) PASS: Well is classified as groundwater. ii) FAIL: Well must undergo further GWUDISW determination. iii) FAIL: Spring or Infiltration Gallery; must undergo furt</pre>	

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY Metcalf Building 1520 E. 6th St. Helena, MT 59620-0901

Preliminary Assessment of Groundwater Sources that may be under the Direct Influence of Surface water

SOU	TEM NAME Town of Kevin PWS ID # 01649 RCE NAME Well #2 (003) COUNTY Teton E 5/27/99 NC NTNC C POPULATION 100	
A.	TYPE OF STRUCTURE (Circle One)	<u>its</u>
	Well	1 B 40 40
в.	HISTORICAL PATHOGENIC ORGANISM CONTAMINATION	
	History or suspected outbreak of <i>Giardia</i> , or other pathogenic organisms associated with surface water with current system configuration No history or suspected outbreak of <i>Giardia</i>	40 0
C.	HISTORICAL MICROBIOLOGICAL CONTAMINATION (Circle all that apply)	
	Record of acute MCL violations of the Total Coliform Rule over the last 3 years (circle the one that applies) No violations	0 5 10 15
	Record of non-acute MCL violations of the Total Coliform Rule over the last 3 years (circle the one that applies) One violation or less	0 5 10
	DHES-verified complaints about turbidity	5
D.	HYDROLOGICAL FEATURES	
	Horizontal distance between a surface water and the source greater than 250 feet	0 5 10 15 15

	Poorly constructed well (uncased, or casing not	
	sealed to depth of at least 18 feet below land	
	surface), or casing construction is unknown	15
	In wells tapping unconfined or semiconfined aquifers, depth	
	below land surface to top of perforated intervals or screen	_
	greater than 100 feet	0
	50 - 100 feet	5_
	25 - 50 feet	10
	0 - 25 feet	15
	${\tt unknown} \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	15
F.	WELL INTAKE CONSTRUCTION	
	- 17 towning unconfined on comiconfined equifora death	
	In wells tapping unconfined or semiconfined aquifers, depth to static water level below land surface	
		0
	greater than 100 feet	5
	0 - 50 feet	<u>10</u>
	unknown	10
	UIIRIIOWII	
	Poor sanitary seal, seal without acceptable	
	material, or unknown sanitary seal type	15
	inacci ida, or direction in the state of the	
	TOTAL SCORE	15
PRE	${ t LIMINARY ASSESSMENT DETERMINATION}$ (Circle the ${ t one}$ that applies	5)
I)	PASS: Well is classified as groundwater.	Si .
	FAIL:. Well must undergo further GWUDISW determination.	y
iii) FAIL: Spring or Infiltration Gallery; must undergo furthe GWUDISW determination.	_
(se	ction E or F) are repaired. FAIL: Well may PASS if well construction details	
V)	ection E or F) become available.	
(se	ection E of F) become available.	
7\	LYST Peter Norbeck ANALYST AFFILIATION MBMG	
TIME	MANA 1000 MONOTO TO	
COM	MENTS:	
301		
1311		

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY Metcalf Building 1520 E. 6th St. Helena, MT 59620-0901

Preliminary Assessment of Groundwater Sources that may be under the Direct Influence of Surface water

SOU	TEM NAME Town of Kevin PWS ID # 01649 RCE NAME Spring (005) COUNTY Teton E 5/27/99 NC NTNC C POPULATION 100	
A.	TYPE OF STRUCTURE (Circle One)	<u>ts</u>
	Well	ГВ <u>40</u> 40
В.	HISTORICAL PATHOGENIC ORGANISM CONTAMINATION	
8	History or suspected outbreak of <i>Giardia</i> , or other pathogenic organisms associated with surface water with current system configuration No history or suspected outbreak of <i>Giardia</i>	40 0
c.	HISTORICAL MICROBIOLOGICAL CONTAMINATION (Circle all that apply)	
	Record of acute MCL violations of the Total Coliform Rule over the last 3 years (circle the one that applies) No violations	0 5 10 15
	Record of non-acute MCL violations of the Total Coliform Rule over the last 3 years (circle the one that applies) One violation or less	0 5 10
	DHES-verified complaints about turbidity	5
D.	HYDROLOGICAL FEATURES	
	Horizontal distance between a surface water and the source greater than 250 feet	0 5 10 15 15
E.	WELL CONSTRUCTION	

