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Table 1. Major oxide and trace element geochemistry.
Sample ID  ES-02  ES-03  ES-05  ES-06  ES-07  ES-08  ES-09*  ES-10  ES-11  ES-12  ES-13 DN-08
Map unit Kcv Kcv Aag Aag Kcv Kcv Kcv Kms Kcv Kcv Kms Kcv

Lithology Dacite lava Dacite lava Gneiss Gneiss Dacite lava Dacite lava Dacite lava
Dacite 

intrusion Dacite lava Dacite lava
Dacite 

intrusion Dacite lava

Latitude (°N)
Longitude(°W)
Major elements (wt%)

SiO2 61.70 63.08 75.81 70.96 62.61 62.99 68.14 62.99 62.34 63.29 62.57 64.13 
TiO2 0.70 0.60 0.41 0.55 0.54 0.54 0.55 0.56 0.54 0.56 0.55 0.57 
Al2O3 16.41 15.50 9.69 13.63 16.61 16.57 14.97 16.55 16.65 16.56 16.61 16.39 
FeO* 5.81 5.74 3.97 3.07 5.05 4.93 4.21 5.16 5.03 5.11 5.12 5.25 
MnO 0.09 0.12 0.03 0.05 0.11 0.10 0.05 0.10 0.11 0.11 0.09 0.06 
MgO 1.91 1.18 2.38 0.48 1.59 1.51 0.39 1.56 1.75 1.45 1.50 0.62 
CaO 4.69 3.81 0.19 1.99 4.47 4.48 4.05 4.51 4.55 4.55 4.43 4.24 
Na2O 3.42 3.33 1.45 3.11 3.98 3.91 3.47 3.91 3.69 3.88 3.89 3.82 
K2O 2.84 3.79 3.91 5.19 2.57 2.75 2.87 2.67 2.63 2.75 2.63 2.91 
P2O5 0.17 0.16 0.04 0.13 0.16 0.16 0.15 0.16 0.16 0.16 0.17 0.17 
Sum 97.73 97.32 97.88 99.18 97.69 97.97 98.85 98.17 97.45 98.41 97.56 98.16 
LOI 1.79 2.19 1.61 0.30 1.62 1.31 0.69 1.36 1.93 0.93 1.94 1.25 
Trace elements (ppm)

Ni+ 4.5 3.3 29.9 4.3 3.0 2.7 9.2 3.8 4.7 4.1 3.0 5.8  
Cr+ 14.3 7.8 7.0 6.9 7.4 7.2 10.5 6.7 6.3 7.3 6.2 4.2  
V+ 101.0 71.4 8.2 25.1 75.5 75.5 62.3 77.4 70.3 79.3 76.3 79.6  
Ga+ 19.5 17.9 15.9 16.5 18.7 18.1 16.9 18.1 18.4 17.7 18.7 18.7  
Cu+ 10.7 12.5 60.1 1.4 8.5 7.4 10.0 8.7 7.4 7.7 8.6 6.9  
Zn+ 81.4 67.5 15.1 48.6 72.6 73.1 40.4 73.5 74.9 74.6 73.9 80.2  
La 44.7 39.5 80.0 64.9 37.3 37.2 38.3 37.4 38.8 40.1 36.3 37.5  
Ce 82.5 72.8 151.2 131.8 69.1 68.9 71.3 69.7 72.9 73.9 67.8 68.1  
Pr 9.6 8.3 17.2 14.2 7.8 7.9 8.0 8.0 8.3 8.4 7.8 7.8  
Nd 35.2 30.6 62.3 49.1 28.8 28.8 28.7 29.3 30.4 30.9 28.5 28.7  
Sm 7.0 5.9 11.9 9.6 5.6 5.6 5.5 5.8 6.0 5.9 5.5 5.6  
Eu 1.8 1.5 2.7 2.2 1.5 1.5 1.4 1.5 1.5 1.6 1.6 1.5  
Gd 6.0 5.2 9.7 8.6 5.0 5.0 4.7 5.0 5.3 5.3 4.9 4.8  
Tb 1.0 0.9 1.5 1.6 0.8 0.8 0.8 0.8 0.9 0.9 0.8 0.8  
Dy 5.7 5.2 9.0 10.1 5.0 5.1 4.4 5.0 5.3 5.3 4.9 4.7  
Ho 1.1 1.0 1.8 2.2 1.0 1.0 0.9 1.0 1.1 1.1 1.0 1.0  
Er 3.0 2.8 5.2 6.3 2.8 2.8 2.4 2.8 3.0 2.9 2.8 2.7  
Tm 0.4 0.4 0.8 1.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4  
Yb 2.7 2.7 5.2 6.4 2.7 2.7 2.2 2.7 2.8 2.8 2.7 2.5  
Lu 0.4 0.4 0.8 1.0 0.5 0.4 0.4 0.4 0.5 0.5 0.4 0.4  
Ba 1063.6 1366.8 1534.0 1366.4 1295.6 1307.3 1294.6 1287.4 1325.3 1353.9 1294.4 1371.3  
Th 9.2 8.8 30.5 24.8 8.6 8.6 9.4 8.6 8.5 9.0 8.3 8.5  
Nb 13.0 12.4 23.5 27.2 13.6 13.7 13.6 13.5 13.7 13.6 13.4 13.8  
Y 29.1 27.2 44.7 57.6 27.0 26.9 23.7 26.8 27.6 28.2 25.8 25.1  
Hf 6.5 6.0 19.5 11.3 5.8 5.8 5.8 5.5 5.6 6.0 5.6 5.9  
Ta 0.9 0.8 0.9 2.1 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9  
U 2.1 1.6 2.4 1.8 2.3 2.8 2.1 2.0 2.3 2.3 1.8 1.9  
Pb 19.9 17.3 18.7 35.7 20.5 21.2 22.8 20.0 21.5 20.9 20.1 18.9  
Rb 80.6 96.3 62.5 213.5 78.7 75.8 82.2 75.7 103.0 76.0 74.1 80.2  
Cs 0.7 0.5 0.3 1.0 1.8 1.6 1.4 1.3 2.1 1.5 1.3 1.4  
Sr 415.8 463.1 31.6 100.9 553.2 554.2 519.5 520.3 567.5 562.3 517.6 551.0  
Sc 11.6 11.4 3.8 5.6 9.3 9.4 8.0 9.4 9.2 9.9 9.3 9.6  
Zr 253.4 237.5 750.6 418.0 227.7 227.5 231.3 214.4 223.9 237.2 221.7 234.3  

