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PREFACE

The Ground Water Investigation Program (GWIP) at the Montana Bureau of Mines and Geology (MBMG)
investigates areas prioritized by the Ground-Water Assessment Steering Committee (2-15-1523 MCA) based
on current and anticipated growth of industry, housing and commercial activity, or changing irrigation prac-
tices. Additional program information and project-ranking details are available at: http://www.mbmg.mtech.edu
(Ground Water Investigation Program).

The final products of the Upper Jefferson Valley study include:

» This Interpretive Report that presents data, addresses questions, offers interpretations, and summarizes
project results.

* Groundwater Modeling Reports that document the groundwater flow models (Gebril and Bobst, 2020,
2021). Models were developed to evaluate the potential hydrologic effects from changes in irrigation
practices in the Waterloo area, and potential impacts to surface water due to increased groundwater de-
velopment in the Whitehall area.

* An Aquifer Test Report (Bobst and Gebril, 2020) that documents the field procedures, data, and analy-
sis for five aquifer tests conducted for this study.

* A Montana Tech Master’s Thesis (Brancheau, 2015) was completed in association with this study. The
thesis focused on development of a water budget for the Waterloo area.

*  MBMG’s Groundwater Information Center (GWIC) online database (http://mbmggwic.mtech.edu/)
provides a permanent archive for the data from this study.
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ABSTRACT

The Jefferson River, a major tributary to the Missouri River, flows through the Upper Jefferson River Val-
ley in southwestern Montana. Low-flow conditions on the Jefferson during the late summer threaten ecological
conditions that support aquatic life. This study focused on (1) the potential for changes in irrigation practices
near Waterloo to reduce groundwater discharge to Parson’s Slough, Willow Springs, and the Jefferson River;
and (2) the potential for increased groundwater use related to residential development and reductions in irriga-
tion recharge near Whitehall to reduce groundwater discharge to the Jefferson River and the Jefferson Slough.
The Montana Bureau of Mines and Geology (MBMG) conducted groundwater and surface-water monitoring,
and these data were used to aid in understanding the groundwater system, and to develop groundwater models
for the Waterloo and Whitehall areas.

The Waterloo groundwater model was developed to evaluate the potential effects of changes in irrigation
practices. Scenarios were developed for different combinations of lining canals, and changing fields from flood
to pivot irrigation. The results showed that if diversion rates were unchanged, August flows in the Jefferson
River could be reduced by up to 30 cfs (a 4.3% reduction in mean August flows) as a result of lining all irriga-
tion canals and changing all fields from flood irrigation to pivot. Of this 30 c¢fs maximum reduction, about 17
cfs was due to lining irrigation canals and 13 cfs was due to the change in irrigation methods.

The Whitehall groundwater model was used to evaluate effects from groundwater use at residential sub-
divisions at various locations. Scenarios differed by pre-development land use, hydrogeologic setting, and the
density of wells. A 23-home subdivision in a previously irrigated area caused the greatest simulated change
in surface-water flows, because this resulted in reduced groundwater recharge, and increased groundwater
withdrawals. This scenario resulted in an 8.4 acre-ft reduction in groundwater discharge to streams in August.
This represents a 0.02% reduction in mean August stream flow in the Jefferson River, which is much smaller
than could be quantified based on field measurements. These results show that changes in land use that reduce
groundwater recharge, such as converting irrigated fields to other uses, can impart larger reductions in ground-
water discharge to streams than the effects of additional wells.

Late summer flows in the Jefferson River can be enhanced by long-term projects to maintain or increase
groundwater storage in shallow aquifers. The locations of such projects must be selected with consideration of
the permeability of the aquifer, so that the groundwater is stored for long enough to increase discharge to sur-
face water during the late summer. For shallow aquifer storage mechanisms to be effective, groundwater re-
charge (such as canal leakage and irrigation recharge) should be maintained or increased while stream flows are
high, and irrigation efficiency should be emphasized when stream flows are low.
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INTRODUCTION

Background

The Upper Jefferson watershed, located in south-
western Montana, encompasses 261 mi? (fig. 1). The
Jefferson River is formed from the confluence of the
Beaverhead, Big Hole, and Ruby Rivers near Twin
Bridges, Montana. The Jefferson River flows to the
north and east, and joins the Madison and Gallatin
Rivers near Three Forks, Montana, to form the Mis-
souri River (fig. 1).

The Upper Jefferson River is classified as “chroni-
cally dewatered” (MFWP, 2012). Low late summer
stream flow has been a longstanding problem (Mis-
souri River Basin Commission, 1981). Low flows in
the late summer are likely due to a combination of
the natural annual snowmelt and precipitation cycles
(figs. 2, 3), and irrigation diversions. The Montana
Fish Wildlife and Parks (MFWP) closes the Upper
Jefferson to fishing more than any other river in Mon-
tana (JRWC, 2010). Trout populations decline during
drought cycles, and recover during years of normal to
above-normal flows (MFWP, 2012).

During low flows in the late summer, water tem-
peratures in the Jefferson River approach 27°C (80°F;
MFWP, 2012). The Montana Department of Environ-
mental Quality (MDEQ) developed a Total Maximum
Daily Load (TMDL) and Water Quality Improve-
ment document for temperature in the Jefferson River
(MDEQ, 2014). They found that stream dewatering
and a lack of shade caused temperature impairment.
This work concluded that groundwater discharges and
inflow from spring-fed tributaries near Willow Springs
in the late summer aid in reducing in-stream tempera-
tures, and that some of this groundwater is derived
from early season irrigation recharge.

In response to low late summer stream flows,
stakeholders from various interest groups developed
a drought management plan for the Upper Jefferson
River in 2000. The plan provides a protocol to leave
enough water in the river to allow for fish passage
over shallow riffle areas (JRWC, 2013), and specifies a
minimum flow of at least 50 cfs at the USGS station at
Parson’s Bridge (USGS 06027600; below the Jeffer-
son/Fish Creek Canal diversion and above the inflow
from Parson’s Slough; fig. 4), when the flow at the
gage near Twin Bridges (USGS 06026500; fig. 4) is

above 250 cfs. When the Twin Bridges gage is below
250 cfs, the goal is to have at least 20% of the Twin
Bridges flow at the Parson’s Bridge gage. The drought
management plan includes triggers based on both
water temperature and stream flow, which cause vol-
untary and mandatory limits on fishing, and encourage
voluntary reductions in irrigation diversions.

Occasional measurements at the Parson’s Bridge
site (fig. 4) prior to 2006 show that stream flow dipped
as low as 4 cfs in 1988, and fell below 20 cfs in 1992
and 1994. The USGS established a station at this site
in 2006, and has measured stream flow from at least
July to September every year since. Low flows typi-
cally occur in August, and mean August flow has var-
ied from 40.5 (2016) to 1,275 (2011) cfs. The lowest
mean daily flow at this site since 2006 was 19.9 cfs in
August 2016.

Immediately downstream of the USGS gage at
Parson’s Bridge (06027600), Parson’s Slough and
Willow Springs flow into the Jefferson River (fig. 4).
These perennial streams are groundwater fed, and they
provide important spawning habitat for brown and
rainbow trout (MFWP, 2012). During the late summer
these streams contribute relatively cool (~12°C) water
to the Jefferson River (WET, 2006, 2010a,b; MDEQ,
2014). Groundwater also discharges directly to the
Jefferson River along the reach near the mouths of
Parson’s Slough and Willow Springs.

Canal leakage and infiltrated irrigation water pro-
vide groundwater recharge in the Waterloo area (WET,
2006). Therefore, changes in irrigation management
practices that would reduce recharge, such as lining
canals or changing from flood to pivot irrigation, have
the potential to decrease late summer groundwater
discharge to Parson’s Slough, Willow Springs, and the
Jefferson River.

The Jefferson River is a closed basin for new water
rights (MT DNRC, 2016). Thus, new residential devel-
opments rely on individual domestic wells that are ex-
empt from DNRC’s formal permitting process (JRWC,
2010). “Exempt wells” withdraw water at less than 35
gallons per minute (gpm) and less than 10 acre-ft per
year [MCA §85-2-306(3)]. The potential for additional
groundwater withdrawals to reduce surface-water
availability in the Jefferson Slough and the Jefferson
River is a concern for many area residents and river
users.
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Figure 1. The Upper Jefferson project area is located in southwest Montana along the alluvial floodplain and adjacent benches of the
Jefferson River, generally between Twin Bridges and Cardwell.
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Figure 3. Flows on the Jefferson River near Twin Bridges, at USGS gage 06026500, period of record 1940-2019. The median daily
baseflow in the winter averages 1,127 cfs; high flows occur in the spring and early summer due to snowmelt and spring rains. Irrigation
diversions and evapotranspiration contribute to low flows in the late summer. The lowest flows occur in mid-August, when the interquar-

tile range extends from 342 to 821 cfs (median = 528 cfs).

Purpose and Scope

The Upper Jefferson groundwater investigation,
carried out by the Montana Bureau of Mines and Geol-
ogy’s (MBMG) Ground Water Investigation Program
(GWIP), focused on two issues. The first was the po-
tential for changes in irrigation practices in the Water-
loo area to reduce the amount and timing of ground-
water discharge to Parson’s Slough, Willow Springs,
and the Jefferson River. The second was the potential
for increased groundwater withdrawals and changes
in land use associated with residential development in
the Whitehall area to reduce groundwater discharge to
the Jefferson River and the Jefferson Slough.

We used geologic information, groundwater and
surface-water monitoring, aquifer tests, and water-
quality sampling to characterize the hydrogeologic
setting, and to aid in understanding groundwater flows
and groundwater/surface-water interactions. This
study provides technical information for groundwater
management, and a hydrogeologic framework within
which site-specific issues can be considered. Hydroge-
ologists may use the numerical models from this study
to evaluate the effects that would result from various
management strategies.

Location

The Upper Jefferson Valley groundwater investiga-
tion covered 107 mi? in the valley bottom and adjacent
benches from the junction of Hells Canyon with the
Jefferson River to the upstream end of the Jefferson
Canyon (fig. 5). The area is bounded by the Tobacco
Root Mountains, the Highland Mountains, and Bull
Mountain (fig. 5). This study area includes portions of
Jefferson, Madison, and Silver Bow Counties, Mon-
tana.

The Waterloo and Whitehall areas were investi-
gated in greater detail (fig. 6). The Waterloo subarea
includes the area between the Creeklyn and Par-
rot irrigation canals, including the areas drained by
Parson’s Slough and Willow Springs. The Whitehall
subarea covers the floodplain and adjacent benches
near Whitehall. The Jefferson and Parrot Canals run
along the west and south sides of the Whitehall sub-
area, respectively.
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Physiography

The portion of the Upper Jefferson River Valley
from Twin Bridges to Whitehall is a north-northeast-
trending intermontane basin (fig. 7). From Whitehall
to Cardwell the valley trends east-west. Throughout
the valley alluvial fans extend from the mountain
fronts to the alluvial floodplain. Elevations within the
study area range from 4,277 ft where the Jefferson
River flows into the Jefferson Canyon to about 5,900 ft
on the highest alluvial fans.

Climate

The Jefferson Valley has cold winters and mild
summers. Climate normal values for Twin Bridges,
based on data from 1981 to 2010 (NOAA, 2011; fig.
2), show that precipitation is the greatest in June, with
an average of 2.0 in, and the lowest in February, with
an average of 0.2 in. December is the coldest month,
with a mean monthly temperature of -5.2°C (23°F).
July is the warmest month, with a mean monthly
temperature of 18.4°C (65°F). Twin Bridges receives
an average of 10.1 in of precipitation per year with a
large amount of interannual variability (fig. 8). Annual
precipitation totals were below average during the
monitoring period for this study, at 9.0, 9.4, and 8.1 in.
in 2013, 2014, and 2015, respectively.

The SNOWTEL site closest to the study area is
Albrio Lake (station 916; elevation 8,300 ft-amsl) in
the Tobacco Root Mountains. This station received an
average of 38 in of precipitation (rain plus snow water
equivalent) per year from 1997 to 2017. Annual pre-
cipitation amounts were close to average during this
study, at 41, 43 and 36 in. in 2013, 2014, and 2015,
respectively.

Geographically distributed 30-yr normal annual
precipitation estimates (1981-2010; PRISM, 2012;
Daly and others, 2008) within the study area range
from less than 10 in in the southern portion of the val-
ley bottom to about 14 in on the higher benches. The
PRISM estimates show 10—12 in per year of precipita-
tion in the valley, up to 33 in per year in the Highland
Mountains, and up to 50 in per year in the Tobacco
Root Mountains.

Vegetation

Vegetation within the study area consists of both
native and cropped species. Alfalfa and grass hay are
the primary crops, and cropland comprises 25% of
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land cover in the study area (USGS, 2010). Native
willow, cottonwood, aspen, and wetland grasses are
common along the Jefferson River and some tributar-
ies. These phreatophytes grow where their roots can
access shallow groundwater. Riparian plants cover 5%
of the study area. Native upland vegetation is primar-
ily shrubs (44% of the area) and grasses (19% of the
area). Other land covers include developed areas (3%),
conifer forest (2%), and open water (2%). Conifer for-
ests, composed primarily of ponderosa pine, Douglas
fir, lodgepole pine, Engleman spruce, and whitebark
pine, cover the adjacent mountain blocks.

Geologic Setting

Geologic maps for the Jefferson Valley have been
produced by Vuke and others (2004) and Vuke (2006;
fig. 7). These maps provide a geologic framework
for the study area, showing the surficial extent of the
different geologic units, the locations of known or
inferred faults, and geologic cross sections.

The bedrock on the west side of the Upper Jeffer-
son Valley is dominated by plutonic rocks associated
with the Cretaceous Boulder Batholith (Ki in fig. 7),
and Precambrian rocks (pC; primarily gneiss). The
Tobacco Root Mountains along the east side of the
valley are dominated by Precambrian rocks (pC), but
also include Paleozoic sedimentary clastic and carbon-
ate rocks (Ps), Cretaceous intrusive rocks (Ki), and
Cretaceous volcanic rocks (Kv). The Bull Mountains
bound the northern part of the Upper Jefferson Valley,
and the area draining to the valley is mainly composed
of Precambrian rocks (pC) and Cretaceous volcanic
rocks (Kv).

The valley is asymmetrical, with west-dipping
faults on the east side, and smaller east-dipping faults
on the west side of the valley (Vuke and others, 2004).
Faults also cross-cut the basin (Hanneman and Wide-
man, 1991; Ruppel, 1993; Kendy and Tresch, 1996;
Vuke and others, 2004). Fine-grained Tertiary Renova
Formation sediments were deposited in the valley in
the Eocene, Oligocene, and Miocene epochs of the
Tertiary period (Vuke and others, 2004). In the late
Tertiary (middle Miocene), Basin and Range style
extension caused tilting and erosion of the Renova
Formation, and a change in the basin-fill deposits to
the more coarse-grained Sixmile Creek Formation
(Vuke and others, 2004). In many areas these Tertiary
sediments have been locally overlain by Quaternary
deposits.
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Figure 8. Annual precipitation in Twin Bridges (from https://climate.umt.edu/). During this study (2013, 2014, 2015) precipitation was
below the 1981-2010 normal of 10.1 in, with values of 9.0, 9.4, and 8.1 in in these years.

Quaternary sediments consist of alluvial fan, al-
luvial terrace, colluvial, and alluvial deposits (Vuke
and others, 2004). Alluvial fan deposits are composed
of a poorly sorted mix of gravel, sand, silt, clay, and
ash beds. Alluvial terrace deposits are thin (~5 ft) and
composed of gravel, sand, silt, and clay. The collu-
vium is generally less than 30 ft thick, and is domi-
nantly composed of sand, silt, and clay. The alluvium
is a mixture of gravel, sand, silt, and clay deposited by
modern rivers and streams and is typically less than
40 ft thick (Nobel and others, 1982; Vuke and others,
2004). The contact between the Quaternary sediments
and the Sixmile Creek Formation can be difficult to
discern in boreholes where both are coarse-grained
(Kuenzi and Fields, 1971; Ruppel, 1993; Kendy and
Tresch, 1996).