Poorly constructed well (uncased, or casing not

	sealed to depth of at least 18 feet below land surface), or casing construction is unknown	15
	In wells tapping unconfined or semiconfined aquifers, depth below land surface to top of perforated intervals or screen greater than 100 feet	0 5 10 15 15
F.	WELL INTAKE CONSTRUCTION	
	In wells tapping unconfined or semiconfined aquifers, depth to static water level below land surface greater than 100 feet	0 5 10 10
	Poor sanitary seal, seal without acceptable material, or unknown sanitary seal type	15
	TOTAL SCORE	40
PREI	<u>LIMINARY ASSESSMENT DETERMINATION</u> (Circle the <u>one</u> that applies	5)
ii) iii) iv) (sec	PASS: Well is classified as groundwater. FAIL: Well must undergo further GWUDISW determination. FAIL: Spring or Infiltration Gallery; must undergo furthe GWUDISW determination. FAIL: Well will PASS if well construction deficiencies ction E or F) are repaired. FAIL: Well may PASS if well construction details ction E or F) become available.	r
ANA	LYST_Peter Norbeck ANALYST AFFILIATION MBMG	
COM	MENTS: The spring is not used for potable water.	
-		

.

e and

Appendix B

Water Quality Assessment Data Data Source: MDEQ, GWIC

Miller Colony Ground-water Parameters

Sample ID	M:number	LOCATION	SAMPLE DATE	SAMPLE SOURCE	TDS CALC'D (mg/l)	TDS SUM OF DIS CONST (mg/l)	FLD SC (umho/cm)	LAB SC (umho/cm)	FIELD pH	LAB pH	HRDNS AS CaCO3 (mg/l)	ALK AS CaCO3 (mg/l)		LANGLIER SAT IND	SAR
1986Q0971	6346	25N05W16DDD	28-Aug-86	WELL	464	689	715	755		7.66	427	363	6.32	0.67	0.27
		25N05W	09-Jun-83	PWS		651		825		8.5					
		25N05W	26-Jun-86	PWS		567		692		7.75					
		25N05W	19-Apr-90	PWS		713		845		8.82					
1986Q0970	6347	25N05W19CBBBC	26-Aug-86	WELL	272	398		454		7.63	248	204	7.31	0.16	
1985Q0580	6348	25N05W20DBAB	17-Jun-85	WELL	337	503	957	572	8.59	7.84	292	269	6.68	0.58	
1986Q0966	6349	25N05W20DBAC	26-Aug-86	WELL	337	503	556	575		7.52	297	267	6.96	0.28	
1986Q0136	6353	25N05W21CCC	02-Apr-86	WELL		438	456	541	7.54	8.39	246	231	6.44	0.97	
1986Q0969	_	25N05W28BBCB01	28-Aug-86	WELL	635	806	920	948		7.77	375	276	6.69	0.54	
1986Q0967	6355	25N05W28BBCB02	28-Aug-86	WELL	672	843	975	1000		7.7	398	276	6.7	0.5	1.79

Miller Colony Major Elements

Sample ID	M:number	LOCATION	SAMPLE DATE	SAMPLE SOURCE	Ca (mg/l)	Mg (mg/l)	Na (mg/I)	K (mg/l)	Fe (mg/l)	Mn (mg/l)	SiO2 (mg/l)	HCO3 (mg/l)	CO3 (mg/l)	CI (mg/I)	SO4 (mg/l)	NO3 (mg/l)	F (mg/l)	PO4 (mg/l)
1986Q0971	6346	25N05W16DDD	28-Aug-86	WELL	89.4	49.6	12.8	1.1	<.002	<.001	11.	442.	0	0.6	81.7	0.05		<.1
		25N05W	09-Jun-83	PWS	148.		26.9					474.6				0.21	1.00	
		25N05W	26-Jun-86	PWS	46.1	20.4	75.3					357.5	0		67.	0.61	0.44	
		25N05W	19-Apr-90	PWS	20.4	10.5	174.					445.3	0		60.9	0.54	0.95	
1986Q0970	6347	25N05W19CBBBC	26-Aug-86	WELL	52.8	28.3	3.7	1.3	<.002	<.001	14.2	248.4	0	0.4	48.1	0.07	0.60	<.1
1985Q0580	6348	25N05W20DBAB	17-Jun-85	WELL	64.8	31.7	14.	1.1	<.002	0.001	9.2	328.	0	0.9	52.5	0.21	0.40	<.1
1986Q0966	6349	25N05W20DBAC	26-Aug-86	WELL	68.2	30.7	14.2	0.9	0.010	<.001	8.8	326.	0	0.8	52.6	0.10	0.40	<.1
1986Q0136	6353	25N05W21CCC	02-Apr-86	WELL	52.6	27.9	21.	<.1	<.002	<.001		276.3	2.4	1.5	55.8	0.36	0.30	<.1
1986Q0969	6354	25N05W28BBCB01	28-Aug-86	WELL	67.2	50.3	79.2	1.7	0.021	0.003	11.6	337.	0	1.6	257.	0.26	0.60	<.1
1986Q0967	6355	25N05W28BBCB02	28-Aug-86	WELL	72.2	53.0	81.9	1.8	0.002	0.002	11.4	337.	0	1.6	283.	0.20	0.70	<.1