Note. All major elements and trace elements denoted by + were analyzed by XRF, all other trace elements were measured by ICP-MS. FeO* indicates all Fe expressed as Fe2+. LOI is loss on ignition. All 
samples analyzed by X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) at the Washington State University GeoAnalytical Lab. Latitudes and longitudes are in the 1984 
World Geodetic Survey (WGS84) datum.
*clast from volcanic breccia.

45.1008 45.1021 45.0170 45.0081 45.0746 45.0768 45.1109 45.1118 45.0902 45.0971 45.1224 45.1023
112.9344 112.9730 112.8939 112.8908 112.8944 112.8842 112.9265 112.9045 112.9043 112.8955 112.9025 112.8863

Sample Lithology Unit Latitude 
(°N)

Longitude 
(°W)

# of spot 
analysesa

Age 
(Ma)

2σ MSWD

DN-08 Pumice-lithic tuff Kcv 16 71.8 0.6 1.0
ES-01 Rhyolitic tuff Kgt 10 74.7 1.2 2.0
ES-03 Dacite lava Kcv 10 72.5 0.8 1.1
ES-08 Dacite lava Kcv 20 72.0 0.5 0.7
ES-12 Dacite lava Kcv 19 72.6 0.5 1.0

Table 2. U-Pb zircon geochronology.

Note. Reported ages are the weighted mean of the 207Pb corrected 206Pb/238U ages obtained for 
each sample. MSWD is the Mean Square Weighted Deviation. Zircon separates were prepared at
MBMG and analyzed by LA-ICPMS at the University of California, Santa Barbara. Latitudes and
longitudes are in the 1984 World Geodetic Survey (WGS84) datum.
anumber of spot analyses used to calculate weighted mean age.

45.1023 112.8863
45.1171 112.9546
45.1021 112.9730
45.0768 112.8842
45.0971 112.8955

Table 3. (U-Th)/He apatite and zircon thermochronology data.
Sample ID Mineral Map 

unit
Latitude 

(°N)
Longitude 

(°W)
Elevation 

(m)
Mass 
(μg)

Rs 
(μm)

eU 
(ppm)

U 
(ppm)

Th 
(ppm) (nmol/g)

Ft
238U

Ft
235U

Ft
232Th

Ft
147Sm

Corrected 
age (Ma)

2σ ± age 
(Ma)

Sample DN-48:
DN48_a1 apatite Aag 1,927 2.0 65.4 36 36 1 10 0.779 0.748 0.748 0.929 68.0 2.0
DN48_a2 apatite Aag 1,927 1.4 50.3 54 54 1 17 0.718 0.680 0.680 0.909 79.9 2.4
DN48_a3 apatite Aag 1,927 1.6 54.0 62 62 2 16 0.736 0.700 0.700 0.915 64.4 1.9
DN48_a4 apatite Aag 1,927 1.2 51.5 58 58 2 14 0.724 0.687 0.687 0.911 61.8 2.0
DN48_z1 zircon Aag 1,927 2.4 41.6 608 583 104 571 0.715 0.675 0.675 0.909 239.7 6.9
DN48_z2 zircon Aag 1,927 3.7 50.3 482 469 53 373 0.760 0.726 0.726 0.924 186.5 5.7
DN48_z3 zircon Aag 1,927 4.5 55.3 504 476 116 447 0.781 0.749 0.749 0.931 208.1 6.2

0.0Sample ES-06:
ES06_a1 apatite Aag 1,825 12.0 76.6 251 196 236 95 0.810 0.783 0.783 0.939 86.1 2.0
ES06_a2 apatite Aag 1,825 3.5 58.4 294 229 274 104 0.754 0.721 0.721 0.921 86.9 2.0
ES06_a3 apatite Aag 1,825 1.0 81.2 144 116 121 52 0.820 0.794 0.794 0.942 81.0 1.9
ES06_a4 apatite Aag 1,825 8.5 76.2 186 157 126 73 0.809 0.782 0.782 0.939 88.7 2.1
ES06_a5 apatite Aag 1,825 5.1 69.9 257 181 325 93 0.792 0.763 0.763 0.934 84.5 1.9
ES06_z1 zircon Aag 1,825 25.0 94.6 360 324 150 460 0.868 0.848 0.848 0.959 268.0 7.1
ES06_z2 zircon Aag 1,825 5.1 52.4 275 235 170 455 0.769 0.736 0.736 0.927 388.7 10.3
ES06_z3 zircon Aag 1,825 17.0 77.9 306 273 143 481 0.841 0.818 0.818 0.950 337.5 9.0
ES06_z4 zircon Aag 1,825 7.3 59.3 229 201 117 413 0.795 0.765 0.765 0.935 409.4 10.9
ES06_z5 zircon Aag 1,825 13.0 65.7 456 402 231 502 0.814 0.786 0.786 0.941 246.5 7.0

Sample ES-05:
ES05_z1 zircon Aag 1,800 1.8 36.6 214 196 79 482 0.680 0.636 0.636 0.896 588.1 16.3
ES05_z2 zircon Aag 1,800 2.1 43.5 281 235 198 374 0.726 0.687 0.687 0.912 333.3 8.4
ES05_z3 zircon Aag 1,800 1.7 35.8 241 219 94 330 0.673 0.629 0.629 0.894 368.8 10.0
ES05_z4 zircon Aag 1,800 2.0 37.5 370 324 197 570 0.686 0.643 0.643 0.899 405.9 10.7
ES05_z5 zircon Aag 1,800 3.1 44.7 261 236 106 518 0.733 0.695 0.695 0.915 484.7 13.4