Hydrogeologic Setting

Hydrogeologic summaries of the Upper Jefferson
area were developed by Noble and others (1982) and
Kendy and Tresch (1996). These studies show that
the north—south-trending part of the valley, from Twin
Bridges to Whitehall, results from faulting along the
mountain fronts (fig. 7). The valley bottom in this area
is underlain by up to 6,000 ft of unconsolidated Tertia-
ry sediments (Renova and Sixmile Creek Formations)
and Quaternary alluvium, with the greatest thickness
occurring near Waterloo. In the east-west-trending
part of the valley, from Whitehall to Cardwell, the
unconsolidated materials are thinner, with a reported
thickness near Cardwell of 850 ft (Nobel and other,
1982). Most of the wells in the valley are completed
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in the Quaternary alluvium, which typically produces
50-100 gpm; however, some wells near Waterloo

are reported to produce up to 1,000 gpm. The allu-
vium is typically less than 100 ft thick. Wells located
on benches are typically completed in the Tertiary
Renova sediments and produce about 10-15 gpm.
Groundwater in this area is generally a good quality
calcium-bicarbonate type water (Ca-HCO,), with total
dissolved solids (TDS) concentrations less than 500
mg/L.

Kendy and Tresch (1996) presented a qualitative
groundwater budget for the area. They found that
groundwater generally flows from the uplands to the
floodplain, and then flows parallel to the Jefferson
River. The basin-fill aquifers of the Jefferson Valley
receive their water from precipitation and snowmelt,
surplus irrigation water, irrigation canal leakage, sub-
surface flow from the adjacent bedrock, infiltration of
tributary streams, and groundwater inflow from upgra-
dient alluvium. Outflow from the area aquifers in-
cludes evapotranspiration (ET); pumping from wells;
groundwater discharge to springs, seeps, irrigation
drains, and streams; and groundwater outflow through
the Jefferson River alluvium.

Water and Environmental Technologies (WET),
LLC conducted a groundwater study of the Water-
loo area (WET, 2006) that included measurement of
groundwater levels, stream flows, canal flows, and an
aquifer test. WET found that decreased canal losses
and converting from flood to pivot irrigation could de-
crease the amount of water diverted from the river in



Montana Bureau of Mines and Geology Report of Investigation 28

the late summer. However, these measures would also
decrease the amount of groundwater recharge through-
out the entire irrigation season, resulting in less
groundwater discharge to surface waters in the late
summer. WET found that the net effect on late sum-
mer flows in the Jefferson River was unclear; however,
such changes in irrigation practices would likely cause
a decrease in groundwater recharge, with a subsequent
reduction in late summer groundwater discharge that
sustains flows in Parson’s Slough and Willow Springs.

Surface-Water Network

The Jefferson River, the major surface-water fea-
ture flowing through the Upper Jefferson Valley (fig.
4), flows from the south to the northeast. Upstream
from the study area, Lima Reservoir and the Clark
Canyon Reservoir provide surface-water storage in
the Beaverhead River drainage, and the Ruby Reser-
voir stores surface water on the Ruby River. When the
Government Land Office surveyed this area in 1880,
the Jefferson River followed what is now the Slaugh-
terhouse Slough, and then split into the Jefferson
Slough (Left Branch) and the lower portion of Slaugh-
terhouse Slough (Right Branch; Confluence Consult-
ing and Applied Geomorphology, 2014). Due to this
historical alignment, the boundary between Jefferson
and Madison Counties follows the Slaughterhouse
Slough. A major avulsion occurred after 1880, which
moved the mainstem of the channel to its current loca-
tion on the south side of the valley.

Major tributaries to the Jefferson River within
the study area are Fish Creek, Beall Creek, Pipestone
Creek, Whitetail Creek, and the Boulder River. The
South Boulder River flows into the Jefferson River
approximately 0.75 mi downstream of the study area.
Many ephemeral to intermittent streams flow out of
the mountains and typically infiltrate into the alluvial
fans, or are intercepted by irrigation canals, before
reaching the Jefferson River. Several groundwater-fed
tributaries to the Jefferson River begin and end within
the floodplain, and most appear to be ancestral chan-
nels of the Jefferson River. These include Parson’s
Slough, Willow Springs, the lower portion of Fish
Creek (the Fish Creek Canal), Slaughterhouse Slough,
and the Jefferson Slough.

The USGS has monitored flows in the Jefferson
River near Twin Bridges (USGS station 06026500;
figs. 3, 4) intermittently from 1940 to present. Median

daily discharge ranges from 528 to 5,850 cfs. Winter
baseflow conditions extend from October through
March. Higher flows occur during the spring when
snowmelt occurs and precipitation is highest (fig. 3).
Flows in the Jefferson River are at their lowest from
late July through September (fig. 3).

The Creeklyn Canal begins near the south end of
the study area where water is diverted from the Jef-
ferson River upstream of the Highway 41 bridge (figs.
4, 5). The Creeklyn Canal is primarily used to irrigate
land north of Silver Star. Any unused “tail water” from
the canal flows into Fish Creek.

The Parrot Canal also begins in the southern
portion of the study area, with a diversion from the
Jefferson River downstream of the Creeklyn Canal di-
version (fig. 4). The Parrot Canal feeds the All Nations
Ditch near Silver Star, and provides irrigation water
for the Waterloo area and the Parrot Bench. The Parrot
Canal runs for 26 mi, and any tail water flows to the
Jefferson River downstream of Mayflower Road (figs.
4, 5). Beall Creek and other Tobacco Root Mountain
tributaries flow into the Parrot Canal during high
flows. These tributaries have little or no flow during
most of the year. Several “blowouts” along the canal
allow excess water to discharge back to the Jefferson
River, so that the canal’s capacity is not exceeded.

The Jefferson/Fish Creek Canal diversion from
the Jefferson River is immediately downstream of
Parson’s Bridge, but upstream of the USGS gage
(figs. 4, 5). This canal flows north from the diversion
until it reaches Fish Creek. A diversion from the canal
just south of Fish Creek feeds the Fish Creek Canal
(the lower portion of Fish Creek). The remainder of
the water feeds the Jefferson Canal. Flow from Fish
Creek, entering from the west, including any tail water
from the Creeklyn Canal, flows into the Jefferson Ca-
nal. Any tail water from the Jefferson Canal flows into
Pipestone Creek, and tail water from the Fish Creek
Canal flows into the Slaughterhouse Slough.

The Slaughterhouse Slough is primarily fed by a
diversion from the Jefferson River near Parrot Castle
(figs. 4, 5). Water is diverted from the Slaughterhouse
Slough to feed the Jefferson Slough, and Slaughter-
house Slough tail water discharges back to the Jeffer-
son River between Kuntz Road and Mayflower Road
(figs. 4, 5).
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The Jefferson Slough begins with diversion of
water from Slaughterhouse Slough, and is then supple-
mented with inflows from Pipestone Creek, including
any Jefferson Canal tail water, Whitetail Creek, and the
Boulder River. The Jefferson Slough discharges to the
Jefferson River downstream of Cardwell (figs. 4, 5).

Piedmont Pond is a constructed pond that was
excavated in the Piedmont wetlands area south of
Whitehall (fig. 4). This pond was constructed by FWP
as a youth fishing pond. Groundwater in this area is
shallow, and efflorescent salts (likely calcite) are com-
monly observed at the surface due to the evaporation
of groundwater rising to the surface via capillary ac-
tion through the fine textured soils.

Water Infrastructure

Infrastructure related to crop irrigation includes ir-
rigation canals, irrigated fields, irrigation wells (fig. 9),
and drain tiles. Other infrastructure includes domestic
wells and septic systems.

There are about 200 mi of irrigation canals (MT
DNRC, 2007), and 15,000 irrigated acres [Montana
Department of Revenue (MT DOR), 2012] within the
study area. Water is applied to fields by pivot (45% of
the acreage), flood (35%), and sprinkler (20%) sys-
tems (fig. 9). Most irrigation water is obtained from
the Jefferson River, with smaller amounts diverted
from Pipestone Creek, Whitetail Creek, Beall Creek,
and the Boulder River (figs. 4, 9). Groundwater is
also used for irrigation, with 40 irrigation wells in the
study area (MBMG, 2016; table 1). Irrigation occurs
along the floodplains of streams, and on the adjacent
benches. Canals recharge aquifers through leakage.
Irrigated fields provide recharge when water is ap-

Table 1. Well uses based on GWIC (MBMG, 2016)

Well Type Number of Wells
Irrigation 40
Domestic 569
Livestock 61
Monitoring 28
Public Water Supply 12
Unused 10
Commercial 2
Fire Protection 1
Industrial 1
TOTAL 724
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plied in excess of crop demand. Drain tiles have been
installed in some fields to promote rapid groundwater
drainage to surface waters.

The Montana DNRC measured canal leakage rates
along portions of the Parrot, Creeklyn, and Jefferson/
Fish Creek Canals between 2001 and 2003, with a
focus on the reaches believed to have the highest loss
rates (Ammon, 2005). This work showed overall canal
leakage rates from 2.1 to 3.5 cfs/mi on the Parrot Ca-
nal; from 2.4 to 2.7 cfs/mi on the Creeklyn Canal; and
from 0.9 to 1.1 cfs on the Jefferson/Fish Creek Canal.
These measurements were made as synoptic events;
all diversions from the evaluated canal reaches were
shut off for at least 24 h before the synoptic runs.

An investigation of canal leakage rates and evalu-
ation of approaches to increasing flow in the Jefferson
River during droughts was completed by Van Mullem
(2006). Synoptic discharge measurements and pond-
ing tests indicated that canal leakage rates ranged from
about 1 to 3 cfs/mi, with the higher rates occurring at
higher canal stages.

Non-irrigation water infrastructure in the study
area is primarily related to domestic uses. There are
684 non-irrigation wells within the study area (fig. 9,
table 1), including 569 domestic wells. Septic systems
serve homes outside of city service areas, and they
infiltrate wastewater to the groundwater system.

METHODS

Data Management

Data collected for the Upper Jefferson investi-
gation are archived in the MBMG’s Ground Water
Information Center (GWIC) database. Accessible on-
line at http://mbmggwic.mtech.edu/, GWIC includes
information on well completions, groundwater levels,
water chemistry, aquifer tests, and other data. The sites
monitored for this study, with GWIC ID numbers, are
listed in appendices A and B. The data for this study
can also be accessed through the relevant project
page within the GWIP section of the MBMG website
(mbmg.mtech.edu).

Monitoring and Sampling

For this report, monitoring locations are denoted
by the well or surface-water site numbers on figures
10 and 11 (e.g., well 12 or site 34). These numbers are
used throughout this report, and are also included in
appendices A and B.
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Groundwater

A monitoring network of 106 wells was estab-
lished to obtain water-level and water-quality informa-
tion (fig. 10, appendix A). The network included 17
dedicated monitoring wells installed during a prior
investigation by WET (2006), and 20 dedicated moni-
toring wells installed during this study. The rest of the
monitoring network consisted of domestic or stock
water wells. Fifty-three of the wells were monitored
prior to this study by MBMG’s Ground Water Assess-
ment Program and by WET (appendix A). Although
groundwater levels were measured in domestic and
stock wells under non-pumping conditions, some mea-
surements may have been somewhat lower than static
due to recent use.

Well selection for the network was based on
hydrogeologic setting, geographic location, historical
groundwater information, and well owner permission.
Measuring points marked on each well casing were
surveyed and static groundwater levels were measured
monthly. Monitoring occurred from July 2013 until
May 2015; however, the period of record for each
well depended on when permission to monitor was
obtained. Monitoring began at 49 wells in July 2013,
and 89 wells were included by the end of March 2014.
Most of the wells added after March 2014 were in-
stalled for this study. Twenty-four wells were equipped
with pressure transducers that provided hourly records
of water level and temperature.

Seventeen groundwater-quality samples were col-
lected from 11 wells (fig. 10, appendix A). Sampled
sites were selected based on location and well com-
pletion, with a focus on sampling that would aid in
understanding groundwater/surface-water interactions.
All samples were collected and handled according to
MBMG standard sampling procedures and all samples
were analyzed by the MBMG analytical lab (Timmer,
2020). Specific conductance, pH, and temperature
were measured in the field. An unfiltered unpreserved
sample was analyzed for specific conductance, pH,
and alkalinity in the lab. Filtered samples were ana-
lyzed for major ions, trace elements, nutrients, and
water isotopes (8'*0 and 6D). Six well samples were
collected between August 19 and 22, 2014, as part of
a synoptic groundwater/surface-water sampling event
(wells 9, 49, 54, 68, and 93; fig. 10). Two wells (49
and 51; fig. 10) in the Waterloo area were sampled on
November 18, 2014, January 30, 2015, and March 30,
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2015, in conjunction with surface-water sampling, to
evaluate seasonal changes in water chemistry. Five
samples were collected during aquifer tests in Febru-
ary and March 2015 (wells 19, 22, 37, 84, and 88).
Data presented in this report also include results from
25 samples collected from 17 wells in the study area
during past MBMG studies (fig. 10; appendix A).

Surface Water

Surface-water data presented in this report were
collected at 53 sites (fig. 11, appendix B). Most of the
surface-water sites included stilling wells and staff
gages outfitted with recording pressure transducers to
collect hourly stage and temperature readings during
the ice-free period. The USGS sites recorded values
every 15 min, although the Parson's Bridge site (site
15) was only operational from July through September
each year. Four of the sites operated by Confluence
Consulting included only temperature monitoring. At
MBMG sites, staff gages were surveyed, and dis-
charge and stage were measured approximately every
2 weeks during the ice-free period of 2014 to develop
rating curves. The rating curves were used in conjunc-
tion with the recorded stage measurements to calculate
hourly discharge for the ice-free periods.

Thirty-four surface-water-quality samples were
collected at 19 of the surface-water sites (fig. 11, ap-
pendix B). All samples were collected, handled, and
analyzed using the same methods as the groundwater
samples (Timmer, 2020). Twenty of these samples
were collected between August 19 and 22, 2014. The
other 14 samples (including 2 duplicate samples) were
collected from sites 16, 18, 19, and 20, near Waterloo,
on November 18, 2014, January 30, 2015, and March
30, 2015, to evaluate seasonal changes in water chem-

istry.

Canal Leakage

Sixteen of the surface-water sites were located on
irrigation canals. The difference in discharge between
consecutive stations was used to estimate the net loss
between those stations; however, all diversions were
not measured, so it is assumed that most (but not all)
of the estimated net loss includes diversions. Assum-
ing that the soils beneath a canal have reached field
capacity, the canal leakage rate will be a function of
canal stage (Wooding, 1968). Therefore, the leakage to
discharge relationship was estimated based on the low-
est net loss rate (presumably when diversions were not
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occurring) over a range of stages. These results were
also compared to previous leakage studies conducted
under conditions of no diversions (Ammon, 2005; Van
Mullem, 2006).

Hydrogeologic Units

Surficial geologic maps (Vuke and others, 2004;
Vuke, 2006) and lithologic descriptions from water-
well logs (GWIC) were used to develop a three-di-
mensional model of the distribution of hydrogeologic
units (HGUs) in the Upper Jefferson study area. This
model was developed using Aquaveo’s GMS software
(v. 10.0). The land surface in the model was defined
using a 1/3 arc-second (~10 m) digital elevation model
(DEM; USGS, 2012). Within the study area, 1,247
wells and boreholes were rated based on the quality
of their location information. A “good” rating was
assigned to sites with survey or global positioning
systems (GPS) information (239 wells; GWIC proj-
ect code BWIPUJLITH1). Sites located in a parcel
with cadastral ownership information matching the
name of the well, or located to a 2.5-acre parcel by the
township-range-section (TRS) method were classified
as “moderate” (348 wells; BWIPUJLITH2). All other
sites (660 wells; BWIPUJLITH3) were rated as poor.
Records used in the model were restricted to the good
and moderate location categories. Where wells were
located in close proximity, preference was given to
deeper wells and those with more detailed lithologic
descriptions; this resulted in a subsurface model based
on 349 well records.