Miller Colony Trace Elements

LOCATION	SAMPLE DATE	Sample ID	M:number	AI (ug/I)	As (ug/I)	B (ug/I)	Br (ug/l)	Cd (ng/l)	Cr (ug/I)	Cn (ng/l)	Pb (ug/l)	Li (ug/l)	Mo (ug/I)	Ni (ug/I)	Se (ug/l)	Ag (ug/l)	Sr (ug/I)	Ti (ug/l)	Va (ug/I)	Zn (ug/l)	Zr (ug/l)
25N05W16DDD	28-Aug-86	1986Q0971	6346	<30		<20	<100	<2.	<2.	<2.		17	<20	<10.		<2.	800	5.	<1.	<3.	<4.
25N05W	09-Jun-83																				
25N05W	26-Jun-86											Ш									
25N05W	19-Apr-90																				
25N05W19CBBBC	26-Aug-86	1986Q0970	6347	<30		<20	<100	<2.	<2.	<2.		6	<20	<10.		<2.	470	5.	<1.	<3.	<4.
25N05W20DBAB	17-Jun-85	1985Q0580	6348	<30	0.2	50	<100	<2.	<2.	21.		10	<20	20.	<.1	<2.	630	15.	1.	100.	<4.
25N05W20DBAC	26-Aug-86	1986Q0966	6349	<30		70	<100	<2.	<2.	4.		13	<20	<10.		<2.	580	6.	<.1	<3.	<4.
25N05W21CCC	02-Apr-86	1986Q0136	6353	<30		<20	<100	<2.	<2.	<2.		.7	<20	10.		<2.	620	<1.	<1.	<3.	<4.
25N05W28BBCB01	28-Aug-86	1986Q0969	6354	<30		110	<100	<2.	<2.	<2.		36	<20	<10.		<2.	1520	6.	<1.	<3.	<4.
25N05W28BBCB02	28-Aug-86	1986Q0967	6355	<30		110	<100	<2.	<2.	<2.		36	<20	<10.		<2.	1640	7.	<1.	94.	<4.

STATE HEALTH DEPT.	HATER QUALITY	SURTAU HELENA	, MONTANA	59623
STATE HONTANA		COUNTY	METET	
LATLUNG.	8	SAMPLE LOCATION		
STATION CODE 0001649		ANALYSIS NUMBER	8641624	
DATE SAMPLED 96-26-8	6	DRAINAGE BASIN	410	
TIME SAMPLED		WATER FLOW RATE	***	
METHOD SAMPLED GRAB	FLO	M MEASUREMENT METHOD		
SAMPLE SOURCE		TUDE OF LAND SURFACE		
MATER USE PUBLIC		MELL DEPTH BELOW LS		
AQUIFER(S)		and the second s		
	446	ABOVE(+) OR BELOW LS		

SAMPLE DEPTH BELOW SURFACE

SAMPLING SITE: MILLER COLONY

SAMPLED BY

CALCIUM	(CA)	MG/L 46.1 ~	MEQ/L 2.300	DICARBONATE(HCQ3)	MG/L 357.5	MEQ/L 5.858
MAGNESIUM ((me)	20.41	1.678	CARBONATE (CO3)		70° 70 ° 20° 700° 700° 100°C
10000 7 2	(NA)	75.3			0.0	0-000
POTASSIUM		1993	3.276	CMLORIDE (CL)		
POIN SELDM	(K)			SULFATE (504)	67	1.395
				FLUORIDE (F)		0.023
			P 04	GSPHATE(PG4 AS P)		
			F ₂₀	103+NO2 (TOT AS N)	.61	0-044
SUR CAT	ri qus	141.0	7,254	SUM ANIONS	425.5	7,320
	LASC	RATORY PH	7.75	TOT MARDNESS(RG	/L=CACO31	199
TYELD WATER	R TEMPER	RATURE (C)		TOT ALKALINITY(NG		293
.UM-DISS.				LABORATORY TURBID		6.74
LAB CONDUC			692 V			
CHE CONDO	CITATIA.	-04402-42¢	93% A	SODIUM ADSORPT	IUN RATID	2.3
			DNAL	PARABETER	s	
ARSENIC, T	TR (MG/	. AS AS)	<-001	CADMIUM, TR (MG/L	A\$ CD1	.001
		. AS PBI	<.005	MERCURY, TR (MG/L		<.0002
SEL ENTUR,			<.002	CHROMIUM, TR ING/L		
						<.005
SILVER, 1			<.01	IRON, TR (MG/L		<.01
MANGANESE	TR (RG/	L AS MND	.005	BARIUM, TR (MG/L	AS BAJ	.04