4He 

Note. Samples were prepared at the MBMG and analyzed at the University of  Arizona, Tucson following established lab protocols. Rs is the radius of a sphere with an 
equivalent surface area to voume ratio as the crystal (mass-weighted radius for multi-grain aliquots). Ft is the alpha ejection correction. 2s is one-sigma error.
Latitudes and longitudes are in the 1984 World Geodetic Survey (WGS84) datum.
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Figure 2. Probability density plots of the 207Pb corrected 206Pb/238U (<1,400 Ma) and 
207Pb/206Pb (>1,400 Ma) zircon ages from metamorphic, volcanic, and sedimentary 
rock samples. (A) Inherited zircon ages from Cretaceous igneous rocks (samples 
ES-01, ES-03, ES-08, ES-12, and DN-08). (B) Detrital zircon ages from a sand-
stone in the Upper Beaverhead Group (Kbeu). (C–E) Zircon ages from the 
Armstead Gneiss (Aag).

Figure 3. HeFTy inverse model of apatite and zircon (U-Th)/He age data from a gneiss in the 
Armstead Anticline (sample ES-06). The model starts and ends with a temperature window 
between 0°C and 40°C ca. 530–480 Ma and 0 Ma. Additional time-temperate model 
constraints were imposed at 120–200°C ca. 110–60 Ma, and 30–80°C ca. 100–50 Ma. The 
results are colored by Goodness of Fit (GOF) statistical modeling (model age vs. measured 
age). The gray envelope shows acceptable-fit paths (GOF = 0.05 to 0.5); the pink envelope 
shows good-fit paths (GOF > 0.5); the purple line is the weighted mean path, and the black 
line is the best-fit model path. See Appendices C and D for supporting information. 

Figure 4. Whole-rock geochemical data from Cretaceous volcanic rocks. (A) Total 
alkali silica classification diagram (after Le Bas and others, 1986). Plotted values 
are normalized to 100 percent. (B) Chondrite-normalized rare earth element plot 
(after Sun and McDonough, 1989).
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Figure 5. Lower-hemisphere projection of poles to bedding and foliation measurements. The data 
are plotted on equal-area stereonets and fit with Kamb contours. The great circles represent the 
cylindrical best fit with the corresponding fold hinges marked by black dots labeled by plunge and 
trend. (A) Metamorphic foliations in the Armstead Gneiss (Aag). The distribution shows most 
foliations dip southwest with some folding about an axis plunging gently to the northwest 
(06°/320°). (B) Bedding measurements acquired in the Paleozoic through Late Cretaceous units. 
The distribution reflects folding about an axis plunging gently northwest (02°/334°).
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Figure 1. Derivative geologic map of the Dillon area overlaid on a shaded digital 
elevation model (DEM). The large box shows the boundary of the Dillon 30' x 60' 
quadrangle, and the small box shows the location of the Eli Spring 7.5' 
quadrangle.

PHYSIOGRAPHIC AND TECTONIC SETTING

The Eli Spring 7.5' quadrangle is located in Beaverhead County, approximately 28 km (17.4 mi) southwest of Dillon, MT, 
and 1.5 km (0.9 mi) north of Clark Canyon Reservoir (fig. 1). The quadrangle covers part of the Armstead Hills in the 
northern Tendoy Mountains, a region characterized by moderate relief and elevations ranging from 1,677–2,306 m 
(5,500–7,567 ft). Tilted Paleozoic strata generally form resistant, north-northwest trending ridges that rise above the 
recessive Archean basement and Cretaceous volcanogenic and sedimentary units. Bedrock exposure is excellent with 
minimal vegetative cover.

The map is located near the leading edge of the Cordilleran fold-thrust belt in an area an area of presumed overlap 
between thin- and thick-skinned contractional structures (e.g., Johnson, 1986; Johnson and Sears, 1988). Local crustal 
shortening in the Armstead Hills was synorogenic with Late Cretaceous magmatism and associated sedimentation (e.g., 
Kalakay, 2001) that accompanied the eastward migration of the Cordilleran magmatic front (e.g., Decelles, 2004). 
Extensional faults overprint the older contractional structures in the Armstead Hills and appear to have been 
contemporaneous with local Cenozoic magmatism recorded by the local Dillon Volcanic Group (e.g., Fritz and others, 
2007). Archean basement rock exposed in the quadrangle is near the junction of several postulated basement terranes 
including the Wyoming Province, Archean Medicine Hat block, Paleoproterozoic Great Falls Tectonic Zone, and the 
Mesoproterozoic Belt Basin (e.g., Foster and others, 2012).

GEOLOGIC SUMMARY

The oldest rock in the map is a heterogeneous assemblage of Archean gneiss and high-grade metasedimentary sequences 
collectively mapped as the Armstead Gneiss (Aag). This metamorphic assemblage provides a record of temporally distinct 
tectonothermal events circa ~2.7 Ga, ~2.5–2.4 Ga, and ~1.8 Ga. A sequence of Paleozoic–Triassic carbonates and 
interbedded siliciclastic rocks (_f–J^ed) over ~1.5 km thick (4,920 ft) rests on a nonconformable contact cutting the 
Archean metamorphic rocks. These sedimentary sequences record several marine incursions across the western edge of 
the North American Craton. Overlying Late Cretaceous sedimentary strata (Kk) mark the transition from marine to 
continental sedimentation during the late Mesozoic, presumably in the foreland of the Cordilleran fold-thrust belt (e.g., 
Decelles, 2004). Younger synorogenic sedimentary deposits (Kbel and Kbeu) and intercalated volcanic units (Kgt, Kcv, 
and Kms) record the onset of local thrust-belt deformation and contemporaneous magmatism in the Eli Spring quadrangle.