Hvdrogeologic Units (HGUs)

The lithologic information reported on drillers’
well logs was evaluated and assigned to one of four
HGUs. The four HGUs are bedrock, Renova Forma-
tion, bench sediments, and alluvium (table 2). Each of

Table 2. General hydrostratigraphy.

these units is used as an aquifer within the study area,
but they have differing aquifer properties.

Aquifer Tests

Bobst and Gebril (2020) report on five aquifer
tests conducted during this study to estimate hydraulic
conductivity and storativity of the alluvium and the
Renova Formation (fig. 10).

Groundwater/Surface-Water Interactions

Surface and groundwater monitoring data were an-
alyzed in four ways. These were: (1) comparing hourly
stream flows from the upstream and downstream ends
of a reach; (2) comparing water temperatures from
the upstream and downstream ends of a reach; (3)
comparing time-series groundwater and surface-water
elevations at specific points; and (4) comparing time-
series groundwater and surface-water temperatures
at specific points. We attempted to use geochemi-
cal signatures to help identify gaining reaches and
to quantify the magnitude of those gains; however,
the major ion chemistry of alluvial water and surface
waters was similar, and these data did not provide a
reliable indicator of groundwater baseflow to streams.
The isotopic compositions of different water sources
did provide some information. The different methods
used in this analysis are difficult to interpret indepen-
dently, in part because some measure processes along
a reach while others are based on point measurements.
We used these methods in combination to characterize
groundwater/surface-water interactions along reaches
throughout the study area (appendix C). Since several
methods were used in combination, we summarized
the results for each reach. A preponderance of the data
was used to classify each reach as gaining, slightly
gaining, neutral, slightly losing, or losing. For gain-
ing and losing reaches all of the available methods

Hydrogeologic
Geologic Age Geologic Unit* Units
Alluvium (Qal) Alluvium
Quaternary Alluvial Terrace and Colluvium (Qg)
Alluival Fan (Qaf) Bench Sediments
Tertiary Sixmile Creek Formation (Ts)
Renova Formation (Ts) Renova Formation
Mesozoic,
Paleozoic and Bedrock (Kv, Ki, Ps, and pC) Bedrock
Precambrian

*Figure 7 illustrates geologic setting.
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indicated a net gain or loss all of the time. For slightly
gaining and losing reaches most methods indicated net
gains or losses most of the time. Reaches were as-
signed as neutral when they did not show clear gaining
or losing behavior.

Numerical Models

Numerical groundwater flow models were devel-
oped for the Waterloo and Whitehall areas using the
United States Geological Survey’s (USGS) MOD-
FLOW code (Harbaugh and others, 2000; Harbaugh,
2005; fig. 6). Reports for each model provide docu-
mentation on groundwater budgets, model construc-
tion, calibration, and applications (Gebril and Bobst,
2020, 2021), with a brief summary presented here.

Waterloo Model

The Waterloo model (Gebril and Bobst, 2021)
simulates potential changes in irrigation practices and
related effects to groundwater discharge to Parson’s
Slough, Willow Springs, and the Jefferson River.

This single-layer model represents shallow alluvial
sediments under unconfined conditions. A steady-
state version of the Waterloo model was calibrated to
observed groundwater levels in April 2015 (before
irrigation began), and water levels reported by drillers
in well completion reports. A transient version of the
model was calibrated to conditions from July 2013 to
October 2015 and simulates time-dependent stresses,
including seasonal irrigation activities, groundwater
pumping, and changes in river stage.

Whitehall Model

The Whitehall model (Gebril and Bobst, 2020)
simulates increased groundwater development via
exempt wells and changes in land use, and related ef-
fects on groundwater discharge to the Jefferson River
and the Jefferson Slough. The model was based on
groundwater and surface-water monitoring data col-
lected during this study (2013-2015). Layer 1 of the
two-layer model generally represents alluvium and
bench sediments, and Layer 2 generally represents the
Renova Formation. The steady-state model incorpo-
rates spatially variable hydraulic conductivity and was
calibrated to average groundwater levels. A transient
version of the model was calibrated to conditions
from April 2013 to December 2015. Time-dependent
stresses included variations in surface-water flows,
groundwater pumping rates, canal leakage, irrigation
recharge, and evapotranspiration.
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RESULTS

Hydrostratigraphy and Aquifer Properties

The subsurface hydrogeologic model was used to
develop 687 cross sections that establish the extent
and thickness of HGUs across the study area (figs. 12,
13). This geometry informed the development of water
budgets and numerical groundwater flow models (Ge-
bril and Bobst, 2020, 2021). The general geometry of
the HGUs and their relationships are discussed below.
All of these units are used as aquifers within the study
area; groundwater levels in the different HGUs are
similar, and aquifer tests show that confining layers
are often leaky. Therefore, we view these HGUs as
parts of a single system, with the HGUs having differ-
ing hydrogeologic properties.

Bedrock

Bedrock underlies the Tertiary and Quaternary sed-
iments, and outcrops along the edges of the study area
(figs. 7, 13). Many of these rocks have been fractured,
folded, and faulted due to several episodes of tecto-
nism in the area (McDonald and others, 2012). The
bedrock has a relatively low primary permeability, but
the fractures provide for some secondary permeability.
The hydraulic conductivity (K) of fractured bedrock
units typically ranges from about 0.2 to 5 ft/d (Heath,
1983). Reported well yields in this study area from
the bedrock are typically less than 10 gpm (Noble
and others, 1982; Kendy and Tresch, 1996; MBMG,
2016). The Jefferson Canyon at the downstream end of
the study area features a narrow bedrock canyon, with
bedrock outcropping along the banks of the Jefferson
River. Within the canyon bedrock likely extends to
near the streambed elevation.

Renova Formation

Renova Formation sediments underlie the bench
sediments and the alluvium in most of the study area
(fig. 13). The Renova Formation HGU is mainly com-
posed of mudstone and siltstone; however, there are
regionally discontinuous sand and gravel lenses. The
sand and gravel layers are typically confined to semi-
confined. Reported well yields from the Renova sand
and gravel layers are about 10—15 gpm.

Four aquifer tests were conducted in the Renova
Formation HGU for this study (table 3; Bobst and Ge-
bril, 2020). A leaky-confined model provided the best
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Table 3. Aquifer test results.

Hydraulic
Conductivity*

Storativity
(S; unitless)

1.5x107t0 1.6 x 10°

Transmissivity

(K: ft/d)

(T: f2/d)

74t0 77

Hydrogeologic Unit

Pumping Well GWIC ID  Observation Well GWIC IDs

Test Name

Renova Formation

277404; 277405; 277406

277403
280980
279259

HCC Floodplain
HCC Bench

0.20
0.14

26

255
41,000 to 44,500 2,050 to 2,225

Renova Formation

280979
279258; 279260

Alluvium

Hunt Floodplain

Lazy TP

8.0x10%1t0 2.0 x 103

16 to 22

310 to 440

Renova Formation

279261; 279263

279262

280978
*Hydraulic conductivity was estimated by dividing the transmissivity by the pumping well screen length.

Floodplain

5.2x10°

580

5,800

Renova Formation

280977

Lazy TP Bench

fit to observations at two of the sites. Confined and un-
confined models fit observations at the third and fourth
sites, respectively. Transmissivity values from these
tests ranged from 74 to 5,800 ft*/d, and the geomet-

ric mean hydraulic conductivity was 28 ft/d. Specific
storage values ranged from 1.5 x 107 to 2 x 107, and
the unconfined test showed a specific yield value of
0.2. The calculated aquifer properties are comparable
to literature values for silty sand to fine gravel (Heath,
1983).

Bench Sediments

The benches that lie between the mountain fronts
and the modern floodplain consist of thick accumu-
lations of Tertiary and Quaternary sediments (table
2; figs. 7, 13). The bench sediments are composed
of fine- to coarse-grained sand and fine gravel, with
minor amounts of silt and clay. This unit is underlain
by the Renova Formation. Aquifer tests conducted in
similar materials in the adjacent Boulder Valley (Bobst
and others, 2016) indicate that hydraulic conductivity
(K) ranges from about 22 to 750 ft/d, which is com-
parable to literature values for medium sand to fine
gravel (Heath, 1983). Based on these K-values it is
anticipated that wells completed in the saturated bench
sediments would have yields of about 10-50 gpm.
Aquifer tests were not conducted in these sediments
for this study because they were not saturated at the
drilling sites.

Alluvium

Quaternary alluvium is present in the modern
floodplain adjacent to, and underlying, the Jefferson
River and associated sloughs (figs. 7, 13). The allu-
vium is the most productive hydrogeologic unit in the
study area. Most wells completed in the alluvium are
capable of producing more than 50 gpm, and reported
yields are as high as 1,000 gpm. Although permeable,
the alluvium is less than 50 ft thick in most of the area.
In the portion of the Jefferson Valley east of Whitehall,
the alluvium is thickest below the Jefferson Slough,
rather than below the modern river channel. Wells in
the valley bottom east of Whitehall are often complet-
ed in sand lenses within the Renova Formation HGU,
due to relatively thin alluvium. In the Waterloo area
the alluvium is relatively thick, with wells completed
at depths up to about 160 ft. An aquifer test conducted
in the alluvium near Waterloo (fig. 10; well 37) in a
clean gravel layer yielded a transmissivity of about
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43,000 ft*/d, a hydraulic conductivity of about 1,400
ft/d, and a specific yield of about 0.14 (Hunt Test;

Bobst and Gebril, 2020; table 3). In many locations,
the alluvium is directly connected to surface waters.

Regional Groundwater Flow

Since we view the HGUs as parts of a single
system, a composite potentiometric surface map was
developed for the study area that contoured ground-
water levels from all HGUs. Surface-water bodies also
informed development of the potentiometric surface,
because surface water and groundwater are well con-
nected in the study area. The map is based on water-
level measurements from April 13th and 15th, 2015,
prior to the irrigation season (fig. 14). Groundwater
flow paths generally mimic the direction of surface-
water flows (fig. 14). Groundwater flows into the study
area in the south through the alluvium. Groundwater
also enters through the alluvium along tributaries of
the Jefferson River, and from mountain front recharge
along the lateral edges of the study area. Groundwater
flows north and east through the study area, towards
the Jefferson Canyon (fig. 14). Bedrock is at or near
the surface in the Jefferson Canyon, suggesting that
much of the groundwater flows into the Jefferson
River and other surface waters above the bedrock
constriction.

Groundwater-Level Variations

Groundwater levels change over time in response
to changes in recharge or discharge. Some of these
changes are due to seasonal variations (e.g., infiltra-
tion of snowmelt, irrigation, summer versus winter
well pumping patterns) while others reflect long-term
changes (e.g., changes in groundwater pumping,
changes in land use, lining irrigation canals, drought—
wet cycles). Understanding the causes behind ob-
served groundwater-level patterns provides for a better
understanding of the system, and allows for improved
prediction of the effects from proposed changes. In the
study area, seasonally changing stresses include well
pumping, irrigation canal leakage, irrigation recharge,
plant evapotranspiration, snowmelt infiltration, and
river stage. An overview of hydrograph patterns is
provided below, with a summary categorization in
appendix A, and a presentation of hydrographs in ap-
pendix D.

24

Seasonal Groundwater-Level Variations

Groundwater-level patterns depend on the location
of the well with respect to hydrologic features (ap-
pendix A). Similar responses occur in wells that are
directly influenced by the Jefferson River (fig. 15A);
influenced by irrigation (fig. 15B); in floodplain areas,
but are not directly influenced by the Jefferson River
or irrigation (fig. 15C); and upgradient from irrigation
(fig. 15D).

Wells completed near the river respond to the rise
and fall of river stage. Maximum groundwater eleva-
tions generally occurred in early June, and minimum
groundwater elevations occurred in late August. Site-
specific short-term high water levels occurred during
the winter due to ice jams on the river (fig. 15A).

Wells influenced by irrigation respond to recharge
from irrigation water applied to fields in excess of
available soil field capacity and canal leakage. Mini-
mum groundwater elevations generally occurred just
before irrigation begins in April, and maximum
groundwater elevations occurred during the irrigation
season (June—October, fig. 15B). Changes in ground-
water levels in deep wells occurred somewhat later
than in shallow wells. Some wells also respond to lo-
cal pumping, resulting in low water levels in mid-sum-
mer due to lawn watering and nearby irrigation wells,
but with high water levels in the spring and fall.

Wells in the floodplain, but not directly influenced
by the application of irrigation water or the river, re-
spond to increased pumping in the summer, primarily
for lawn watering or irrigation pumping. This includes
wells that are completed in areas that are not irrigated,
and wells completed in irrigated areas where there is
some separation between the monitored aquifer and
the surficial aquifer. Maximum groundwater elevations
generally occurred in March or April, and minimum
groundwater elevations generally occurred in August
(fig. 15C).

Wells completed in areas upgradient from ir-
rigation respond to pumping and direct and indirect
sources of precipitation recharge, including mountain
front recharge. Since the time required for mountain
front recharge to reach the wells can vary widely, peak
groundwater elevations occurred from June to Octo-
ber. In some wells minimum groundwater elevations
occurred in May, just before the onset of spring re-
charge. Other wells had minimum groundwater eleva-
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tions in July and August, in response to pumping for
lawn irrigation (fig. 15D).

Long-Term Groundwater-Level Variations

Long-term changes in groundwater levels were
evaluated in the 53 wells that had historical monitor-
ing data (appendices A and D). Three of the hydro-
graphs had apparent declines over the period of record
(wells 6, 47, and 56; fig. 16), although this is based
on only one measurement from 2011 at wells 6 and
56. Data from well 47 include 24 measurements from
2004 to 2005. These sites are separated from each
other, with intervening wells showing no water-level
decline, indicating the declines are not likely related
to climate, or a reginal decline in water levels due to
increased groundwater pumping. The decline in well
6 is attributed to local pumping causing a decline due
to the low productivity of the bedrock aquifer. The de-
cline in well 47 likely results from reduced flood irri-
gation near the well. The decline in well 56 may result
from reported high flows in Fish Creek in the spring
of 2011 (prior to this study; R. Smith, oral commun.,
2014), and the water levels returning to its long-term
normal elevation, or may result from local pumping
causing a decline.

Canal Leakage

Canal leakage rates were investigated on the Parrot
and Creeklyn Canals (figs. 4, 11; appendices B, C, and
E), which divert up to 250 and 70 cfs, respectively.
The estimated leakage rates were used in developing
groundwater budgets and flow models (Gebril and
Bobst, 2020, 2021).

Monitoring sites were established on the canals
and on “blowouts” (where excess water is diverted
from the canal). Eight sites were established on the
Parrot Canal (sites 4, 6, 9, 10, 17, 22, 24, and 45; fig.
11), and two sites were established on its associated
blowouts (sites 21 and 25; fig. 11). One unmonitored
blowout, and the unmonitored diversion for the All
Nations Ditch, occur on the Parrot Canal between the
diversion (site 4) and Waterloo Road (site 6), so leak-
age rates were not estimated for that reach. Three sites
were established on the Creeklyn Canal (sites 3, 7, and
13; fig. 11).