REMARKS: DRINKING WATER PROGRAM BOX 210-RTE 2-CHOTEAU 59422

NOTES: #G/L=MILLIGRAMS PER LITER MEQ/L=MILLIEQUIVALENTS/L UG/L=MICROGRAMS/L
ALL CONSTITUENTS DISSOLVED (DISS) EXCEPT AS NOTEO. TOT=TOTAL SUSP=SUSPENDED
TR=TOTAL RECOVERABLE (M)=MEASURED (R)=REPORTED (E)=ESTIMATED M=METERS
SAMPLE NC- SAMPLER- DR HANDLING- ANALYST-LAB LAB+ SCAN-NO

SAMPLE NC- SAMPLER- DM MANDLING- ANALYST-LAB LAB- SCAN-NO COMPLETED-07/14/66 COMPUTER RUN-08/12/86 DATA-084/PGM-0984 FUND- STND DEV. ION BALANCE: CA MG NA K CL 304 MCD3 CO3 NO3 MPDES- 31.7 23.1 45.2 0.0 0.0 19.2 80.8 0.0 0.0 CALC. MEQ/L= 7.037 TO 7.778 8641624

STATE	HEAL TH	JEPT.
-------	---------	-------

WATER QUALITY BUREAU

MELENA . MONTANA 59620

STATE	MONTANA	COUNTY	TETON
LAT UNG.		SAMPLE LUCATION	
STATION CODE	1649	ANALYSIS NUMBER	9381125
DATE SAMPLED	00-09-93	DRAINAGE BASIN	41 0
TIME SAMPLED		WATER FLOW RATE	
45 THOO SAMPLED	GRAB	FLOW MEASUREMENT METHOD	
SAMPLE SOURCE		ALTITUDE OF LAND SURFACE	
WATER USE	PUBLIC SPLY	TOTAL WELL DEPTH BELOW LS	4
AQUIFER (5)		SWL ASOVE (+) OR BELOW LS	
SAMPLED BY	WQB	SAMPLE DEPTH SELDW SURFACE	

SAMPLING SITE: MILLER COLONY

CALCIUM (CA)	MG/L 148.0	MEQ/L 7.385	BICARBONATE PLUS	MG/L	MEQ/L
MAGNESIUM (MG) SODIUM (MA) POTASSIUM (K)	26.9	1.170	CARBONATE(AS MCO3) CHLORIDE (CL) SULFATE (SO4)	474.6	7.779
	1	2	FLUORIDE (F) PHOSPHATE(PO4 AS P)	1.00	0.053
,			NO3+NO2 (TOT AS N)	0.21	0.015
SUM CATIONS	174.9	8.555	SUM ANIONS	475.0	7.845
LAI SIELD WATER TEMPI SI DISS. IONS I	MEAS. (MG/L)	8.50	TOT HARONESS(MG TOT ALKALINITY(MG LABORATORY TURBID SOOIUM ADSORPT	/L-CACO3) ITY (NTU)	389
ARSENIC. TR (MG LEAD. TR (MG SELENIUM. TR (MG SILVER, TR (MG	/L AS P0) /L AS SE)	<pre></pre>	CADMIUM. TR (MG/L MERCURY. TR (MG/L CHRONIUM.TR (MG/L	AS CD) AS HG)	< .001 < .0002 < .005 .04

MARKS: DRINKING WATER PROGRAM JAKE WIPF RT 2. 80% 110 CHOTEAU MT 59432

APLANATION: MG/L*MILLIGRAMS PER LITER MEG/L*MILLISQUIVILENTS PER LITER ALL CONSTITUENTS DISSOLVED (DISS) EXCEPT AS NOTED. TOT*TOTAL SUSP*SUSPENDED (M)* MEASURED(R)*REPORTED (E)*ESTIMATED MEMETERS TRETOTAL RECOVERABLE

.4 MPLE NU- SAMPLER-KEB HANDLING- ANALYST-WAT LAB- WOB SCAN-NO COMPLETED-CO/30/83 COMPUTER RUN-07/13/83 DATA-0383/PGM-0383 FUND-6254 ST ND DEV. ION BALANCE: CA MG NA K CL SO4 MCD3 CD3 NO3 MPDES- 86.3 0.0 13.7 0.0 0.0 0.0100.0 0.0 0.0 CALC. MEG/L: 8.454 TO 9.344