Cordilleran thrust-belt structures in the map comprise northwest-striking contractional faults and east-verging folds in the 
Cambrian through Late Cretaceous sedimentary and igneous units, and involve crystalline basement rocks (Aag) exposed 
in the core of the Armstead Anticline. The shortening structures formed in the hanging wall of the Armstead Thrust Fault 
to which they are structurally linked (fig. 1; Coryell, 1983; Johnson, 1986; Mosolf, in prepa.). New geothermochronology 
constraints reported herein indicate the thrust-belt structures were active circa ~100–66 Ma. 

Extensional structures overprint and reactivate the older thrust-belt structures. Poorly lithified Tertiary sedimentary 
deposits (Tml) exposed in the southwestern part of the map area were coeval with extensional faulting during 
Eocene–Oligocene time, accumulating in a half-graben formed by the Muddy–Grasshopper Fault (VanDenburg and 
others, 1998). Thin intervals of ostensibly younger gravel deposits (Tsc) blanket the central part of the map area. 

Extensive Quaternary deposits of alluvium, colluvium, and talus cover the bedrock locally. Landslide deposits occur 
throughout the map area, most of which are formed in Cretaceous volcanic and Tertiary sedimentary deposits. The area 
was not glaciated. 

PREVIOUS MAPPING

Parts of the Eli Spring 7.5' quadrangle are included in a small-scale map by Ruppel and others (1993, scale 1:250,000) and 
larger-scale maps by Lowell (1965, scale 1:31,680), Coryell (1983, scale 1:12,000), Johnson (1986; scale 1:24,000), and 
Kalakay (2001). Mapping of the Late Cretaceous volcanic stratigraphy is based on work by Ivy (1988). The Tertiary 
sedimentary stratigraphy is correlated to units mapped in the adjacent Salmon 30' x 60' quadrangle (Lonn and others, 
2019). Unit descriptions and thicknesses for the Paleozoic and Mesozoic stratigraphy are adapted from Coryell (1983) and 
Tysdal (1988). Unit descriptions of the Precambrian units are modified from Young (1982).

METHODS

Field mapping

Geologic mapping in the Eli Spring 7.5' quadrangle was conducted over one field season in 2018 (3.5 mo) as part of the 
U.S. Geological Survey STATEMAP program. The quadrangle was chosen to investigate the style and tempo of 
thrust-belt deformation and coeval magmatism, utilizing a combination of field and analytical techniques. A 
1:24,000-scale topographic base and high-resolution satellite imagery were used for field mapping. Structure and 
observational data were located using a handheld GPS device; structure data were measured with a traditional hand transit 
or electronic mobile device. Field sheets were scanned and georegistered in ArcGIS. The geologic data were subsequently 
digitized to a geodatabase template provided by the National Cooperative Geologic Mapping Program. 

Major and trace element chemistry, U-Pb geochronology, and (U-Th)/He thermochronology

Rock samples collected for whole-rock geochemistry, U-Pb geochronology, and (U-Th)/He thermochronology were 
crushed at the MBMG mineral separation laboratory. For geochemical analyses, a ~100–200 g split of the crushed materi-
al was prepped and analyzed by X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) 
at the Peter Hooper GeoAnalytical Lab, Washington State University, Pullman. Apatite and zircon were isolated from 
select specimens using standard pulverizing, density, and magnetic separation techniques at the MBMG mineral separa-
tion laboratory. U-Pb dating of zircon separates by Laser Ablation ICP-MS was done at the University of California, Santa 
Barbara. Zircon and apatite separates selected for thermochronology investigations were further prepped at the Arizona 
Radiogenic Helium Dating Laboratory and analyzed by Solution Sector ICP-MS.

Whole-rock chemical data are provided in table 1 and appendix A. All Laser Ablation ICP-MS geochronology data are 
provided in appendix B. The weighted mean of the 207Pb corrected 206Pb/238U zircon ages from igneous samples are 
reported in table 2; 206Pb/238U (<1,400 Ma) or 207Pb/206Pb (>1,400 Ma) age distributions for sedimentary and metamorphic 
rocks are shown in figure 2. (U-Th)/He thermochronology results are summarized in table 3 and the associated analytical 
data are provided in appendices C and D. HeFTy modeling software (Ketcham, 2005, 2017) was used to create an inverse 
thermal model of the low‐temperature thermochronological data (fig. 3). A description of all laboratory and modeling 
methods accompanies each respective appendix. All data appendices are available for download from the MBMG website.

Kgt Grasshopper Creek tuff (Late Cretaceous)—White, light gray, yellowish gray, and pale red deposits of 
thin-bedded, vitric tuff and massively bedded, crystal-lithic rhyolite tuff. Contains varying proportions of 
sanidine, quartz, and plagioclase crystals, and accidental fragments of volcanic and sedimentary rock in a 
matrix of glass shards that are mostly zeolitized and silicified. Commonly exhibits compaction foliation 
formed by the collapse of pumice fragments; strongly welded intervals occur locally. A sample collected in 
the Eli Spring 7.5' quadrangle yielded a U-Pb zircon age of 74.7 ± 1.2 Ma (table 2), and a sample collected 
in the adjacent Bannack quadrangle yielded a U-Pb age of 73.3 ± 0.6 Ma (Mosolf, in prepb). Kalakay (2001) 
reported a SHRIMP U-Pb zircon age of 75.1 ± 1.1 Ma for this unit. Thickness as much as 300 m (1,000 ft). 

MESOZOIC SEDIMENTARY ROCKS

Triassic through Late Cretaceous sedimentary strata record sedimentation in shallow marine and marginal-marine 
environments (J^ed) followed by extensive continental sedimentation (Kk, Kbel, and Kbeu) linked to the growth 
and eastward propagation of the Cordilleran fold-thrust belt. Clast compositions and detrital zircon of the 
Beaverhead Group (Kbel and Kbeu) indicate these synorogenic deposits were derived from the erosion of 
Proterozoic–Paleozoic formations exhumed in the hinterland of the Cordilleran fold-thrust belt (fig. 2B) with max 
depositional ages spanning approximately 77.9–65.9 Ma (Laskowski and others, 2013; Garber and others, 2020). 
The stratigraphic subdivisions of the Beaverhead Group are inconsistent in the literature, due in part to the 
correlation of lithologically complex and laterally discontinuous units. Informal subdivisions used in this map follow 
the nomenclature defined by Lowell (1965) and Johnson (1986). 