Observed flows were used to estimate net loss
rates from the Parrot Canal. Canal leakage rates
increase at higher flows due to the increased stage

(Wooding, 1968). To evaluate the effects of flow rate
and stage on canal leakage, the daily mean net loss
rate in flow between monitoring stations was plotted
vs. the daily mean flow for that day at the upstream
station (fig. 17). We assume the smallest net loss at a
given flow rate (i.e., the lower right side of the point
cloud in fig. 17) corresponds to times when no diver-
sions occurred between the stations. A line fitted to
these points defines the relationship of canal leakage
to flow for that canal reach. For each reach, we calcu-
lated an overall average leakage rate based on the ob-
served average flow at the upstream station during the
irrigation season. Average leakage rates for the Parrot
Canal ranged from 1.0 to 1.6 cfs/mi, and the average
was 1.3 cfs/mi. These results are similar to those from
the synoptic measurements and ponding tests conduct-
ed by Ammon (2005) and Van Mullem (2006) when
no diversions were occurring.

Two methods were applied to measurements from
the Creeklyn Canal. There are no irrigation diversions
along the 6.4-mi reach between the two upstream sta-
tions (sites 3 and 7; fig. 11), so the net difference in
flow provides an estimate of leakage. The daily mean
net loss rate was plotted vs. daily mean flow at the
upstream station. A best-fit line defines the leakage-to-
flow relationship for the upstream reach (fig. 18). The
average leakage rate for this reach during the 2014 ir-
rigation season was 1.4 cfs/mi. The calculated leakage
in the downstream reach of the Creeklyn Canal (be-
tween sites 7 and 13; fig. 11), following the procedure
applied to the Parrot Canal, averaged 6.6 cfs/mi. This
value is about five times greater than for the upstream
reach and is inconsistent with synoptic measurements
and ponding tests conducted by previous investigators
with irrigation diversions shut off (Ammon, 2005; Van
Mullen, 2006). Therefore, we attribute this 6.6 cfs/

mi rate to continuous irrigation diversions along this
reach in 2014, rather than being representative of canal
leakage alone.

Water Chemistry

Sampled sites were primarily selected to aid in
understanding groundwater/surface-water interac-
tions; however, since the alluvial water chemistry
was similar to surface water, these data did not pro-
vide a reliable indicator of groundwater baseflow to
streams. As described in the Methods section, we
present water chemistry results from this and prior
studies (appendices A and F). The wells that were
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Figure 16. Long-term groundwater monitoring data showed apparent declines in 3 of the 53 wells evaluated.
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Figure 17. The rate of leakage from the Parrot Canal increased at higher flows. The black line is the best fit line for the subgroup of
estimates that represent the lowest measured net loss at a given flow rate. The lowest measured loss values were used to estimate
canal leakage because all diversions from the canal were not measured.

sampled over time did not show substantial variation
in major ion chemistry; therefore for this discussion
we used the sample results from the August 2014
synoptic sampling event. For wells with data from
previous studies, if there were multiple samples, we
used the most recent results. Results are compared to
the Montana DEQ’s primary, health-based standards
for drinking water (maximum concentration limits,

or MCLs), and their secondary standards (SMCLs),
which are based on aesthetic qualities such as taste
and smell (https://deq.mt.gov/Portals/112/Land/
StateSuperFund/Documents/DEQ-7 June2019 Final.
pdf?ver=2019-07-16-085110-630). The drinking water
standards provide context for evaluating the water’s
suitability for human consumption (an important use
of groundwater in the area), and provide a common set
of metrics for all samples.

Groundwater

The groundwater in the Upper Jefferson Valley
is typically of good quality. The water from 11 wells
completed in the alluvium had water with total dis-
solved solids (TDS) concentrations that ranged from
121 to 672 mg/L, with a median value of 316 mg/L.
The highest alluvial TDS value (672 mg/L) was from
well 68, installed adjacent to Piedmont Pond. No
samples were available from wells completed in the
bench sediments. Ten of 12 wells completed in the
Renova Formation had TDS values between 117 and
362 mg/L, with a median of 297 mg/L. The other two
Renova Formation wells had TDS values of 2,567
and 4,216 mg/L. These relatively high TDS values are
attributed to road salt at well 95, and hydrothermal
influences at well 11 (near Silver Star). Three wells
completed in bedrock had TDS values of 121, 187,
and 278 mg/L.
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Figure 18. Canal leakage was estimated for the upstream reach of the Creeklyn Canal, between the upstream diversion from the Jef-
ferson River at site 3 and the downstream station at site 7 (fig. 10), which is a 6.4-mi reach with no irrigation diversions. The line shows
the best-fit relationship for this reach, and the average leakage rate for this reach was 1.4 cfs/mi.

Two wells had exceedances of the drinking water
standards (appendix F). One sample from a well in the
Renova Formation on the Parrot Bench exceeded the
primary drinking water standard for arsenic (well 88;
18 ng/L; the arsenic MCL is 10 pg/L). Well 68, com-
pleted in the alluvium near Piedmont Pond, had iron
(0.302 mg/L) and manganese (0.993 mg/L) concentra-
tions above the secondary drinking water standards
(0.3 and 0.050 mg/L, respectively), and arsenic was
slightly less than the standard, at 9.4 ug/L. The sam-
ples collected from wells 88 and 68 also had relatively
high silica, lithium, fluoride, and boron concentrations,
indicative of hydrothermal influences (appendix F).

Calcium-bicarbonate type water was the dominant
groundwater type in all sampled HGUs (fig. 19). This
is consistent with the weathering of igneous rocks
(granite and volcanics), gneiss, and limestone (Drever,
1997), which are the dominant rock types upstream
of the study area. Major ion chemistry varied in some

30

wells based on other sources of water or salts (fig.
19). Well 51, completed in Madison Group carbon-
ate bedrock, was a calcium—magnesium bicarbonate
water type, likely reflecting a dolomite (CaMg(CO,),)
influence. Wells 60, 62, and 104 had sodium as the
dominate cation, and wells 60 and 62 had a bicarbon-
ate-sulfate anion type (fig. 19). These wells are com-
pleted in the alluvium and the Renova Formation, and
wells 60 and 62 are located near known hot springs at
Renova (60) and Pipestone (62). Hydrothermal water
is typically high in sodium (Metesh, 2000). There-
fore, the groundwater in wells 60, 62, and 104 likely
reflects hydrothermal influences in these areas. The
sulfate influence may be due to hydrothermal waters,
or anion exchange with clays. Wells 61, 63, and 68
had a calcium—sodium bicarbonate type water, sug-
gesting a less pronounced hydrothermal influence. As
noted above, the TDS in well 68 was also high relative
to other wells in the alluvium. Plotting the water from
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Figure 19. Groundwater from all sampled HGUs is predominantly Ca-HCO, type. Other wells appear to be affected by local sources of
water and salt. See text for a discussion of these sources; labels are well numbers.
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wells 60, 61, 62, 63, 68, and 104 on a Piper diagram
(fig. 19) suggests two end member mixing between the
dominant calcium-bicarbonate water types and a sodi-
um-bicarbonate water type (hydrothermal), with anion
exchange with clays in some areas causing sulfate to
increase. Groundwater from wells 11 and 95 have sul-
fate as the dominant anion (sodium sulfate and mixed
cation sulfate type waters). These wells also have the
highest reported TDS values (4,216 and 2,567 mg/L,
respectively). The chemistry of well 95 was evaluated
during the Boulder Groundwater Investigation (Bobst
and others, 2016), and it was concluded that it was
likely influenced by road salt, with ion exchange with
clays. Well 11 is located near highway 41, and may

be similarly influenced by road salt; however, there is
also known hydrothermal activity near well 11.

Surface Water

Surface waters in the Upper Jefferson Valley are
typically of good quality; however, there is some vari-
ability. Excluding the sample from Piedmont Pond
(site 29, see below), the TDS of sampled surface wa-
ters ranged from 218 to 344 mg/L, and the median was
263 mg/L (appendix G). Most surface waters were of a
calcium-bicarbonate type, but the sample from Pipe-
stone Creek (site 33) was calcium—sodium bicarbonate
(fig. 20).

The water sample from Piedmont Pond (site 29)
differed from the other surface-water samples (fig.
20). It had the highest TDS value at 631 mg/L, about
270 mg/L higher than the next highest surface-water
sample. This pond is fed by groundwater, and there
is no outlet, while the other samples were from flow-
ing waters. The Piedmont Pond sample had relatively
high concentrations of potassium, sulfate, and chloride
(20.4, 185.2 and 53.8 mg/L, respectively). At 19 ug/L,
the arsenic in concentration in this sample exceeded
the primary drinking water standard of 10 pg/L, and
was the highest arsenic concentration reported. The
pond water sample had elevated silica, lithium, fluo-
ride, and boron concentrations, similar to the ground-
water in the area (well 68), and likely indicative of
a hydrothermal influence (appendix G). Efflorescent
crusts are common in the area near the pond, sug-
gesting that the high relative abundance of sodium
and sulfate ions may be partly due to the removal of
calcium, magnesium, and bicarbonate by carbonate
precipitation [e.g., precipitation of calcite (CaCO,) and
dolomite (CaMg(CO,),)].
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All samples from the Jefferson River, canals fed by
the Jefferson River, Parson’s Slough, Willow Springs,
and the Boulder River had similar geochemical signa-
tures (fig. 20). Pipestone Creek and Whitetail Creek
had higher sodium and lower magnesium concentra-
tions relative to the other flowing waters. Water in the
Slaughterhouse Slough was similar to that in the Jef-
ferson River; however, in the Jefferson Slough inputs
from Pipestone Creek (site 33) and Whitetail Creek
(site 35) caused a shift towards a more sodium-rich
composition (fig. 20).

Stable Water Isotopes

Most of the groundwater samples fall along the lo-
cal meteoric water line (LMWL; fig. 21). This LMWL
was developed for Butte, Montana, approximately 20
mi to the west of the study area (fig. 1; Gammons and
others, 2006). The sample from well 68, near Pied-
mont Pond, falls below the LMWL (fig. 21), which is
consistent with evaporation or a hydrothermal influ-
ence (Clark and Fritz, 1997).

Most of the surface-water samples also fell near
the LMWL (fig. 21); however, the samples from
Whitetail Creek (site 35) and Piedmont Pond (site 29)
fall below this line. The isotopic signal from Whitetail
Creek suggests an influence from evaporated irriga-
tion water, or potentially hydrothermal sources in the
drainage. Similarly, the pond values are attributed to
hydrothermal effects on the groundwater that discharg-
es to the pond, and evaporation from the pond.

The six sites in the Waterloo area that were sam-
pled multiple times during this study showed some
seasonal variation in isotopic signature (fig. 22). Three
of the sites showed little seasonal change (well 51, site
16, and site 20). The other three sites (well 49, site 18,
and site 19) had samples that fell further below the
LMWL in November, suggesting an influence from
relatively evaporated water.

Groundwater/Surface-Water Interactions

Water flows from surface waters to the ground-
water and from the groundwater to surface waters in
different areas of the study area. The direction of this
flow depends on the relative elevation of the ground-
water and surface water. That is, when stream stage is
higher than the groundwater elevation (as is common
on an alluvial fan), the stream water will infiltrate and
recharge the aquifer. When groundwater is at a higher
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Figure 20. Surface waters are primarily of Ca-HCO, type. Pipestone and Whitetail Creeks (sites 33 and 35) have slightly higher relative
Na concentrations than other streams, likely due to known hydrothermal activity in those drainages. Water from Piedmont Pond (site
29) differs from the others; see text for discussion. Labels are site numbers.
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Figure 21. Stable isotopes for most surface-water and groundwater samples plot near the local meteoric water line (LMWL). The sam-
ple for Whitetail Creek (site 35) fell below the LMWL, suggesting an influence from evaporated irrigation return flows or hydrothermal
inputs. The samples from Piedmont Pond (site 29) and the adjacent well (well 68) fell below the LMWL, consistent with the hydrother-

mal influences and evaporation inferred from major ion chemistry.

elevation than the stream (as is common upgradient
from a bedrock notch), groundwater will flow into the
stream. An understanding of the geographic distribu-
tion of gaining and losing stream reaches was needed
to develop and evaluate the numerical models. This
information was also important for developing the
groundwater budgets.

The gaining and losing nature of surface waters
in the Upper Jefferson area changes over both space
and time (table 4, appendix C). Streams typically lose
water to the aquifer during periods of high flow and
elevated stage. Streams typically gain water from the

aquifer during low-flow conditions, when stage is low.

Given this, the geographic distribution of gaining and
losing reaches varies over time; however, the overall
distribution is consistent over time (fig. 23).

The Jefferson River gains from sites 1 to 5, is
slightly losing from sites 5 to 8, and gains flow from
sites 8 to 23. This downstream gaining reach is near
Waterloo, where Parson’s Slough and Willow Springs
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also gain water from the aquifer before flowing into
the Jefferson River. The width of the alluvium also
narrows just north of this area (fig. 7). There is a
slight loss from site 23 to site 28. Near site 28 water

is diverted from the Jefferson River to the Slaugh-
terhouse Slough. The first reach of Slaughterhouse
Slough (up to Kountz Road; site 30) is slightly gain-
ing, and the next reach, including the diversion of
some of the Slaughterhouse Slough water into Jeffer-
son Slough, is gaining. This northern gaining reach of
Slaughterhouse Slough occurs where Pipestone Creek
and Whitetail Creek are also gaining, and this likely
reflects groundwater inflow through the alluvium asso-
ciated with these tributaries. The Jefferson River reach
below Parrot Castle (from site 28 to site 31) is also
slightly gaining. The Jefferson River from site 31 to
50 is neutral to slightly losing, and then in the lowest
reach (from site 50 to site 53; just above the Jefferson
Canyon) it is gaining. Along the neutral to slightly los-
ing reach from site 31 to 50 the Jefferson River is gen-
erally at a higher elevation than the Jefferson Slough,
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Figure 22. Six sites in the Waterloo area were sampled multiple times. The symbol shapes indicate the time of sampling (circle, August
2014; triangle, November 2014; square, January 2015; diamond, March 2015), and the colors represent the site. Three of the sam-
pling locations (well 51, site 20, and site 16) showed little variation over time. The other three sites showed isotopic values that plotted

further below the LMWL during the November 2014 sampling event.

so in these reaches the river likely loses flow to the
groundwater system that subsequently discharges to
the Jefferson Slough. The generally gaining conditions
in the lower reach of the Jefferson Slough support

this interpretation (fig. 23). Just above the Jefferson
Canyon, most of the alluvial groundwater discharges
to the Jefferson River due to the geometry of bedrock
constriction.

The geochemical signatures of water samples
were also used to aid in understanding groundwater/
surface-water interactions. The alluvial groundwater
near the Jefferson River was similar to the composi-
tion of the river (figs. 19-21, appendixes F, G). The
fact that these waters have similar major ion chemistry
is in itself an indication of the high degree of exchange
between surface waters and the alluvial aquifer. The
samples that were substantially different from the rest
appear to be affected by hydrothermal sources (wells
62, 81, 100, and 59; site 33), evaporation (well 68 and
site 29), or road salt (well 95).

Numerical Models
Waterloo Model

The Waterloo model was developed and calibrated
using data collected during this study (2013-2015),
and a preliminary groundwater budget. Gebril and
Bobst (2021) discuss the modeling process, including
model verification, sensitivity analysis, and predictive
uncertainty analysis.

The groundwater budget generated with the cali-
brated model shows the importance of interactions
between surface waters and the alluvial aquifer in the
Waterloo area. The bidirectional exchange of water be-
tween surface water and the aquifer can be considered
from the perspective of net stream gain (as presented
in Gebril and Bobst, 2021, and consistent with the pre-
liminary water budget), where the net stream gain is
the gross gain minus the gross loss. From this perspec-
tive, flow into the model domain was composed of
groundwater inflow through the alluvial aquifer (60%),
irrigation recharge (16%), canal leakage (13%), and
lateral groundwater inflow (11%). Similarly, outflow
from the model domain consisted of net discharge
to surface waters (58%) and groundwater outflow
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Figure 23. Monitoring results were analyzed in several different ways to aid in understanding groundwater/surface-water interactions.
This figure shows the composite interpretation for each reach (also see table 4 and appendix C).
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through the alluvium (42%), with evapotranspiration
and well pumping being minor components of the total
outflows (0.1 and 0.2% respectively).