STATE MONTANA STATE MONTANA LATLONG. STATION CODE 0001649 OATE SAMPLED 04-19-90 TIME SAMPLED 04-19-90 TIME SAMPLED GRAB FLOW MEASUREMENT METHOD SAMPLE SOURCE MATER USE PUBLIC SPLY TOTAL MELL DEPTH BELOW LS SAMPLED BY SAMPLED BY SAMPLED BY SAMPLED DEPTH BELOW SURFACE SAMPLED BY TOTAL MELL DEPTH BELOW LS SAMPLED BY SAMPLED BY SAMPLE DEPTH BELOW SURFACE TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLED BY TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLE (GG) 0.00 TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLE (GG) 0.00 TOTAL MELL DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLE (GG) 0.00 TOTAL MELL DEPTH BELOW SURFACE SAMPLE DEPTH BELOW SURFACE SAMPLE (GG) 0.00 TOTAL MELL DEPTH BELOW SURFACE SAMPLE DEPTH SEMPLE				,		
LATLONG. STATION CODE OO01649 DATE SAMPLED OATE SAMPLED TIME SAMPLED METHOD SAMPLED SAMPLE SOURCE MATER USE MATER USE AQUIFER(S) SAMPLED BY SAMPLE DEPTH BELOM SURFACE SAMPLED BY SAMPLE DEPTH BELOM SURFACE SAMPLING SITE: MILLER COLONY MG/L MEG/L MEG	STATE HEALTH DE	PT. WA1	TER QUALIT	Y BUREAU HE	ELENA, MONTAN	A 59620
STATION CODE 0001649 DATE SAMPLED 04-19-90 TIME SAMPLED WATER FLOW RATE FLOW MEASUREMENT METHOD SAMPLE SOURCE MATER USE PUBLIC SPLY AQUIFER(S) SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLING SITE: MILLER COLONY MG/L MEQ/L CALCIUM (CA) 20.44 1.018 SICARBONATE(MCCC) 445.3 MAGNESIUM (MG) 10.54 SODIUM (MA) 1744 7.549 CHLORIBE (CL) SULFATE (SCL) POTASSIUM (K) PHOSPHATE(PQ4 AS P) MC3+MC2 (TGT AS N) 544 0.039	STATE	MONTANA		CO	UNTY TETON	∞.
STATION CODE 0001649 OATE SAMPLED 04-19-90 TIME SAMPLED WATER FLOW RATE MATER FLOW RATE SAMPLE SOURCE MATER USE PUBLIC SPLY SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLING SITE: MILLER COLONY MG/L MEQ/L CALCIUM (CA) 20.44 1.018 SICARBONATE(HCO3) 445.3 7.298 MAGNESIUM (MG) 10.5 0.664 CARBONATE (CO3) 0.0 0.000 SODIUM (MA) 174 7.569 CHLORIBE (CL) POTASSIUM (K) PHOSPHATE(PQ4 AS P) MO3+MO2 (TOT AS N) .54 0.039	LATLONG.			SAMPLE LOCA	•	
DATE SAMPLED 04-19-90 TIME SAMPLED THE SAMPLED GRAB FLOM MEASUREMENT METHOD SAMPLE SOURCE HATER USE AQUIFER(S) SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLING SITE: MILLER COLONY MG/L MG/L MEQ/L CALCIUM (CA) MG/L MEQ/L MAGNESIUM (MG) SODIUM (MA) 174 7.569 CHLORIBE (CL) POTASSIUM (K) DRAINAGE BASIN MATER FLOW RATE FLOW MEASUREMENT METHOD SURFACE MG/L MEQ/L MG/L MEQ/L MG/L MEQ/L MG/L MEQ/L CALCIUM (CA) SULFATE (SO4) FLUGRIBE (F) MG/L MEQ/L M	STATION CODE	0001649				•
TIME SAMPLED MATER FLOW RATE METHOD SAMPLED GRAB FLOW MEASUREMENT METHOD ALTITUDE OF LAND SURFACE MATER USE PUBLIC SPLY TOTAL MELL DEPTH BELOW LS SAMPLED BY SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLING SITE: MILLER COLONY MG/L MEQ/L CALCIUM (CA) MG/L MEQ/L MEQ/L CALCIUM (CA) MG/L MEQ/L MG/L MEQ/L MG/L MEQ/L MEQ/L CALCIUM (CA) MG/L MEQ/L MEQ/L MG/L MG/L MEQ/L MG/L MG/L MEQ/L MG/L MEQ/L MG/L MG/L MEQ/L MG/L MEQ/L MG/L MG/L MG/L MEQ/L MG/L MG/L	DATE SAMPLED	04-19-90				
FLOW HEASUREMENT METHOD SAMPLE SOURCE HATER USE PUBLIC SPLY TOTAL WELL DEPTH DELOW LS AQUIFER(S) SAMPLED BY SAMPLED BY SAMPLED BY MG/L CALCIUM (CA) 10.54 MG/L MEQ/L CALCIUM (CA) 20.44 1.018 BICARBONATE (HCG3) A45.3 7.298 HAGNESIUM (MG) 10.55 0.664 CARBONATE (CG3) 0.0 O.000 POTASSIUM (K) SULFATE (SG4) FLUGRIDE (F) NG3+HG2 (TGT AS N) S54 0.039	TIME SAMPLED			Cost Long		