Kbeu Beaverhead Group, upper (Late Cretaceous—Paleocene?)—Poorly lithified, clast-supported 
conglomerate beds composed of well-rounded and imbricated pebbles and cobbles. Approximately 50–80 
percent of conglomerate clasts are red to maroon weathering quartzite derived from the Belt Supergroup and 
the remainder are Paleozoic limestone, quartzite, chert, and rare dacite–andesite clasts that are deeply 
weathered. Conglomerate beds are 10–100 cm thick and have tabular and lenticular geometries. Sample 
ES-14 yielded a broad distribution of detrital zircon ages with prominent peaks at ~360–600 Ma, 
~900–2,100 Ma, and ~2,200–2,900 Ma (fig. 2B). While no Cretaceous ages were recovered from sample 
ES-14, detrital zircon max depositional ages of 65.9 ± 1.3 and 71.6 ± 3.4 Ma were reported for the upper 
Beaverhead Group in the adjacent Dalys and Bannack 7.5' quadrangles, respectively (Laskowski and others, 
2013; Garber and others, 2020). Thickness as much as 400 m (1,300 ft).

Kbel Beaverhead Group, lower (Late Cretaceous)—Reddish brown to gray weathering, clast-supported 
conglomerate consisting of 1–10 m thick (3–33 ft) beds of subangular to rounded pebbles and cobbles. 
Clasts are mostly derived from Mississippian limestone with some quartzite clasts (<10 percent). Minor 
interbeds of sandstone are composed primarily of carbonate-cemented, medium- to coarse-grained quartz 
and chert sand. Underlain by a discontinuous andesite tuff in the adjacent Bannack 7.5' quadrangle that 
yielded a U-Pb zircon age of 79.3 ± 1.3 Ma (Murphy, 2000; Kalakay, 2001). Laskowski and others (2013) 
reported a detrital zircon max depositional age of 77.9 ± 1.3 Ma for a sample collected in the Bannack 
quadrangle. Thickness as much as 900 m (2,950 ft).

Kk Kootenai Formation, undivided (Late Cretaceous)—Three informal members (lower, middle, and upper) 
of the Kootenai Formation have been previously described in the nearby Blacktail Mountains (Tysdal, 1988), 
but only the middle and lower members are exposed in the map. The middle member is 120 m (400 ft) thick 
and is composed of reddish orange to maroon mudstone, siltstone, and minor sandstone, all of which are 
poorly exposed and form red weathering slopes. The lower member is 30–60 m thick (100–200 ft) and 
consists of white, medium-bedded, poorly cemented quartz sandstone and pebble conglomerate containing 
white quartz and black chert clasts; these intervals commonly form resistant ridges. The Kootenai Formation 
is eroded or covered by Quaternary deposits locally; minimum thickness is estimated to be approximately 50 
m (165 ft) where overlain by Kbel, and 150 m (490 ft) in the Hans Peterson Flats in the southwestern corner 
of the map. 

J^ed Swift and Dinwoody Formations, undivided (Jurassic–Triassic)

Swift Formation (Jurassic)—Green gray to pale green interbeds of marl, conglomerate, and shale. 
Fine-grained, laminated marl beds are 2–20 cm thick (1–8 in) and contain glauconite and occasional chert 
fragments. Conglomerate intervals are composed of poorly sorted pebble-sized clasts of quartz, black chert, 
green shale, and fossiliferous limestone in a calcareous to argillaceous matrix. Planar interbeds of red brown, 
argillaceous shale are 2–5 cm thick (1–2 in). Thickness as much as 13 m (42 ft).

Dinwoody Formation (Triassic)—Interbedded shale, limestone, and calcareous sandstone characterized by 
platy, thinly laminated beds that weather a distinctive chocolate brown to light gray. The upper part of the 
formation is composed of interbedded shale and calcareous sandstone beds and massive, gray weathering 
carbonate intervals. The lower part of the formation consists mostly of olive fissile shale interbedded with 
dark brown, silty limestone beds. Thickness as much as 200 m (655 ft).

PALEOZOIC SEDIMENTARY ROCKS

Mississippian through Permian strata exhibit marine and marginal-marine facies that record multiple marine 
incursions into southwest Montana. Previous work inconsistently refers to the Mississippian units as either the 
Snowcrest Range Group or the Amsden Formation and Big Snowy Group. The Snowcrest Range Group is adopted 
here (after Wardlaw and Pecora, 1985), which includes the Conover Ranch, Lombard, and Kibbey Formations. 

Pp Phosphoria Formation (Late Permian)—From top to bottom, the formation includes interbedded 
yellowish brown, fine- to medium-grained glauconitic quartz sandstone; dark gray to black finely layered 
phosphatic mudstone; light gray dolomite that contains nodular chert and chert stringers; pale brown 
phosphatic mudstone; and pale brown, thin-bedded mudstone and interbedded sandstone. Bed thickness 
ranges from 10–35 cm (4–14 in) in dolomites, and 5–35 cm (2–14 in) in cherts and sandstones. Chert-rich 
intervals form resistant outcrops, otherwise recessive and poorly exposed. Thickness is approximately 100 m 
(350 ft). 

Pq  Quadrant Formation (Pennsylvanian)—Light gray to light yellowish brown, fine- to medium-grained, 
medium- to thick-bedded, vitreous, quartz sandstone. Trough crossbedding is common. Forms resistant 
ridges and cliffs that are typically covered with conifers. As thick as 300 m (985 ft).  