The detailed modeling results also allow for evalu-
ation of the exchange of water between the stream and
the aquifer from the perspective of gross stream gains
and losses. This view treats gross stream gains and
losses as separate water budget components, rather
than combining them into a net term. Viewing the bud-
get from this perspective provides an understanding of
the total amount of water moving through the system
(rather than excluding the portion of the gains and
losses that offset), and more clearly shows the relative
importance of different sources and sinks; however,
the gross stream gains and losses cannot be com-
pared to independent field-based estimates (e.g., the
preliminary water budget), since field measurements
cannot reasonably be obtained at a fine enough spatial
scale. Quantification of the groundwater budget from
this perspective is derived from the calibrated model
results, and is an important product of the modeling
effort. These results show that the total amount of wa-
ter moving through the alluvial aquifer on an annual
basis is about 220,000 acre-ft. The modeled budget
indicated that about 74% of all inflow to the alluvial
aquifer came from the Jefferson River. The addition of

this gross stream loss causes other inflows to decrease
in their percent contribution, but maintaining their
relative order, with the components being groundwater
inflow through the alluvial aquifer (16%), irrigation
recharge (4%), canal leakage (3%), and lateral ground-
water inflow (3%). Similarly, the use of gross stream
gain rather than net stream gain causes the percentage
of the water going to different sinks to change, but

the sinks are still dominated by gross stream gains
(88%) and groundwater outflow (12%), with ET and
wells being minor components of the budget (0.04 and
0.06%, respectively).

The Waterloo model simulates the effects of po-
tential changes in irrigation practices on surface-water
availability. Changes in groundwater discharge to
Parson’s Slough and Willow Springs during late sum-
mer (month of August) are particularly important be-
cause contributions from these streams support flows
and pool connectivity in the Jefferson River, and the
relatively cool groundwater discharge aids in lowering
river temperature.

Modeling included 18 hypothetical water man-
agement scenarios that may affect surface-water
availability during the late summer (table 5, fig. 24).
Five of these scenarios are extreme: (1) lining all the

Table 5. Waterloo model scenarios.

Scenario Description*®

0 Base Run—Transient

C1 No seepage—Parrot & Creeklyn
Cc2 No seepage—Parrot Reach 1

C3 No seepage—Parrot Reach 2

C4 No seepage—Parrot Reach 3

C5 No seepage—Parrot Reach 4

C6 No seepage—Parrot Reach 5

C7 No seepage—Creeklyn Reach 1
Cc8 No seepage—Creeklyn Reach 2
C9 No seepage—Creeklyn Reach 3

F1 Flood to Pivot—All Areas

F2 Flood to Pivot—Area 1

F3 Flood to Pivot—Area 2

F4 Flood to Pivot—Area 3

F5 Flood to Pivot—Area 4

F6 Flood to Pivot—Area 5

CF No canal seepage & areas 1-5 converted to pivot
SSH1 Split Season Irrigation in Areas 1-5
SS2 Split Season Irrigation for all fields

*See figure 24 for the locations of the features.
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Figure 24. The locations of canal segments and irrigated fields used in the Waterloo model predictive scenarios. Figure shows Par-
rot canal segments, P1 to P5, and Creeklyn Canal segments, C1 to C3. The irrigated areas 1 to 5 were variously converted from
flood to pivot irrigation in the simulations.
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canals (scenario C1), (2) converting all flood irriga-
tion to pivot (scenario F1), (3) lining all the canals
and converting all flood irrigation to pivot irrigation
(scenario CF), (4) applying split season irrigation to
some flood-irrigated fields (scenario SS1), and (5)
applying split season irrigation to all irrigated fields
(scenario SS2). The remaining scenarios test the im-
pact of partial changes in irrigation practices; that is,
lining individual canal segments or converting a single
flood-irrigated area to a pivot system (table 5; Gebril
and Bobst, 2021).

In order to evaluate long-term effects of irrigation
management practices, all predictive simulations were
run for 20 years and compared to a baseline simulation
where there was no change in irrigation practices. Re-
sults are reported for 2024, which is the last complete
calendar year simulated. Changes in water manage-
ment were applied beginning in model year 2016.

Scenario C1 involved lining the Parrot and Creek-
lyn Canals, which reduces recharge to the underlying

combined August flow. Scenario C1 resulted in an

18 cfs reduction in Jefferson River discharge, which
includes the reduction in discharge to Parson’s Slough
and Willow Springs, and reductions in direct ground-
water discharges to the Jefferson River. This reduction
in the flow of the Jefferson River represents a 2.4%
decline from the baseline flow of 720 cfs (table 6, fig.
26).

Scenario F1 consisted of converting five flood-
irrigated areas to center pivot, thus reducing irrigation
recharge to the underlying aquifer. Similar to C1, it
takes over 1 year for a new equilibrium to be estab-
lished, but most of the change occurred in the first
year. Relative to baseline, combined surface-water
flow from Parson’s Slough and Willow Springs to the
Jefferson River was reduced by about 7 cfs in August,
a 12% reduction (table 6, fig. 25). Flow in the Jeffer-
son River at Corbett station decreased by about 13 cfs
in August, a 1.8% reduction (table 6, fig. 26).

Scenario CF combines Cland F1. In comparison

aquifer. Results show that it takes over 1 year for a
new equilibrium to be established; however, most of
the change occurs during the first year. Relative to the
baseline, scenario C1 resulted in a combined reduc-

tion in groundwater flow to Parson Slough and Willow

to the base run, the combined late summer flow in
Parson’s Slough and Willow Springs was reduced by
about 13 cfs, a 22% reduction (table 6, fig. 25). Late
summer flow in the Jefferson River at Corbett station
decreased by 31 cfs, a 4.3% reduction (table 6, fig.

Springs of 6 cfs in August (table 6, fig. 25), which is 26).
about a 10% decrease from the baseline of 57 cfs in
Table 6. Waterloo modeled stream depletion after 10 years.
Parson's Slough Willow Springs Jefferson River (Corbett Station)

Change Change Percent | Change Change Percent | Change Change Percent
in Mean  Change in Change | in Mean Change in Change | inMean Change in Change

Annual inJuly  August in Annual inJuly  August in Annual inJuly  August in
Flow Flow Flow August Flow Flow Flow August Flow Flow Flow August

Scenario (cfs) (cfs) (cfs) Flow (cfs) (cfs) (cfs) Flow (cfs) (cfs) (cfs) Flow

C1 -0.8 -1.0 -1.6 -9.0% -2.0 -2.4 41 -11.3% -8.2 -11.9 -17.0 -2.4%
Cc2 -0.1 -0.1 -0.1 -0.6% 0.0 0.0 -0.1 -0.1% -1.1 -11 -1.7 -0.2%
C3 -0.3 -0.4 -0.6 -3.4% -0.2 -0.2 -0.4 -1.1% -2.1 -2.5 -4.1 -0.6%
C4 -0.2 -0.2 -0.4 -2.5% -0.2 -0.2 -0.5 -1.3% -1.7 -1.5 -2.7 -0.4%
C5 -0.2 -0.2 -0.3 -2.0% -0.6 -0.7 -1.3 -3.5% -2.0 -2.0 -3.3 -0.5%
C6 -0.3 -0.3 -0.4 -2.5% -1.5 -2.0 -3.3 -8.9% -3.7 -3.9 -6.3 -0.9%
Cc7 -0.2 -0.2 -0.3 -2.0% -0.6 -0.7 -1.3 -3.5% -2.8 -3.5 -4.9 -0.7%
C8 -0.2 -0.2 -0.3 -2.0% -0.6 -0.7 -1.3 -3.5% -2.9 -4.0 -5.4 -0.7%
C9 -0.2 -0.2 -0.3 -2.0% -0.6 -0.7 -1.3 -3.5% -3.0 -3.5 -4.8 -0.7%
F1 -0.3 -0.4 -0.3 -1.3% -2.7 -4.8 6.4 -17.4% -6.4 -10.2 -12.8 -1.8%
F2 -0.2 -0.3 -0.4 -2.3% -0.6 -0.7 -1.3 -3.6% -2.7 -2.8 -4.3 -0.6%
F3 -0.2 -0.3 -0.4 -2.1% -0.6 -0.7 -1.3 -3.5% -2.3 -2.3 -3.6 -0.5%
F4 -0.2 -0.3 -0.4 -21% -0.7 -0.8 -1.4 -3.8% -1.9 -2.2 -3.3 -0.5%
F5 0.0 -0.1 -0.1 -0.4% -2.5 -4.5 6.2 -16.7% -3.9 -6.8 9.4 -1.3%
F6 -0.2 -0.2 -0.3 -2.0% -0.7 -0.8 -1.4 -3.9% -2.3 -2.3 -3.7 -0.5%
CF -1.0 -1.4 -1.9  -10.4% -4.6 =71 -104 -282% -14.7 -22.0 -29.7 -4.1%
SS1 -0.1 -0.1 -0.2 -1.2% -2.4 -4.1 -6.3 -171% -4.7 -7.4 -12.1 -1.7%
SS2 0.5 0.8 -0.1 -0.5% -2.0 -3.2 -6.1  -16.6% -1.6 -0.6 -10.3 -1.4%

Note. See table 5 and figure 24 for additional scenario details.
Increases in flow shown with yellow highlight.
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Figure 25. Eliminating leakage from the Parrot and Creeklyn Canals (scenario C1), reduced groundwater flow to Parson’s Slough
and Willow Springs in August by 6.0 cfs; an 11% reduction in flow. Conversion of all five flood-irrigated fields to pivot irrigation
(scenario F1) reduced groundwater discharge to the streams by 7.0 cfs; a 12% reduction. Lining canals and converting all five
fields to pivot irrigation reduced groundwater discharge to the streams by 12.8 cfs; a 22% reduction.
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Figure 26. Eliminating leakage from the Parrot and Creeklyn Canals (scenario C1) caused a 17.5 cfs reduction in total groundwa-
ter flow to the Jefferson River in August (including groundwater flow to Parson’s Slough and Willow Springs); resulting in a 2.4%
reduction in mean August flow. Conversion of all five fields to pivot irrigation (scenario F1) caused a 13.2 cfs reduction in total
groundwater discharge to the Jefferson River; a 1.8% reduction in mean August flow. When the canals were lined, and all five fields
were converted to pivot (scenario CF), total groundwater flow to the Jefferson River was reduced by 30.6 cfs; a 4.3% reduction.
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The split season irrigation scenarios (SS1 and SS2)
simulate attempting to mitigate the effects of changing
irrigation efficiency (converting from flood to pivot
irrigation) by providing flood irrigation recharge from
mid-April until the end of June, and switching to pivot
irrigation rates from July to mid-October. The canals
are unlined for these scenarios. Scenario SS1 modeled
using this approach at the same fields converted from
flood to pivot irrigation in scenario F1 (fig. 24, table
5). Results showed that compared to F1, SS1 increased
July flow in Parson’s Slough by 0.3 cfs, generating a
0.1 cfs reduction from baseline compared to 0.4 cfs;
in Willow Springs there was a 0.7 cfs increase in July
flows relative to F1, with a 4.1 cfs reduction from
baseline compared to 4.8 cfs. On the Jefferson River
there was a 2.7 cfs increase in July flows relative to
F1, with a 7.4 cfs reduction compared to 10.2 cfs. SS1
showed less of a change compared to F1 in August,
with the difference between SS1 and F1 for Parson’s
Slough, Willow Springs, and the Jefferson River being
0.0, 0.1, and 0.6 cfs, respectively. The similarity be-
tween groundwater discharge in August in SSland F1
is attributed to the rapid dissipation of the groundwater
mound created in the spring due to the proximity of
the managed fields to surface waters (fig. 24) and to
the high-transmissivity aquifer. Scenario SS2 simu-
lated split season irrigation at all irrigated fields in the
model domain, which increased the average distance
between split season irrigated fields and surface waters
(Gebril and Bobst, 2021). This provided greater, but
still incomplete, mitigation (table 6), with August flow
reductions to Parson’s Slough, Willow Springs, and
the Jefferson River of 0.2, 0.4, and 2.5 cfs less than
under F1. Scenario SS2 increased mean annual and
July groundwater discharge to Parson’s Slough com-
pared to baseline, because some pivot-irrigated fields
were converted to split season irrigation.

In general, Willow Springs is more sensitive to
changes in water management than Parson’s Slough.
For example, in scenarios C1, F1, and CF, August flow
reduction in Willow Springs was 4.1 cfs, 6.4 cfs, and
10.4 cfs, respectively, whereas flow reduction in Par-
son’s Slough was 1.6 cfs, 0.3 cfs, and 1.9 cfs (table 6).
Parson’s Slough lies between Willow Springs and the
Jefferson River, and these surface-water features act as
boundaries that limit effects to Parson’s Slough from
actions beyond them.

Scenarios C2 to C6 represented lining individual
segments of the Parrot Canal, and scenarios C7 to C9
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represented lining segments of the Creeklyn Canal
(fig. 24). Lining upstream (southern) segments of the
Parrot Canal had relatively little effect on the outflow
of Willow Springs; lining downstream segments in-
creased the effects to Willow Springs (table 6). Lin-
ing various segments of the Creeklyn Canal caused
slight reductions in groundwater discharge to Parson’s
Slough and Willow Springs (0.3 and 1.3 cfs reductions
in August flows, respectively), and reduced flows in
the Jefferson River by 4.9 to 5.4 cfs. This is consis-
tent with the Jefferson River providing a hydrologic
boundary (fig. 24), so that reductions in groundwater
recharge on one side of the river cause little change in
groundwater discharge to surface waters on the other
side.

Scenarios F2 to F6 simulated changes in irrigation
recharge resulting from various fields converting from
flood irrigation to pivot. Groundwater discharge to the
Jefferson River, Willow Springs, and Parson’s Slough
were more affected by conversion of adjacent fields,
and the magnitude of the effect was proportional to the
size of the converted fields (fig. 24, table 6).

Analysis of the Waterloo model (Gebril and Bobst,
2021) showed uncertainty in model results of about
10% for simulations of groundwater discharge to
Parson’s Slough and Willow Springs, and about 3%
for groundwater discharge to the Jefferson River. In
practical terms, model results that show a 1 cfs effect
on Willow Springs should be regarded as a prediction
between 0.9 cfs and 1.1 cfs.

Whitehall Model

Similar to the Waterloo model, the Whitehall
model was developed and calibrated using data col-
lected during this study (2013-2015), and a prelimi-
nary groundwater budget. A sensitivity analysis was
conducted on the model, and a predictive uncertainty
analysis was used to evaluate the likely error in model
predictions (Gebril and Bobst, 2020).

Similar to the Waterloo model, modeled ground-
water budgets were developed for the Whitehall area
from the perspective of net stream gain, for compari-
son with field-derived estimates, and from the perspec-
tive of gross stream gains and losses to more clearly
show the relative importance of different sources and
sinks (Gebril and Bobst, 2020). The budget generated
with the calibrated model quantifies the interactions
between surface waters and the alluvial aquifer. This
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Table 7. Whitehall model scenarios.