ALTITUDE OF LAND SURFACE HATER USE PUBLIC SPLY TOTAL WELL DEPTH BELOW LS AQUIFER(S) SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLING SITE: MILLER COLONY MG/L MEQ/L CALCIUM (CA) 20.4 1.018 BICARBONATE(HCO3) 445.3 7.298 HAGNESIUM (MG) 10.5 0.664 CARBONATE (CO3) 0.0 0.000 SODIUM (NA) 174 7.569 CHLORIBE (CL) POTASSIUM (K) FLUORIBE (F) .95 0.050 PHOSPHATE(PO4 AS P) NO3+NO2 (TOT AS N) .54 0.039	METHOD SAMPLED	GR AB	FL		20 30 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
HATER USE PUBLIC SPLY TOTAL HELL DEPTH BELOW LS SAUJIFER(S) SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLING SITE: MILLER COLONY MG/L MEQ/L CALCIUM (CA) 20.4 1.018 BICARBONATE(HCO3) 445.3 7.298 MAGNESIUM (MG) 10.5 0.064 CARBONATE (CO3) 0.0 0.000 SODIUM (MA) 174 7.569 CHLORIBE (CL) POTASSIUM (K) SULFATE (SO4) 60.9 1.268 FLUORIBE (F) .96 0.050 PHOSPHATE(PO4 AS P) NO3+NO2 (TOT AS N) .54 0.039	SAMPLE SOURCE					
AQUIFER(S) SAMPLED BY SAMPLED BY SAMPLE DEPTH BELOW SURFACE SAMPLING SITE: MILLER COLONY MG/L MEQ/L CALCIUM (CA) 20.4 1.018 BICARBONATE(HC03) 445.3 7.298 MAGNESIUM (MG) 10.5 0.864 CARBONATE (CO3) 0.0 0.000 SODIUM (NA) 174 7.569 CHLORIDE (CL) POTASSIUM (K) SULFATE (SO4) 60.9 1.268 FLUORIDE (F) .95 0.050 PHOSPHATE(PO4 AS P) NO3+NO2 (TOT AS N) .54 0.039	HATER USE	PUBLIC SPLY				
SAMPLING SITE: MILLER COLONY MG/L MEQ/L CALCIUM (CA) 20.4 1.018 BICARBONATE(HCO3) 445.3 7.298 MAGNESIUM (MG) 10.5 0.664 CARBONATE (CO3) 0.0 0.000 SODIUM (NA) 174 7.569 CHLORIBE (CL) POTASSIUM (K) SULFATE (SO4) 60.9 1.266 FLUORIBE (F) .95 0.050 PHOSPHATE(PO4 AS P) NO3+NO2 (TOT AS N) .54 0.039	AQUIFER(S)			the second program to the second seco		
CALCIUM (CA) 20.4	SAMPLED BY		SAMPL	E DEPTH BELOW SURE	FACE	
CALCIUM (CA) 20.4						
CALCIUM (CA) 20.44 1.018 BICARBONATE(HCO3) 445.3 7.298 MAGNESIUM (MG) 10.5 0.664 CARBONATE (CO3) 0.0 0.000 SODIUM (NA) 174 7.569 CHLORIBE (CL) POTASSIUM (K) SULFATE (SQ4) 60.9 1.268 FLUGRIBE (F) .95 0.050 PHOSPHATE(PQ4 AS P) NO3+NO2 (TQT AS N) .54 0.039	SAMPLI	NG SITE: MILL	ER COLONY			
SODIUM (NA) 174	SAMPL I				MG/L	MEQ/L
POTASSIUM (K) SULFATE (SQ4) 60.9 / 1.266 FLUQRIBE (F) .95 / 0.050 PHOSPHATE(PQ4 AS P) NQ3+NQ2 (TQT AS N) .54 / 0.039		MG/L 20.4/	MEQ/L			
FLUGRIDE (F) .95 0.050 PHOSPHATE(PO4 AS P) NO3+NO2 (TOT AS N) .54 0.039	CALCIUM (CA)	MG/L 20.4/	MEQ/L 1.018	alcaragnate(HC 03	445.3	7.298
PHOSPHATE(PO4 AS P) NO3+NO2 (TOT AS N) .54 V 0.039	CALCIUM (CA) MAGNESIUM (MG)	NG/L 20.4/ 10.5/	MEQ/L 1.018 0.664	SICARSONATE(HCO3 CARSONATE (CO3	0.0	7.298
NO3+NO2 (TOT AS N) .54 V 0.039	CALCIUM (CA) MAGNESIUM (MG) SODIUM (NA)	NG/L 20.4/ 10.5/	MEQ/L 1.018 0.664	SICARBONATE (HCO3 CARBONATE (CO3 CHLORIGE (CL	445.3 0.0	7.298
	CALCIUM (CA) MAGNESIUM (MG) SODIUM (NA)	NG/L 20.4/ 10.5/	MEQ/L 1.018 0.664	SICARBONATE(HCO3 CARBONATE (CO3 CHLORIGE (CL SULFATE (SO4)	0.0 0.0 1 60.9	7.296 0.000 1.266
SUM CATIONS 204.9 9.451 SUM ANIONS 507.7 8.654	CALCIUM (CA) MAGNESIUM (MG) SODIUM (NA)	NG/L 20.4/ 10.5/	MEQ/L 1.018 0.464 7.569	BICARBONATE(HCO3 CARBONATE (CO3 CHLORIGE (CL SULFATE (SO4 FLUGRIBE (F	445.3 0.0 0.0 0.9 0.95	7.296 0.000 1.266
	CALCIUM (CA) MAGNESIUM (MG) SODIUM (NA)	NG/L 20.4/ 10.5/	MEQ/L 1.018 0.664 7.569	BICARBONATE(HCO3 CARBONATE (CO3 CHLORIBE (CL SULFATE (SO4 FLUGRIBE (F HOSPHATE(PQ4 AS P	445.3 0.0 1 60.9 .95	7.298 0.000 1.268 0.050