PMsr Snowcrest Range Group, undivided (Late Mississippian to Pennsylvanian)—Interbedded mudstone, 
siltstone, sandstone, and carbonate composing the Conover Ranch, Lombard, and Kibbey Formations; 
mapped as one unit. The thickness of individual formations was undetermined; total group thickness 
estimated to be 290–300 m (950–985 ft).

Conover Ranch Formation—Thin-bedded, red calcareous mudstone with minor interbeds of limestone, 
calcareous sandstone, and siltstone. Contains a medium-bedded, limestone pebble conglomerate interval at 
the base. Poorly exposed and commonly forms a slope beneath the Quadrant Formation. 

Lombard Formation—Mapping by Tysdal (1988) and a restoration of a deformed section by Pecora (1981) 
show the formation to consist of three informal members in the nearby Blacktail Mountains. The upper 
member is pale brown to gray, thin- to thick-bedded crinoidal limestone and dark gray limey shale. The 
middle member is composed of pale brown to light gray, thin- to thick-bedded limestone; interbeds of 
siltstone and claystone; and a discontinuous bituminous coal seam. The lower member is olive gray to pale 
red purple, thin- to thick-bedded limestone with ostracod-rich horizons. Contains detachment folds locally. 

Kibbey Formation—Pale yellow, yellowish orange, and reddish brown thin-bedded argillaceous 
fine-grained quartz sandstone. Lower sandstone beds contain black chert grains. Poorly exposed and 
generally forms slopes beneath the Lombard Formation. 

Mmc Mission Canyon Formation (Mississippian)—Light gray, medium- to thick-bedded and locally massive 
limestone, oolitic limestone, and dolomitic limestone. Contains zones of evaporate-solution breccia and 
intervals of bioclastic debris consisting of crinoids, bryozoans, and brachiopods. Chert stringers are common 
and often coincide with bedding planes. Forms prominent outcrops and cliffs. Thickness estimated to be 400 
m (1,310 ft). 

Ml Lodgepole Formation (Mississippian)—Light to dark gray, thin- to medium-bedded limestone, mudstone, 
and red calcareous siltstone. Beds are planar to undulose and rhythmically bedded. The formation is 
abundantly fossiliferous, including bioclasts of crinoids, bryozoans, and brachiopods. Forms outcrops on 
steep slopes. Thickness estimated to be 370 m (1,210 ft).

MDtj Three Forks and Jefferson Formations, undivided (Mississippian and Devonian)—Interbedded shale, 
sandstone, limestone, and dolomite. Mapped as a single unit. Total thickness estimated to be 170 m (560 ft). 

Three Forks Formation (Mississippian and Devonian)—Brown, argillaceous, fossiliferous limestone 
interlayered with black to dark gray, carbonaceous shale, grayish green slaty shale, and light tan, silty 
sandstone. Recessive and mapped on the basis of float. Thickness approximately 30 m (100 ft).

Jefferson Formation (Devonian)—Dark gray to brown, coarsely crystalline, medium- to thick-bedded 
dolomite with thin interbeds of yellowish brown calcareous siltstone. Dolomite beds emit a strong 
petroliferous odor. Algal laminations occur near the base of the formation and flat pebble conglomerate 
occurs near the top. Contains some soft sediment deformation. White and orange lichen grow on rock 
outcroppings. Thickness is approximately 140 m (460 ft). 

Ch Hasmark Formation (Late Cambrian)—Light gray to white, thin- to thick-bedded, crystalline dolomite 
with minor shale and limestone intervals. Weathers to a conspicuous light gray to pale brown color with a 
gritty, laminated surface. Forms ridges and cliffs. Thickness is approximately 70–80 m (230–260 ft).
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DESCRIPTION OF THE MAP UNITS

The map shows rock units exposed at the surface or underlain by a thin surficial cover of soil and colluvium. Surficial 
sedimentary and mass movement deposits are shown where they are thick and extensive enough to be mapped at 
1:24,000-scale. Igneous rocks and metamorphic rocks are classified using the International Union of Geological Sciences 
nomenclature (Le Bas and Streckeisen, 1991; Schmid and others, 2007). Minerals in igneous and metamorphic rock units are 
listed in order of decreasing abundance. Grain size classification of unconsolidated and consolidated sediment is based on the 
Wentworth scale (Lane, 1947). Multiple lithologies within a rock unit are listed in order of decreasing abundance. 

ANTHROPOGENIC DEPOSITS

md  Mining dumps (Quarternary: Holocene)—Artificial fill composed of excavated, transported, processed, and 
emplaced rock and gravel. Consists mainly of dredged placer workings and dumps from lode mines. 

ALLUVIAL AND COLLUVIAL DEPOSITS

Grasshopper Creek, in northeastern corner of the quadrangle, is the only perennial stream in the map area and flows eastward 
towards its confluence with the Beaverhead River. Alluvial deposits along Grasshopper Creek have been extensively mined 
for placer gold in the Armstead Hills region. Widespread colluvium and talus piles cover the bedrock geology locally. 

Qal Alluvium (Quaternary: Holocene)—Poorly sorted gravel, sand, silt, and clay along streams and their tributaries. 
Clasts are generally cobble size and smaller, and are subrounded to rounded. Thickness generally less than 6 m (20 ft).

Qac  Alluvium and colluvium (Quaternary: Holocene)—Gravel, sand, and silt deposited by sheetwash alluvium and 
incorporated with locally derived colluvium. Commonly deposited in ephemeral stream drainages. Thickness 
generally less than 6 m (20 ft).

Qta Talus (Holocene and Pleistocene)—Unconsolidated, locally derived, apron-like deposits with angular clasts on and 
below steep slopes. Includes some rock-slide deposits. Variable thickness, generally less than 10 m (33 ft).

MASS WASTING DEPOSITS

Qls Landslide deposit (Quaternary: Holocene)—Unstratified, poorly sorted rock fragments deposited by slumps, slides, 
and debris flows. Typically characterized by hummocky topography and subdued landslide scarps. Most common in 
Cretaceous volcanic and Tertiary sedimentary deposits. Variable thickness, generally less than 30 m (100 ft).