Scenario

Description*

0 Base Run—Transient

O O WN -

23 homes on 10-acre lots in non-irrigated area; pumping from layer 1
23 homes on 10-acre lots in irrigated area; pumping from layer 1

23 homes on 10-acre lots in non-irrigated area; pumping from layer 1
23 homes on 10-acre lots in non-irrigated area; pumping from layer 2
5 homes on 20-acre lots in non-irrigated area; pumping from layer 2
10 homes on 10-acre lots in non-irrigated area; pumping from layer 2

7 20 homes on 5-acre lots in non-irrigated area; pumping from layer 2

*See figure 27 for the locations of the scenarios.

budget shows that the total amount of water moving
through the aquifer is about 74,000 acre-ft/yr. Seven-
ty-four percent of the simulated inflow to the ground-
water system was from the Jefferson River, while
areal recharge (both irrigated and non-irrigated areas)
contributed 16%, canal leakage added 8%, and alluvial
and lateral groundwater inflow combined to provide
2% of the inflow. Groundwater discharge to surface
waters (primarily the Jefferson River and Jefferson
Slough) was 97% of total outflows. The other 3% of
outflows included wells, down-valley groundwater
outflow, pond evaporation, and riparian ET.

The Whitehall model simulates potential effects to
surface-water flows from groundwater use and conver-
sion of irrigated lands related to hypothetical subdi-
visions. The scenarios examine effects of “exempt
wells.” Of particular concern was the potential for
reduced late summer flows in the Jefferson River and
Jefferson Slough.

Seven hypothetical scenarios were compared to a
baseline run where the level of development was the
same as during this study. These scenarios were devel-
oped to characterize the effects of additional subdivi-

sions on surface-water availability during the late sum-
mer (table 7, fig. 27). The scenarios test development
at lot sizes typical for the Upper Jefferson Valley, of 5,
10, and 20 acres at various locations within the model
area. These included development in irrigated and non-
irrigated areas, and with wells completed in the alluvi-
um and the underlying Renova Formation. The metric
used to compare these scenarios was the reduction in
groundwater discharge to surface-water features (rivers
and drains) in August, 10 yr after development (table
8). “Stream depletion” refers to groundwater pumping
that results in reduced stream flow.

Scenarios 1 and 2 compared the effects of residen-
tial development in irrigated vs. non-irrigated areas on
the bench north of Jefferson Slough. Both scenarios
simulate wells completed in the alluvium at 23 homes
completed on 10-acre lots. Scenario 1 simulated
development in a non-irrigated area; wells added to
the baseline model pumped at rates equal to the con-
sumptive water use estimated for homes in this phys-
iographic setting (Gebril and Bobst, 2020). Scenario 2
simulated development in irrigated areas; wells added
to the baseline model pumped at rates equal to the ad-
ditional consumptive water use and irrigation recharge

Table 8. Whitehall modeled stream depletion after 10 years.

August Stream Depletion

Scenario ft3/d acre-ftfmo  cfs gpm gpm/home
1 825 0.59 0.010 4.3 0.2
2 11,850 8.43 0.137 61.6 27
3 1,497 1.07 0.017 7.8 0.3
4 1,207 0.86 0.014 6.3 0.3
5 96 0.07 0.001 0.5 0.1
6 196 0.14 0.002 1.0 0.1
7 399 0.28 0.005 21 0.1

Note. The annual average pumping rate is 0.3 gpm/home.
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use on surface-water flows in the late summer.
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was eliminated from the developed area. Scenario 2
caused about 14 times the simulated stream depletion
in scenario 1. These simulations showed stream deple-
tion rates of 0.59 and 8.43 acre-ft in August (table 8).
These stream depletions represent about 0.02% or less
of the average August flow of 633 cfs on the Jefferson
River at site 31 in 2014.

Scenarios 3 and 4 compared the effects of pumping
water from the alluvium vs. pumping from the under-
lying Renova Formation. Both scenarios simulated
23 homes on 10-acre lots in a non-irrigated area. The
model indicates that pumping from the alluvium re-
sulted in August stream depletion of 1.07 acre-ft com-
pared to 0.86 acre-ft while pumping from the Renova
Formation (table 8). These stream depletions represent
about 0.002% of the 2014 average August flow in the
Jefferson River at site 31.

Scenarios 1 and 3 provide a comparison of ground-
water development at different distances from sur-
face water (fig. 27). In these scenarios, development
occurred in non-irrigated areas with pumping from
the alluvium, but in scenario 3 the development was
closer to surface-water features. Scenario 3 stream
depletion in August was 1.07 acre-ft, almost twice that
of scenario 1, at 0.59 acre-ft. While the total volume of
stream depletion will equal the volume of consumptive
use over the long term, there is less lag time between
pumping and related depletion in scenario 3 because
the wells are closer to the stream (Theis, 1941; Kendy
and Bredehoeft, 2006).

Scenarios 5, 6, and 7 compared the effects of dif-
ferent well densities on stream depletion. All wells
were completed in the Renova Formation, in the same
100-acre area south of the Jefferson River (fig. 27).
Homes were on 20-acre, 10-acre, or 5-acre lots, with
5, 10, or 20 simulated wells, respectively (table 7).
The model results show a linear relationship between
the total pumping and stream depletion (table 8).

Analysis of uncertainty in the Whitehall model
performed by Gebril and Bobst (2020) showed that the
error associated with simulations of stream depletion
is about 50%. In practical terms, model results that
show stream depletion of 1 acre-ft should be regarded
as a prediction ranging from 0.5 to 1.5 acre-ft.

DISCUSSION

Measurements of groundwater elevations over
time, groundwater and stream elevations, stream
flows, and modeling provide evidence of the interac-
tions between surface waters and the alluvial aquifer
in the Upper Jefferson area. These data demonstrate
that groundwater and surface waters in this area are
a single resource. “Conjunctive management” refers
to policies and practices that recognize the intercon-
nection between the aquifers and the watershed. As
discussed below, findings in this report indicate that
changes to irrigation practices affect recharge to
groundwater and subsequent discharge of ground-
water to surface water; efforts to increase irrigation
efficiency may have unintended consequences on the
groundwater and surface-water systems (Lonsdale and
others, 2020).

Changing Irrigation Practices—Waterloo Area

Monitoring and modeling in the Waterloo area
show that changing irrigation practices will likely re-
duce groundwater flow to surface waters. A simulation
that included an extreme change to current conditions,
lining all irrigation canals and converting all flood-
irrigated fields to pivot irrigation, showed reductions
in groundwater discharge to Willow Springs, Parson’s
Slough, and the Jefferson River of about 27 to 33
cfs. In the context of target flows developed for the
drought management plan for the Jefferson River (50
cfs above Parson’s Slough), this represents a large
change. While this result is specific for the Waterloo
area, the underlying concept applies throughout the
Upper Jefferson Valley, and generally for many ir-
rigated valleys in western Montana. Canal leakage,
and irrigation water that infiltrates past the root zone,
provide substantial groundwater recharge. Therefore,
changes in irrigation practices have the potential to
reduce groundwater levels and groundwater discharge
to surface waters (Lonsdale and others, 2020).

Increased Development—Whitehall Area

As expected, modeling of the Whitehall area
shows that pumping water for residential develop-
ments from the unconsolidated to poorly consolidated
aquifers (alluvium, bench sediments, and Renova
Formation) causes surface-water flow reductions. Over
the long term, the volumetric reduction in ground-
water discharge to streams will equal the volume of
groundwater that is consumptively used. The model
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showed the largest effects on stream flow in a simula-
tion that replaced an irrigated field with 23 residential
wells, because the groundwater extraction was com-
bined with a reduction in irrigation recharge. These
conditions reduced August groundwater discharge

to streams by about 8 acre-ft. A similar development
scenario in a non-irrigated area, such that there was
no simulated change to irrigation recharge, caused a
reduction of about 0.6 acre-ft. Under these circum-
stances, changes in land use that reduce groundwater
recharge, such as converting irrigated fields to other
uses, can impart larger reductions in groundwater dis-
charge to streams than the effects of additional wells.

The model scenarios presented here caused a
maximum stream depletion of 8 acre-ft/mo, which is a
small percentage of the overall stream flows. Because
stream depletion increases linearly with increased
groundwater pumping (e.g., Theis, 1941; Jenkins,
1968; Bredehoeft, 2002; Kendy and Bredehoeft, 2006;
Konikow and Leake, 2014), we can extrapolate from
these results. Due to the errors inherent in stream
flow measurements, it is difficult to reliably measure
changes of less than about 5%, so this can be used as
a “measurable” change criteria. If groundwater use
developed to supply one residence per 10-acre lot, and
this development replaced existing irrigated fields,
as in scenario 2, about 6,200 additional homes would
result in a 5% reduction in mean August stream flow.
If this development occurred on unirrigated land, as
in scenario 1, the consumptive use from about 89,000
homes could be supplied from the alluvial aquifer to
cause the same effect (however, the entire study area
is about 167,000 acres, so at a 10-acre lot size only
16,700 homes would be possible). Although the effects
of residential pumping are much less than the effects
from changes in land use, reducing consumptive use in
residential developments could be achieved by reduc-
ing outdoor water use. This would further increase the
number of homes that could be supplied while causing
a reduction in stream flow of less than 5%.

RECOMMENDATIONS

The Upper Jefferson Drought Management Plan
has been a key component to maintain minimum
flows in the Jefferson River during drought conditions.
Implementation of this plan since 2000 has provided
documented increases in low flows and increases in
fish populations (Spoon, FWP, oral commun., 2015).
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The drought management plan can be supple-
mented with long-term projects to maintain or increase
water storage in shallow aquifers. For shallow-aquifer
storage mechanisms to be effective at increasing late
summer stream flows, groundwater recharge should be
emphasized while stream flows are high, and irrigation
efficiency should be emphasized when stream flows
are low. That is, the system should be charged up in
the spring, and then diversions from the river mini-
mized during low flows.

Strategies that seek to increase irrigation effi-
ciency, for example, lining canals to reduce diversions,
should be weighed against the reduction to ground-
water recharge and the timing of subsequent declines
in groundwater discharge to surface water. Modeling
shows that flood-irrigated fields and unlined canals
provide substantial groundwater recharge. Converting
irrigated lands to almost any other use, or lining ca-
nals, will decrease groundwater recharge, and decrease
seasonal groundwater storage. Loss of groundwater
recharge will reduce groundwater discharge to surface
waters, but the location and timing of those effects
will depend on the site-specific hydrogeologic system.
Reduction in groundwater discharge to surface wa-
ters will be most evident in smaller groundwater-fed
streams, such as Willow Spring or Parson’s Slough.

Modeling demonstrates the utility of split season
irrigation to increase dry season stream flows relative
to a simple conversion from flood to pivot irrigation.
The application of excess water while water is abun-
dant, and using more efficient irrigation methods when
water is scarce, can help maintain late season flows.
Our modeling also shows that if the transmissivity of
the aquifer is high, and/or the fields are close to sur-
face waters, the groundwater mound may dissipate too
rapidly to supplement flows throughout the summer.
Conversely, if the fields are too far from the river, and/
or the transmissivity of the aquifer is too low, in-
creased groundwater discharge to surface waters may
occur after the low flow period. The models developed
for this project could be adapted to evaluate site-spe-
cific settings. While these modeling results are instruc-
tive, there are few cases where split season irrigation
has been implemented, and results are anecdotal
(Dodge, JRWC, written commun. 2019; Schwend,
DNRC, written commun., 2019). Site-specific studies
of the effects of split season irrigation on groundwater
recharge, storage, and discharge would be useful.
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The modeled effects to dry season stream flows
from increased residential development were slight;
however, any new consumptive use of water will
reduce the availability of water downstream. The ef-
fect of increased groundwater use related to housing
developments could be mitigated by reducing domes-
tic consumptive water use. Detailed analysis of water
use in the Townview subdivision, near Helena, showed
that about 98% of the consumptive water use was for
irrigating yards (Waren and others, 2012; Bobst and
others, 2014). Reducing the amount of irrigated lawn
could be a key component of a groundwater conserva-
tion program.

Some wells monitored during this study showed
a decline in groundwater elevations relative to data
collected in previous studies. The wells with declines
were geographically distributed, so it is unlikely that
the effects are due to a regional decline in groundwater
levels; however, it would be useful to conduct addi-
tional monitoring at these sites so that the cause of the
declines could be better understood.
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APPENDIX A
GROUNDWATER MONITORING NETWORK
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Appendix B. Surface-Water Monitoring Sites

Site GWIC or Data Type
Number | USGS ID Name Organization| Temp| Stage| Discharge| Quality
1| 06026500|(Jefferson River near Twin Bridges USGS X X X X
2 277192 |Jefferson River at Hells Canyon MBMG X X
3 274576|Creeklyn Canal at Diversion MBMG X X X
4 274578|Parrot Canal at Diversion MBMG X X X
5 277191 |Jefferson River at Silver Star MBMG X X X
6 278155|Parrot Canal at Waterloo Road MBMG X X X
7 274577 |Creeklyn Canal at Nelson's MBMG X X X
8 278427 |Jefferson River at Funston's MBMG X X X X
9 278796|Parrot Canal at Bench Road MBMG X X X
10 278798|Parrot Canal at Gornick Road MBMG X X X
11 277323|Beall Creek above Diversion MBMG X X
12 278357|Beall Creek above Parrot Canal MBMG X X X
13 277190|Creeklyn Canal at Cutoff Road MBMG X X X
14 274575|Jefferson Canal at Diversion MBMG X X X X
15| 06027600|Jefferson River at Parson's Bridge USGS X X X X
16 277129|Parson's Slough at Loomont MBMG X X X X
17 274579|Parrot Canal at Hunt's MBMG X X X X
18 277126|Willow Springs West Fork MBMG X X X X
19 279379|Willow Springs East Fork MBMG X X X X
20 274881 |Lower Willow Springs MBMG X X X X
21 278154 |Kernow Blowout (Parrot) MBMG X X X
22 274882 |Parrot Canal at Willow Springs MBMG X X X
23 278156|Jefferson River at Corbett's MBMG X X X X
24 277320|Parrot Canal before Tunnel MBMG X X X
25 277321|Tunnel Blowout (Parrot) MBMG X X X
26 278400|Fish Creek (inflow to Slaughterhouse) MBMG X X X X
27 277189|Slaughterhouse Slough Diversion MBMG X X X
28 278863 |Jefferson River at Parrot Castle MBMG X X X
29 277194 |Piedmont Pond MBMG X X X
30 278354 |Slaughterhouse Slough at Kountz Rd MBMG X X X X
31 277193 |Jefferson River at Kountz Rd MBMG X X X
32 274883 |Jefferson Canal at Markowski Rd MBMG X X X
33 274885 |Pipestone Creek at Capp Ln MBMG X X X X
34 277322 |Whitetail Creek at Sailsbury's MBMG X X X
35 274574|Whitetail Creek at Cemetary MBMG X X X X
36 287489|Jefferson Slough at Willow Grove Confluence X X X
37 287491|Pipestone Creek at Mouth Confluence X X X
38 287492 |Whitetail Creek at Mouth Confluence X X X
39 287493 |Jefferson Slough at Briggs Confluence X X X
40 287494 |Jefferson Slough at Yellowstone Trail Confluence X
41 287495 |Jefferson Slough at Tebay Ranch Confluence X X X
42 274564 |Jefferson Slough at Tebay Lane MBMG X X X X
43 287503 | Tebay Ditch Confluence X
44 274566 |Jefferson River at Mayflower MBMG X X X X
45 274580|Parrot Canal at Mayflower MBMG X X X
46 287504 |Jefferson Slough at 190/MT69 Confluence X
a7 287506 |Jefferson Slough at Mulligan's Confluence X X X
48 287505 Boulder Ditch Confluence X
49 274565 |Jefferson Slough at 359 MBMG X X X X
50 278401 |Jefferson River at Cardwell MBMG X X X
51 263602 |Boulder River MBMG X X X X
52 287507 |Jefferson Slough near Mouth* Confluence X
53 274573 |Jefferson River at LaHood MBMG X X X X

*Note: Called "Boulder River mouth" by Confluence.
Data for MBMG sites are available from http://mbmggwic.mtech.edu/
Data for USGS sites are available from https://waterdata.usgs.gov/mt/
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Appendix C. A reach by reach assessment of groundwater/surface-water interactions.
C1. Introduction

The geographic distribution of gaining and losing reaches is important qualitative information
for evaluating the results of numerical modeling. Stream and groundwater monitoring data were
analyzed in four ways to aid in understanding groundwater/surface-water interactions in the
study area. These were (1) comparing stream flows from the upstream to downstream ends of a
reach; (2) comparing water temperatures from the upstream to downstream ends of a reach; (3)
comparing time-series groundwater and surface-water elevations measured at close proximity to
each other; and (4) comparing time-series groundwater and surface-water temperatures measured
at close proximity to each other. These methods were used in combination to understand
groundwater/surface-water interactions on a reach basis. There was not sufficient data to
evaluate each of these indicators on every reach. The results are summarized in table 4 and fig.
22 in the main body of this report. To summarize the results of all available indicators on a reach
basis each reach was classified as gaining, slightly gaining, neutral, slightly losing, or losing. For
gaining and losing reaches all of the available methods indicated a net gain or loss all of the time.
For slightly gaining and slightly losing reaches most methods indicated net gains or losses most
of the time. Reaches were assigned as neutral when they did not show clear gaining or losing
behavior (see table 4 in the main body of the report).