TOT ALKALINITY(MG/L-CACO3) 365 W SUM-DISS. IONS MEAS. (MG/L) LABORATORY TURBIDITY (NTU) LAB CONDUCTIVITY-UNHOS-25C 845 SODIUM ADSORPTION RATIO 7.8 ADDITIONAL PARANETERS ARSENIC, TR (MG/L AS AS) <- 00 IV <.00W CADMIUM, TR (MG/L AS CD) <.0002 LEAD, TR (MG/L AS PB) <.005V MERCURY, TR (MG/L AS HG) SELENIUM, TR (MG/L AS SE) <.001 v CHROMIUM, TR (MG/L AS CR) < . 005 .01 SILVER, TR (MG/L AS AG) <.001V IRON, TR (MG/L AS FE) <.005 MANGANESE, TR (MG/L AS MN) BARIUM, TR. (MG/L AS BA) . 045 W

8.82

REMARKS: DRINKING WATER PROGRAM

LABORATORY PH

FIELD WATER TEMPERATURE (C)

NOTES: MG/L=NILLIGRAMS PER LITER MEQ/L=MILLIEQUIVALENTS/L UG/L=MICROGRAMS/L ALL CONSTITUENTS DISSOLVED (DISS) EXCEPT AS NOTED. TOT-TOTAL SUSP-SUSPENDED TRETOTAL RECOVERABLE (M) = MEASURED (R) = REPORTED (E) = ESTIMATED MEMETERS

ANALYST-LAB LAB-SCAN-NO SAMPLE NO-SAMPLER-WHG HANDLING-CUMPLETED-05/21/90 COMPUTER RUN-06/11/90 DATA-0664/PGM-0984 FUND-CA MG NA K CL SO4 HCO3 CO3 EOM STND DEV. ION BALANCE= 10.8 9.1 80.1 0.0 0.0 14.6 65.2 0.0 0.0 MP DE S-2040834 8,668 TO 9.581 CALC. MEQ/L=

TOT HARDNESS(MG/L-CACO3)

94

ENERGY LABORATORIES

ENERGY LABORANDIUES, INDITE

RECEIVED AUG -5 1998

01649-502

Client: Miller Colony
Date Sampled: 16-JUL-98 12:00ENTERE
Date Received: 17-JUL-98

Analysis Date: 21-JUL-1998 20:04

INITIAL DA

AUG - 7 1000

Lab No.: 98-46466
Report Date: 07/2774610 #09.20104

Extraction Method: EPA 5030 Sample Matrix: WATES PH= < 2

Chlorine/Turbidity

GWUUISW

ON IN COLD A EGOMESTI

File: /chem/IONTRAP2.i/vc072198.b/9846466a.d Project Info: Sample Info:

VOLATILE ORGANICS ANALYSIS REPORT

CONCENTRATION UNITS = ug/L (ppb) QUALIFIENTIALS CAS NO. EPA MCL RESULT COMPOUNDS 2000000 -----(VOC'S) ----- REGULATED VOLATILE ORGANIC CHEMICALS <0.50 U 71-43-2 5 U <0.50 56-23-5 5

Benzene Carbon Tetrachloride U <0.50 100 Chlorobenzene 108-90-7 U 600 <0.50 95-50-1 1,2-Dichlorobenzene Û 106-46-7 75 <0.50 1.4-Dichlorobenzene U 107-06-2 5 <0.50 1,2-Dichloroethane U <0.50 7 75-35-4 1,1-Dichloroethene <0.50 TT 70 156-59-2 cis-1,2-Dichloroethene 100 <0.50 156-60-5 trans-1,2-Dichloroethene <0.50 15 78-87-5 1,2-Dichloropropane <0.50 700 100-41-4 Ethylbenzene <0.50 5 75-09-2 Methylene Chloride <0.50 100 100-42-5 Styrene <0.50 5 127-18-4 Tetrachloroethene <0.50 1000 108-88-3 Toluene <0.50 70 120-82-1 1,2,4-Trichlorobenzene <0.50 200 71-55-6 1,1,1-Trichloroethane <0.50 5 79-00-5 1,1,2-Trichloroethane 5 <0.50 79-01-6 Trichloroethene < 0.50 75-01-4 Vinyl Chloride U <0.50 100383/106423 m+p-Xylenes 17 <0.50 95-47-6 o-Xylene 10000 <0.50