TERTIARY SEDIMENTARY DEPOSITS

The oldest Tertiary sedimentary deposits (Tml) occur in the southwestern part of the map and are equivalent to the 
Eocene–Oligocene Medicine Lodge beds in the adjacent Salmon 30' x 60' quadrangle based on extent and lithological 
similarities (Lonn and others, 2019). These sedimentary accumulations are composed of poorly consolidated gravels 
interpreted to be proximal fluvial and debris flow deposits formed in alluvial fans. The Medicine Lodge beds likely 
accumulated in an extensional half-graben (proto-Medicine Lodge basin) that was structurally controlled by the 
Muddy–Grasshopper Fault (VanDenburg and others, 1998). Relatively thin and seemingly younger intervals of 
unconsolidated gravel (Tsc) rest on an unconformity truncating the Cretaceous and older map units in the central part of the 
quadrangle; these deposits are tentatively correlated to the Sixmile Creek Formation (Sears, 2007).

Tsc Sixmile Creek Formation, undivided (late to middle Miocene)—Thin, unconsolidated deposits of subrounded to 
rounded pebbles and cobbles. Clasts include quartzite derived from the Mesoproterozoic Belt Supergroup, Paleozoic 
limestone, Paleozoic quartzite, and volcanic and intrusive rock fragments. Clasts are likely recycled from the 
Beaverhead Group on the basis of rounding and clast composition. Poorly exposed with no discernable bedding or 
sedimentary structures. Thickness as much as 120 m (400 ft). 

Tml Medicine Lodge beds (Eocene–Oligocene?)—Poorly consolidated gravel deposits consisting of subangular, pebble 
to cobble clasts of Mississippian limestone and quartzite. Poorly sorted with no discernable sedimentary structures. 
Thickness unknown. 

EOCENE VOLCANIC ROCKS

A small outcrop of basalt unconformably resting on the northeastern limb of the Armstead Anticline was the only Tertiary 
volcanic unit identified in the map. Correlative Eocene–Oligocene basalt flows (Dillon Volcanic Group) in the adjacent Dalys 
7.5' quadrangle exhibit high-K calc-alkaline signatures and are enriched in trace elements indicative of an active plate margin 
modified by subduction processes (Mosolf, 2016). 

Tba  Basalt lavas (Tertiary: Eocene–Oligocene)—Dark gray to black basaltic lava flows that are slightly porphyritic 
containing <10 percent phenocrysts of olivine, clino-, and orthopyroxene with occasional plagioclase. In thin section, 
the groundmass has a trachytic texture consisting of aligned microlites of plagioclase, with some olivine and 
pyroxene. Thickness less than 30 m (100 ft). 

LATE CRETACEOUS IGNEOUS ROCKS

The oldest igneous rocks in the map are Late Cretaceous lavas, volcanic breccias, tuff deposits, and subvolcanic intrusions, 
all of which have intermediate to evolved compositions (fig. 4; table 1). These units generally exhibit high-K, calc-alkaline 
compositions and are enriched in incompatible elements indicative of subduction zone magmatism. The assimilation of 
country rock by parental melts is supported by significant zircon inheritance (fig. 2A), as well as the entrainment of mid- to 
lower-crustal xenoliths in hypabyssal intrusions and lava flows (e.g., Mosolf, in prepb). The extrusive volcanic units are 
intercalated with sedimentary strata of the Beaverhead Group and together are deformed by contractional structures.

Kms McDowell Springs granodiorite (Late Cretaceous)—Gray green to brown weathering granodiorite porphyry 
(63.0–62.6 wt. percent SiO2; table 1) containing phenocrysts of plagioclase, pyroxene, biotite, hornblende, and rare 
quartz in a groundmass of plagioclase and altered mafic microlites with abundant magnetite. Exhibits flow banding 
and columnar jointing locally, and commonly forms sheet-like bodies up to 300 m thick (985 ft). Weathers to 
prominent buttes and hoodoos locally. Two samples collected in the adjacent Bannack 7.5' quadrangle yielded U-Pb 
zircon ages of 71.9 ± 0.7 and 71.8 ± 0.5 Ma (Mosolf, in prepb). 

Kcv Cold Spring Creek volcanic group (Late Cretaceous)—Complex, intertonguing sequence of porphyritic lava 
flows, volcanic breccia, and ash-flow tuff. Porphyritic lavas (68.1–61.7 wt. percent SiO2; table 1) are generally dark 
colored and contain crowded phenocrysts of plagioclase, orthopyroxene, clinopyroxene, hornblende, biotite, and 
quartz in a plagioclase-phyric groundmass with abundant Fe-Ti oxides. Intercalated volcanic breccias commonly 
occur as massive, greenish gray intervals 3–5 m thick (10–16 ft) composed of poorly sorted, subrounded to 
subangular clasts of andesite–dacite porphyry. Discontinuous tuff interbeds 2–10 m thick (6–33 ft) contain broken 
phenocrysts of plagioclase, hornblende, rare quartz, and accidental volcanic clasts in a eutaxitic groundmass of 
devitrified and flattened glass shards. Tuff intervals commonly contain varying amounts of pumice fragments and 
accidental clasts of porphyry lava. Four samples yielded U-Pb zircon ages spanning 72.6 ± 0.5 to 71.8 ± 0.6 Ma 
(table 2), and three samples collected in the adjacent Bannack 7.5' quadrangle yielded U-Pb ages ranging from 73.1 ± 
0.8 to 71.7 ± 0.6 Ma (Mosolf, in prepb). Ivy (1988) reported 40Ar/39Ar hornblende ages spanning ~80–76 Ma for this 
unit. Thickness as much as 490 m (1,600 ft).