We attempted a fifth method to evaluate groundwater: surface-water interactions, examining
geochemical signatures to identify gaining reaches and to quantify the magnitude of those gains.
However, the groundwater chemistry in the alluvial aquifer is similar to that in surface water,
and a reliable groundwater tracer could not be identified in surface waters. This finding suggests
that there is substantial exchange occurring between surface waters and the alluvial aquifer.

C2. Overview of Data Analysis

Net Change in Stream Flow

Comparing time-series stream flows from the upstream to downstream ends of a reach (net flow
difference) can provide some information on net gains or losses. While major diversions and
tributaries were monitored, there were some unmonitored diversions and tributaries, so these
results are qualitative. Even if all diversions and tributaries were measured, the cumulative
measurement error often makes it difficult to quantify small gains or losses. Synoptic flow
measurements are shown in tables C1-1 to C1-4, and differences in flows based on hourly
discharges calculated from stage readings and rating curves are shown in figures C2-1 to C2-9.

Change in Stream Temperature

The temperature above and below a reach can be used to qualitatively identify gaining reaches.
This approach is not quantitative because heat exchange with the atmosphere and solar heating
also occur. Groundwater discharge to a stream causes the surface-water temperature to cool
during the summer and warm during the winter. When this effect was large enough to overcome
heat exchange with the atmosphere and solar heating, we classified it as gaining. Figures C3-1 to
C3-7 illustrate changes in stream temperature between sites based on hourly readings.
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Groundwater/Surface-Water Elevations

The elevations of the stream and groundwater at a particular site can be used to identify the
direction of the hydrologic gradient at that site. While this is a measurement of the hydraulic
gradient at that site, it cannot be assumed that it is valid at the reach scale. The differences
between surface-water and groundwater elevations at six sites where wells were installed
immediately adjacent to surface waters are shown in figures C4-1 to C4-3.

Groundwater/Surface-Water Temperatures

The temperature of the surface water and groundwater at a particular site can be used to identify
gaining or losing conditions. In a losing stream, the diel temperature signal in the surface water
will be transmitted to the groundwater by both advection and conduction. In a gaining stream,
the advection of groundwater into the stream will prevent the stream’s dial signal from reaching
the groundwater, and the amplitude of the dial signal in the surface water may be reduced.
Similar to groundwater/surface-water elevations, extrapolating this up to the reach scale may be
inaccurate. Comparisons among groundwater, surface-water, and air temperatures are shown in
figures C4-1 to C4-3.

C3. Results

A. Jefferson River
USGS Gage near Twin Bridges to Silver Star
Monitoring within this reach was conducted by the USGS at a gage near Twin Bridges (site 1),
by MBMG at FWP’s Hells Canyon access site (site 2 and well 5), and by MBMG at FWP’s
Silver Star access site (site 5 and well 15). Stream discharge, stream stage, and stream
temperature were measured at the USGS site. Stream elevation, stream temperature, groundwater
elevation, and groundwater temperature were measured at the FWP Hells Canyon site. Stream
discharge, stream elevation, stream temperature, groundwater elevation, and groundwater
temperature were measured at Silver Star. The Hells Canyon station was 2.1 river miles
downstream of the USGS gage, and the Silver Star station was 4.5 river miles downstream of the
Hells Canyon station.

The net change in stream discharge between the USGS gage and the Silver Star gage is effected
by diversions for the Creeklyn and Parrot Canals. From May through September 2014 the
average diversion to the Creeklyn Canal was 56 cfs, and the average diversion to the Parrot
Canal was 173 cfs. After accounting for these diversions there was a net decrease in flow
between these stations during springtime high stream flows and a net increase in flow during low
stream flows (fig. C2-1A). From April 15 to July 15, 2014, the average net reduction in flow
between these stations was 332 cfs. From July 15 to November 1, 2014 the average net increase
in flow was 60 cfs. The transition from decreasing to increasing flow occurred at about 1,200 cfs.

In 2014 stream temperatures were monitored from July to September at the USGS station near
Twin Bridges, and from April to November for the MBMG stations at Hells Canyon and Silver
Star. Over the 2.1-mi reach from the USGS station to Hells Canyon there is little apparent
change in stream temperature (fig. C3-1A). Over the 4.5-mi reach from Hells Canyon to Silver
Star, surface-water temperatures cooled during August, and warmed during October and
November. During April-July and September there was little apparent change in stream
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temperature (fig. C3-1B). This is consistent with it being a neutral or losing stream during the
early summer, and gaining during the late summer and into the fall. Little change is observed in
September since surface-water temperatures, air temperatures, and groundwater temperatures are
similar (figs. C4-1C and C4-1F).

At Hells Canyon and Silver Star stream elevation and groundwater elevations were monitored
from April to November 2014 (figs. C4-1A, C4-1B, C4-1D, and C4-1E). At the Hells Canyon
site groundwater elevations were generally lower than surface-water elevations from the start of
monitoring (April 2) until June 30th. Surface-water elevations were generally lower than
groundwater elevations from June 30th through August 15th. From August 15th to the end of
monitoring (November 10th) groundwater elevations were slightly lower than surface-water
elevations. At the Silver Star site, groundwater elevations continuously exceeded surface-water
elevations. These data indicate that the Jefferson River changes over time, from gaining and
losing, at the Hells Canyon site. The river is consistently gaining at the Silver Star site.

Near stream groundwater temperatures were monitored at Hells Canyon and Silver Star (figs.
C4-1C and C4-1F). At both sites there is no measurable daily temperature signal, and
groundwater temperatures stay well above freezing in the winter. This indicates that at these
points, there is insufficient flow from the stream to the groundwater to transmit the stream’s heat
signature to the wells. Notably, the groundwater temperature at Silver Star shows only 2°C of
seasonal variation, and it is considerably warmer than other wells (average of 14.8°C compared
to 8.5°C at Hells Canyon). This is attributed to local hydrothermal features.

Silver Star to Funston’s
This reach extends 6.1 mi from Silver Star to Funston’s (site 8). Stream discharge, stream stage,
and stream temperature were measured at Funston’s from July to November, 2014.

Stream flow at Funston’s was typically less than at Silver Star. 2014 average flow was 46 cfs
less at Funston’s (table C1-1 and figs. C2-1C and C2-1D).

In 2014, surface-water temperatures warmed between Silver Star and Funston’s from July
through early September. Surface-water temperatures cooled during October and November (fig.
C3-1D). During late September there was little apparent change in stream temperature because
surface-water temperatures and air temperatures were similar (figs. C3-1D and C4-1F). These
data are consistent with a losing or neutral stream during the monitoring period (July to
November).

Funston’s to USGS Gage at Parson’s Bridge

The USGS gage at Parson’s Bridge (site 15) is 4.1 mi downstream of the gage at Funston’s,
downstream of Parson’s Bridge and the diversion to the Jefferson/Fish Creek Canal, and
upstream from Parson’s Slough. The Parson’s Bridge gage recorded stream discharge, stage, and
temperature from July to September, 2014.

Flow at the USGS gage at Parson’s Bridge is affected by the diversion for the Jefferson canal.
After the effects of the Jefferson canal are subtracted, the net change in flow along this reach
varies between no change and increasing flow (tables C1-1 and C1-2; figs. C2-1E and C2-1F).
The flow at Parson’s Bridge was similar to the flow at Funston’s in July 2014. During early
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August, while stream stages were their lowest, the flow at Parson’s Bridge was greater than the
flow at Funston’s. Stream stage increased in mid-August, which corresponded to a transition to
similar flows at the two stations. In September, as stage fell, flows transitioned back to higher
flows at Parson’s Bridge. Stage increased at the end of September, and flows again became
similar at both sites. These transitions occurred at a flow of about 600 cfs.

Surface-water temperatures cooled between Funston’s and Parson’s Bridge during July and
August, 2014. During September there was little apparent change in stream temperature (fig.
C3-1E). This is consistent with the stream gaining during low flows, and near neutral during
higher flows.

USGS Gage at Parson’s Bridge to Corbett’s

MBMG’s Corbett gage (site 23) was located 2.7 mi downstream of the USGS gage at Parson’s
Bridge. Stream discharge, stream stage, and stream temperature were recorded at this station. A
domestic well approximately 120 ft from the Jefferson River (GWIC ID 230730; well 53) was
monitored with a transducer at the Corbett site, providing a record of groundwater temperature
and elevation.

Parson’s Slough (site 16) and Willow Springs (site 20) flow into the Jefferson River between
these stations. The Kernow blowout for the Parrot canal (site 21), which discharges to Willow
Springs below site 20, also occurs in this reach. Previous work found that groundwater
discharges to the Jefferson River along this reach (MDEQ, 2014a; WET, 2006, 2010a,b).
Stream flow at the Corbett station was greater than at Parson’s Bridge throughout 2014 (table
C1-1 and figs. C2-2A, C2-2B). Taking into account the observed flows from Parson’s Slough,
Willow Springs, and the Kernow blowout, the 2014 monthly average flow increases were: July,
194 cfs; August, 50 cfs; and September, 16 cfs.

In 2014, surface-water temperatures cooled between Parson’s Bridge and Corbett’s during July
and August (fig. C3-1F). September brought a slight cooling during warmer periods and slight
warming during cooler periods. This is consistent with the stream consistently gaining
groundwater.

Groundwater elevations at the Corbett station continuously exceeded stream elevations (figs.
C4-2A, C4-2B). When the Parrot Canal turned on in mid-April 2014, groundwater elevations
rose by 7 ft in 14 days. When the Parrot Canal was off, from 7/3/14 to 7/8/14, groundwater levels
dropped by 4 ft. When the Parrot Canal was turned back on, groundwater levels rose by 3 ft. The
maximum difference between groundwater and river elevations occurred in August, and was
about 14 ft. This difference decreased over time and was about 11 ft when the canal was shut off
on 10/20/14. Groundwater levels declined after the irrigation season, falling back to their pre-
irrigation levels before the canal was turned on again in the spring of 2015.

Groundwater temperatures do not show dial variations, and only show slight seasonal variations,
at the Corbett station. The minimum groundwater temperature in 2014, 12.1°C, occurred in late
June. This is consistent with gaining stream conditions, demonstrating that the surface-water
temperature signal is not being transmitted to groundwater.
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Corbett’s to Parrot Castle

The Parrot Castle gage (site 28) was located 4.7 mi downstream of the Corbett gage, below the
Slaughterhouse Slough diversion. Stream stage and temperature were monitored at this station.
Discharge was not measured at this location due to safety concerns.

Surface-water temperatures warmed during 2014 between Corbett’s and Parrot Castle in July,
August, and September (fig. C3-2A). In October, there was slight warming during warmer
periods and slight cooling during cooler periods. November surface-water temperatures declined
between these stations, consistent with a stream that is either losing or neutral over this reach.

Parrot Castle to Kountz Bridge

The Kountz Bridge gage (site 31) was located 4.6 mi downstream of the Parrot Castle gage. A
monitoring well (well 86) was also installed adjacent to the river at this site. This station was
monitored for stream elevations, discharge, and temperature, and for groundwater elevations and
temperatures.

While stream flow was not measured at Parrot Castle, we developed a net change in flow
comparison using data from the Corbett station, 9.3 mi upstream. This shows that flows declined
between these stations during July and August but increased slightly during September. Note that
the Slaughterhouse Slough diversion is within this reach. The average monthly net difference in
flows for 2014 were: July, 188 cfs lower; August 58 cfs lower; and September, 6 cfs higher
(table C1-1 and figs. C2-2C, C2-2D). When the measured diversion into Slaughterhouse Slough
is taken into account these values become: July, 121 cfs lower; August, 5 cfs higher; September,
47 cfs higher.

Surface-water temperatures cooled slightly between Parrot Castle and Kountz Bridge during
July, 2014, but there was no systematic warming or cooling during August and September (fig.
C3-2C). This suggests that the river is gaining along this reach since it did not warm due to heat
exchange and solar insolation during the warmest/sunniest time of the year; however, the gains
were also not large enough to cause cooling.

Groundwater elevations at the Kountz Bridge station were consistently higher than stream
elevations (figs. C4-2D, C4-2E). The difference in elevations was smallest during high stream
flows, and greatest during baseflow conditions on the stream. Groundwater elevations also
responded to ice jams on the river during the winter (fig. C4-2D).

Groundwater temperatures at the Kountz Bridge site showed a seasonal signal; however, they did
not approach zero degrees C in the winter (fig. C4-2F). The minimum recorded groundwater
temperature was 4.4°C on 3/9/14. This is consistent with a stream that is gaining since a buffered
seasonal temperature signal is being transmitted to groundwater.

Kountz Bridge to Mayflower Bridge

The Mayflower Bridge gage (site 44) was located 3.3 mi downstream of the Kountz Bridge
station. A monitoring well was also installed at this site (GWIC ID 277286; well 93). Stream
elevations, discharge, and temperature, and groundwater elevations and temperatures were
monitored at this station.
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Stream flows at the Mayflower station in 2014 were generally greater than at the Kountz Bridge
station (table C1-1 and figs. C2-2E, C2-2F). Some portion of this increase is due to the return of
Slaughterhouse Slough to the Jefferson River 0.5 mi above the Mayflower gage. There is a net
loss along this reach during high flows, and net gains occurred during the remainder of the
monitoring period.

Surface-water temperatures showed little change between Kountz Bridge and Mayflower Bridge
during high flows (April to June) in 2014. Surface waters warmed between these sites in July
(fig. C3-2D), consistent with a stream that is losing to neutral.

Groundwater elevations at the Mayflower station remained lower than surface-water elevations
throughout the monitoring period (figs. C4-3A, C4-3B). Groundwater elevations responded to
ice jams in the river during the winter. These observations indicate losing conditions at this
station.

Groundwater temperatures in the Mayflower well showed a seasonal signal, and the minimum
recorded groundwater temperature was 2.3°C on 3/16/14. Groundwater temperatures did not
show dial variations (fig. C4-3C). These observations are consistent with losing conditions at
this station.

Mayflower Bridge to Cardwell

The Cardwell gage (site 50) was installed 4.2 mi downstream of Mayflower Bridge. Tail water
from the Parrot Canal enters the Jefferson River within this reach. A monitoring well was also
installed at the Cardwell site (GWIC ID 277287; well 103). Monitoring included stream
elevations, discharge, and temperature, and groundwater elevations and temperatures. The
stream gage was installed in early April 2014, but was destroyed during high flows in early May.
Subsequently, periodic manual flow and stage measurements were collected through early
November 2014.

Comparison of synoptic flow measurements at Mayflower Bridge and Cardwell shows a
decrease in flow between these stations (table C1-1; figs. C2-3A, C2-3B).

There was no apparent change in stream water temperature between these sites in April and early
May 2014; however, any influence of groundwater inflow would be difficult to detect during
high springtime flows (fig. C3-2E).