Total Xylenes --- REGULATED VOC'S: TRIHALOMETHANES--6.2 Total 75-27-4 Bromodichloromethane of all 0.53 75-25-2 Bromoform four 4.5 124-48-1 Chlorodibromomethane 100 7.4 67-66-3 Chloroform OTHER EPA LISTED VOC'S <0.50 U NR 108-86-1 Bromobenzene U NR <0.50 74-97-5 Bromochloromethane 17 NR <0.50 74-83-9 Bromomethane < 0.50 U NR 104-51-8 n-Butylbenzene ti <0.50 NR 135-98-8 sec-Butylbenzene U <0.50 NR 98-06-6 tert . Butylbenzene <0.50 NR 75-00-3 Chloroethane U <0.50 NR 74-87-3 Chloromethane NR <0.50 95-49-8 2-Chlorotoluene U NR <0.50 106-43-4 4-Chlorotoluene <0.50 1,2-Dibromo-3-chloropropane 96-12-8 NA

(report continued on page 2)

EPA METHOD 524.2 VOLATILE ORGANICS ANALYSIS REPORT (continued)

CONTRACTOR	CON	CENTRATION UNIT	S = ug/L	(ppb)
COMPOUNDS	CAS NO.	RPA MCL	RESULT	QUALIFIER
	202222		***	******
1.2-Dibromoethane	106-93-4	NA	<0.50	U
Dibromomethane	74-95-3	NR	<0.50	บ
1,3-Dichlorobenzene	541-73-1	NR	<0.50	Ū
Dichlorodifluoromethane	75-71-8	NR	<0.50	Ū
1,1-Dichloroethane	75-34-3	NR	<0.50	ט
1,1-Dichloropropene	563-58-6	NR	<0.50	บ
1,3-Dichloropropane	142-28-9	NR	<0.50	Ü.
cis-1,3-Dichloropropene	10061-01-5	NR	<0.50	บ
trans-1,3-Dichloropropene	10061-02-6	NR	<0.50	Ü
2,2-Dichloropropane	594-20-7	NR	<0.50	Ŭ
Fluorotrichloromethane	75-69-4	NR	<0.50	Ü
Hexachlorobutadiene	87-68-3	NR	<0.50	Ü
Isopropylbenzene	98-82-8	NR	<0.50	บ
p-Isopropyltoluene	99-07-6	NR .	<0.50	Ü
Methyl t-butyl ether	1634-04-4	NR	<0.50	Ŭ
Naphthalene	91-20-3	NR	<0.50	ซ
n-Propylbenzene	103-65-1	NR	<0.50	ซ
1,1,1,2-Tetrachloroethane	630-20-6	NR	<0.50	บ
1,1,2,2-Tetrachloroethane	79-34-5	NR	<0.50	ซ
1,2,3-Trichlorobensene	87-61-6	NR	<0.50	ŭ
1,2,3-Trichloropropane	96-18-4	NR	<0.50	บ
1,2,4-Trimethylbenzene	95-63-6	NR	<0.50	ซ
1,3,5-Trimethylbenzene	108-67-8	NR	<0.50	Ü
	OGATE RECOV			
Surrogate Compound	Added ug/L	Measured ug/L	*Rec	QC Limits
	==========	可录 5 5 在 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
1,2-Dichloroethane d4	10.0	10.0	108	80120
Toluene d8	10.0	9.11	91	80120
p-Bromofluorobenzene	10.0	9.60	96	80120

QUALIFIER CODE EXPLANATIONS AND NOTES:

U= Indicates compound was analyzed for but not detected.

NR» No currently regulated amount.

NA= Not applicable to this method. Concentrations are presented for acreening purposes. For regulatory compliance, analyse using 89% method 604 which has lower detection limits.

REPORT COMMENTS: None

Analyst: 740 Reviewing Supervisor: 900)

REVIEW_	MITIAL	DATE	THE PERSON
	AUG - 7	iods	
ENTERED.	INITIAL	DATE	

APPENDIX C

Field Inspection Photographs

Photograph taken February 22, 1999 of the spring supplying the Miller Colony wash water system, looking north.

Photograph taken February 22, 1999 of Miller Colony potable supply well #1 , looking northeast.

Photograph taken February 22, 1999 of Miller Colony potable supply well #2, looking north.