Groundwater elevations at the Cardwell site were consistently lower than surface-water
elevations (figs. C4-3D, C4-3E). Groundwater elevations also responded to ice jams. These
findings indicate losing conditions at this site.

Groundwater temperatures show a strong seasonal fluctuation, but they do not show dial

variations and do not approach zero in the winter. This indicates slightly losing conditions at this
site.
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Cardwell to LaHood

The LaHood gage (site 53) was located 1.9 river miles downstream of the Cardwell station.
Stream elevations, discharge and temperature were recorded at this station. Discharge
measurements were made during low flows in 2013; however, due to safety concerns, they were
not collected in 2014.

The Jefterson Slough enters the Jefferson River within this reach. The Jefferson Slough obtains
its water from partial diversion of Slaughterhouse Slough, and inflow from Pipestone Creek,
Whitetail Creek, and the Boulder River (see below). Synoptic flow measurements from
September to October 2013 showed that flow at the LaHood station varied from being less than
the combined inflows to being higher than the inflows. The September to October average
difference (post-irrigation) showed an average net flow increase of 44 cfs (tables C1-1, C1-2, and
CI1-3).

Surface-water temperatures between Cardwell Bridge and LaHood showed warming during
April and May, suggesting groundwater inflow (fig. C3-2F). The longer record comparing
surface-water temperatures at Mayflower to LaHood shows cooling during July, also suggesting
groundwater inflow (fig. C3-3A).

B. Jefferson Slough
The Jefferson Slough begins as a diversion from the Slaughterhouse Slough. Major tributaries to
the Slough include Pipestone Creek, Whitetail Creek, and the Boulder River. Pipestone Creek
flows into Whitetail Creek just above its confluence with the Jefferson Slough.

Slaughterhouse Slough at Kountz Road to Jefferson Slough at Willow Grove

The Willow Grove station (site 36) was 1.7 mi downstream of the Slaughterhouse Slough station
(site 30), and 0.6 mi below the diversion from Slaughterhouse Slough to the Jefferson Slough.
Discharge and temperature were monitored at the Slaughterhouse Slough station by MBMG and
at the Willow Grove station by Confluence. Surface-water temperature comparisons show little
systematic change during April, May, June, and September, likely due to high flows and the
similarity between air and water temperatures. Cooling occurred between these stations in July
and August, and warming occurred in October and November (fig. C3-3B), consistent with
groundwater inflow along this reach.

Willow Brook to Briggs

The Briggs Station (site 39) was 1.2 mi downstream of the Willow Grove station. Whitetail
Creek flows into the Jefferson Slough within this reach, including flow from Pipestone Creek,
which joins Whitetail Creek 0.2 mi above the confluence with the Jefferson Slough. Stream
temperature and discharge were monitored by Confluence at the Briggs station, and in Pipestone
and Whitetail Creeks (sites 37 and 38) above their confluence.

The discharge measured at Briggs during 2014 was often lower than the combined inflows to this
reach; however, flows were similar at times (table C1-3 and figs. C2-3C, C2-3D). These
differences indicate losing conditions.
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Stream temperature can be modeled as a conservative tracer to aid in understanding
groundwater/surface-water interactions. Modeled and observed temperatures are compared in the
same way as upstream and downstream temperatures. The observed flows and temperatures at
the mouth of Pipestone Creek, at the mouth of Whitetail Creek, and of the Jefferson Slough at
Willow Brook were used to model the stream temperature at Briggs Lane. Comparison of the
modeled to observed temperatures at Briggs Lane in 2014 show that the stream warms in July
and August and cools during October and November relative to expected temperatures under
conservative conditions (fig. C3-3E). This indicates the stream is under losing to neutral
conditions along this reach.

Briggs to Tebay Ranch

The Tebay Ranch station (site 41) was 2.1 mi downstream of the Briggs station. The
Yellowstone Trail station (site 40) was located within this reach, 1.1 mi downstream of the
Briggs station. Confluence monitored temperature at the Yellowstone station, and temperature
and discharge at Tebay Ranch.

Flows typically increased between the Briggs and Tebay Ranch stations. At times the gains were
near zero, likely due to irrigation diversions (table C1-3 and figs. C2-3E, C2-3F).

Comparison of temperatures between the Briggs and Yellowstone stations during 2014 showed
slightly cooler temperatures at the Yellowstone station during July and August. Little change was
seen during the rest of the year (fig. C3-3F). These observations indicate a gain along this sub-
reach.

Comparison of temperatures between the Yellowstone and Tebay Ranch stations during 2014
showed that temperatures warmed during the summer and showed little change during the rest of
the year (fig. C3-4A). This suggests a neutral to losing character along this sub-reach.

Comparison of temperatures from the Briggs and Tebay Ranch stations during 2014 showed that
there was much less warming during the summer compared to conditions along the reach
between the Yellowstone and Tebay Ranch stations. This indicates that the upper reach, from
Briggs to Yellowstone, is gaining, and the reach from Yellowstone to Tebay Ranch is losing or
neutral (fig. C3-4B).

Tebay Ranch to Tebay Lane
The Tebay Lane station (site 42) was 1.4 mi downstream of the Tebay Ranch station. MBMG
monitored stream temperature and discharge at the Tebay Lane station.

The change in net flow between these stations was temporally variable, with frequent changes
from a net gain and a net loss; however, the greatest losses occurred at higher flows (table C1-3
and figs. C2-4A, C2-4B).

Comparison of temperatures from the Tebay Ranch and Tebay Lane stations during 2014

showed that there was slight warming between these stations from June to September and show
little change for the rest of the year (fig. C3-4C).
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Tebay Lane to Mulligan

The Mulligan station (site 47) was 2.7 mi downstream of the Tebay Lane station. This reach also
included the 190/MT69 station (site 46), which was 0.2 mi upstream of the Mulligan station.
During 2014, Confluence monitored temperature and discharge at the Mulligan station and
temperature at the 190/MT69 station.

Discharge at the Mulligan station in 2014 was generally similar to or less than the discharge at
Tebay Lane. Flows at these stations were similar to each other in the spring, and there was
generally a net decrease in flow during the irrigation season (table C1-3 and figs. C2-4C and
C2-4D).

Mean daily stream temperatures in 2014 at Tebay Lane and 190/MT69 were similar in July and
August, suggesting that atmospheric warming was offset by groundwater inflows. Additionally,
the amplitude of the dial temperature signal is lower at the [90/MT69 station than at Tebay Lane
(fig. C3-4D).

Temperatures at the Mulligan station were similar to those at Tebay Lane during June and July,
2014, and were warmer than those at Tebay Lane during April and May (fig. C3-4E). These
observations suggest an overall gaining reach.

Mulligan to 359
The 359 station (site 49) was 3.1 mi downstream of the Mulligan station. MBMG monitored
stream discharge and temperature at this station.

Synoptic flow measurements in 2014 generally showed an increase in flow between these sites,
but flow decreased during a few events (table C1-3 and figs. C2-4E, C2-4F). This is likely due to
intermittent events, such as irrigation or mining withdrawals, on a generally gaining reach.

The dial temperature amplitude was lower at the 359 station, with measurable cooling during the
summer and warming during the winter (fig. C3-4F). These observations are consistent with a
gaining reach. Comparison of the Tebay Ranch station to the 359 station (fig. C3-5A), further
supports interpretation of gaining conditions in this portion of the Jefferson Slough.

359 to Mouth

The most downstream station on the Jefferson Slough (site 52; called Boulder River mouth by
Confluence) is 1.3 mi downstream of the 359 station, 0.8 mi downstream of the confluence with
the Boulder River, and 0.9 mi upstream from the mouth. Confluence monitored temperature at
this station during July and August 2014.

Similar to the Briggs station, the combination of temperature at the Jefferson Slough at 359 and
the Boulder River was modeled as a conservative tracer and compared to observed values. This
analysis shows that July and August observed stream temperatures were warmer than modeled,
indicating losing or neutral conditions along this reach (fig. C3-5B).
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C. Other surface waters
Slaughterhouse Slough Parrot Castle to Kountz Road
The Slaughterhouse Slough was monitored for flow and stream temperature where it is diverted
from the Jefferson River at Parrot Castle (site 27), and where it crosses Kountz Road (site 30).
Fish Creek, which flows into Slaughterhouse Slough 0.1 mi below site 27, was also monitored
(site 26).

Data from 2014 show that the combined flow of Slaughterhouse Slough at Parrot Castle and Fish
Creek at Parrot Castle was slightly less than the flow at Kountz Road during much of the year.
While this suggests gaining conditions, June flows decreased between these stations, likely due
to irrigation diversions (figs. C2-8C, C2-8D).

Similar to the Briggs station, the water temperature from Slaughterhouse Slough at Parrot Castle
and Fish Creek at Parrot Castle was modeled as a conservative tracer and compared to observed.
Observed stream temperatures were similar to modeled (fig. C3-7A). Groundwater inflow along
this reach is sufficient to balance heat exchange with the atmosphere and solar insulation.

Pipestone Creek Capp Lane to Mouth

MBMG monitored discharge and stream temperature in Pipestone Creek at Capp Lane (site 33).
Confluence monitored discharge and stream temperature at the mouth of Pipestone Creek (site
37), which is 3.0 mi downstream of Capp Lane.

Discharge measurements from 2014 show that flow increased between these stations and the
largest increase occurred after mid-August (table C1-3 and figs. C2-9A, C2-9B). For example, in
June 2014 average flow increased by 4.4 cfs along this reach, while in September average flow
increased by 10.0 cfs.

Stream temperatures showed a lower amplitude of the dial signal at the mouth station; there was
cooling between these stations in June, July, and August, and warming between them in
November (fig. C3-7C). It appears that this reach of Pipestone Creek is gaining.

Whitetail Creek Salsbury to Cemetery

MBMG monitored discharge and stream temperature in Whitetail Creek at Salsbury (site 34) and
at the Whitehall Cemetery (site 35). The Cemetery station is 4.0 mi downstream of the Salsbury
station.

Discharge measurements at these stations in 2014 showed similar flows from early April to mid-
May, followed by lower flows at the Cemetery for the rest of the year (table C1-3 and figs.
C2-9C, C2-9D). In September, the difference in flow averaged 3.4 cfs. Some portion of this net
loss is likely due to irrigation diversions.

Stream temperatures during 2014 showed warming conditions in July and August, with little

change during the rest of the year (fig. C3-7D), which indicates that this reach is losing or
neutral.
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Whitetail Creek Cemetery to Mouth
Confluence monitored discharge and stream temperature on Whitetail Creek near its mouth (site
38). This station is 1.9 mi downstream of the Cemetery station.

Discharge measurements at these stations show that there is always an increase in flows
between these stations (table C1-3 and figs. C2-9E, C2-9F), indicating a gain along this reach.

Stream temperatures in Whitetail Creek exhibit little change between these stations. This
indicates that groundwater inflows are sufficient to offset by heat exchange with the atmosphere
and solar insolation
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Appendix C3. Surface-Water Temperature Comparisons
Figure C3-1
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Appendix C3. Surface-Water Temperature Comparisons

Figure C3-2
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Appendix C3. Surface-Water Temperature Comparisons
Figure C3-3
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Appendix C3. Surface-Water Temperature Comparisons

Figure C3-4
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Appendix C3. Surface-Water Temperature Comparisons
Figure C3-5
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Appendix C3. Surface-Water Temperature Comparisons
Figure C3-6
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Appendix C3. Surface-Water Temperature Comparisons
Figure C3-7
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Appendix C4. Comparison of Groundwater and Surface-Water Elevations and Temperatures

Figure C4-1
A Hells Canyon
Water Elevations 2014
4556
£
& 4554
<
k)
g
2
w
5 4552
&
=
4550
1/1 3/2 5/2 7/2 9/1 11/1
Well River
B Hells Canyon
Elevation Difference 2014
2
1
51
c
<
L
= 0
c
S
24
-2
1/1 3/2 5/2 7/2 9/1 11/1
Elevation Difference (Well-River)
C Hells Canyon
Temperatures 2014
40
30
20
[e)
< 10
g
=
£ 0
[
o
£ -10
()
2
-20
-30
-40
1/1 3/2 5/2 7/2 9/1 11/1
Whitehall Air River Well

12/31

12/31

12/31

Temperature (°C)

Elevation Difference (ft)

4517

Water Elevation (ft-amsl)

4511

-2

40

30

20

10

4515

4513

1/1

1/1

1/1

Silver Star
Water Elevations 2014

3/2 5/2 7/2 9/1 11/1 12/31

Well River

Silver Star
Elevation Difference 2014

3/2 5/2 7/2 9/1 11/1 12/31

Elevation Difference (Well-River)

Silver Star
Temperatures 2014

3/2 5/2
Whitehall Air

7/2 9/1 11/1

Well

12/31

River

89



Bobst and Gebiril, 2021

90

Appendix C4. Comparison of Groundwater and Surface-Water Elevations and Temperatures
Figure C4-2
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Appendix C4. Comparison of Groundwater and Surface-Water Elevations and Temperatures
Figure C4-3
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix D: Groundwater Hydrographs.
Note that x and y scales vary site to site.
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Appendix E: Surface-Water Hydrographs

Figure E1-1
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Figure E1-2
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Figure E1-3
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Figure E1-4
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Figure E1-5
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Figure E1-6
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Figure E1-7
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Appendix E: Surface-Water Thermographs

Figure E2-1
A Site #1 B Site #2
Jefferson River near Twin Bridges Jefferson River at Hells Canyon
(USGS 06026500) (GWIC 277192)
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Jefferson River at Silver Star Parrot Canal at Waterloo Road
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Appendix E: Surface-Water Thermographs

Figure E2-2
A Site #9 B Site #10
Parrot Canal at Bench Road Parrot Canal at Gornick Road
(GWIC 278796) (GWIC 278798)
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Appendix E: Surface-Water Thermographs

Figure E2-3
A Site #17 B Site #18
Parrot Canal at Hunt's Willow Springs - West Fork
(GWIC 274579) (GWIC 277126)
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Appendix E: Surface-Water Thermographs

Figure E2-4
A Site #25 B _ Site #26
Tunnel Blowout (Parrot) Fish Creek at Parrot Castle
(GWIC 277321) (inflow to Slaughterhouse Slough)
. . (GWIC 278400)
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(GWIC 277194) (GWIC 278354)

T 30 O 30

& &

T 25 ) 25

@ 20 o 20

o} o}

E 15 E 15

2 10 2 10

§ s E s

= +—

g O g O

§ Jan-13  Jul-13 Jan-14 Jul-14 Jan-15 Jul-15 Jan-16 § Jan-13  Jul-13 Jan-14 Jul-14 Jan-15 Jul-15 Jan-16

G Site #31 H Site #32
Jefferson River at Kountz Rd Jefferson Canal at Markowski Rd
(GWIC 277193) (GWIC 274883)

O 30 O 30

& &

o 25 o 25

v 20 © 20

3 35

g 15 ® 15

2 10 g 10

§ s £ 5

+— +—

g O o O

§ Jan-13  Jul-13  Jan-14 Jul-14 Jan-15 Jul-15 Jan-16 § Jan-13  Jul-13 Jan-14 Jul-14 Jan-15 Jul-15 Jan-16

118



Montana Bureau of Mines and Geology Report of Investigation 28

Appendix E: Surface-Water Thermographs
Figure E2-5
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Appendix E: Surface-Water Thermographs

Figure E2-6
A Site #41 B Site #42
Jefferson Slough at Tebay Ranch (Confluence) Jefferson Slough at Tebay Lane
(GWIC 287495) (GWIC 274564)
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Appendix E: Surface-Water Thermographs

Figure E2-7
A Site #49 B Site #50
Boulder Ditch (Confluence) Parrot Canal at Mayflower
(GWIC 287505) (GWIC 274580)
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APPENDIX G
SELECTED SURFACE-WATER QUALITY RESULTS
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