METAMORPHIC ROCKS 

Archean quartzofeldspathic gneiss and high-grade metasedimentary intervals consisting of metapelite, 
quartzite, and calc-silicate rocks were mapped as one unit (Armstead Gneiss; Aag). These units preserve a 
polyphase metamorphic history, with peak metamorphism reaching granulite facies conditions (Young, 
1982). U-Pb zircon data (figs. 2C–E) suggest the Armstead Gneiss protolith formed by ~2.7 Ga or older, 
and was subsequently metamorphosed ca. ~2.4–2.5 Ga during the Tendoy orogeny (Jones, 2008; Cramer, 
2015). While no Proterozoic ages were obtained in this study, Mueller and others (2012) reported U-Pb 
ages of ~1.8 Ga for the Armstead Gneiss that likely reflect a tectonothermal event termed the Big Sky 
Orogeny (e.g., Harms and others, 2004; Cramer, 2015). The protolith of the Armstead Gneiss has been 
previously interpreted to represent a volcanic complex formed above an ancient subduction zone (Young, 
1982; Mueller and others, 2012).

Aag Armstead Gneiss (Archean)—Heterogeneous assemblage of quartzofeldspathic gneiss and 
high-grade metasedimentary rocks. Quartzofeldspathic gneiss occurs as uniform intervals that 
weather to sparsely vegetated hills covered by rocky, pinkish orange soil containing abundant 
feldspar chips. Gneissic varieties include quartz–feldspar gneiss, quartz–feldspar–garnet gneiss, 
quartz–plagioclase–garnet gneiss, and quartz–orthoclase–hornblende gneiss. Thin, conformable 
lenses of amphibolite gneiss are commonly intercalated with the quartzofeldspathic gneiss units. 
Metasedimentary intervals include thinly interlayered intervals of metapelite, amphibolite, 
quartzofeldspathic gneiss, quartzite, and calc-silicate marble. The metasedimentary intervals are 
poorly exposed, commonly forming brown soil underlying low, flat, sage-covered areas. A planar 
mineral foliation generally parallels compositional layering, and centimeter-scale isoclinal folds 
are common. See Young (1982) for detailed petrographic descriptions of the Armstead Gneiss.  

STRUCTURAL GEOLOGY

Precambrian deformation

Compositional layering in the Armstead Gneiss (Aag) is likely transposed layering formed during 
metamorphism rather than a primary stratigraphic fabric. Mineral foliations generally parallel the 
compositional layering except where it penetrates the noses of centimeter-scale folds. The folds are 
isoclinal with some being rootless and intrafolial, which are characteristic of extensive transposition. Poor 
exposure generally hindered the identification of possible map-scale folds in the Armstead Gneiss. Most 
planar mineral foliations dip steeply to the southwest (fig. 5A), however, indicating that axial surfaces of 
outcrop- and perhaps map-scale folds are northwest-striking and dip steeply to the southwest. 
Metamorphic textures and associated folds likely formed during tectonothermal events of the Tendoy or 
Big Sky orogenies. 

Cordilleran thrust-belt deformation

A series of map-scale, mostly northwest-trending contractional faults and folds deform the Archean 
through Cretaceous units. At least two unnamed reverse faults are closely associated with folds in the 
Paleozoic–Mesozoic units near Hans Peterson Flats in the southwestern part of the map. The most notable 
of these faults dips approximately 20–30 degrees to the west–southwest, placing Paleozoic strata over 
synorogenic deposits of the Beaverhead Group. Two reverse faults, previously interpreted to be a duplex 
structure (Coryell and Spang, 1988), displace early Paleozoic strata and Archean basement rock in the 
eastern limb of the Armstead Anticline. The Armstead Thrust Fault (fig. 1) projects beneath the Eli Spring 
quadrangle; this fault carries Paleozoic strata over the Beaverhead Group in the adjacent Dalys 7.5' 
quadrangle (Lowell, 1965; Johnson, 1986; Johnson and Sears, 1988; Coryell and Spang, 1988; Mosolf, in 
prepa).

Major folds in the map include, from west to east, the Madigan Gulch Anticline, the Cedar Creek 
Syncline, and the Armstead Anticline (fig. 5B); all of these folds formed in the hanging wall of the 
Armstead Thrust Fault. The Madigan Gulch Anticline is an east-verging, asymmetrical fold with an 
overturned east limb and steep west limb. The Cedar Creek Syncline is an upright, cylindrical fold that 
becomes overturned and east-verging along the southern trace of its axial surface. The Armstead Anticline 
is presumed to be an arcuate, asymmetrical antiform that has been breached by erosion, exposing Archean 
crystalline basement rocks in its core. The structure of the Armstead Anticline is debatable and postulated 
to be: (1) fault-bend folding above a ramp in the Armstead Thrust Fault (Coryell and Spang, 1988); (2) a 
Rocky Mountain foreland structure that was later decapitated by thin-skinned thrusting (Johnson and 
Sears, 1988); and (3) an antiformal stack carried in the hanging wall of the frontal thrust system (Kalakay, 
2001). Mapping and kinematic data presented herein support progressive deformation in the hanging wall 
of the Armstead Thrust, but do not discriminate between fault-bend folding or antiformal stacking. Two 
anomalously east–west-trending folds associated with a minor, unnamed reverse fault deform Paleozoic 
units in the northwest part of the map area; it’s unclear if these folds reflect heterogeneous strain in a zone 
of overlap between the Armstead and Ermont thrust plates, or represent a second generation of folds. 

Modeling of apatite and zircon (U-Th)/He data reported herein show the Armstead Gneiss was rapidly 
cooled from 180–60°C at ~100–80 Ma (fig. 3), which was likely driven by tectonic exhumation 
associated with the Armstead Thrust Fault. Radiometric dating of deformed and undeformed magmatic 
units indicate that upper-crustal shortening initiated no later than ~79 Ma and continued until ~72 Ma 
(Kalakay, 2001; Mosolf, in prepb; this study). To the east in the Dalys 7.5' quadrangle, detrital zircon 
dating of the synorogenic Upper Beaverhead Group (Kbeu) yielded a max depositional age of ~66 Ma 
(Garber and others, 2020). Together, these kinematic constraints bracket the timing of upper crustal 
shortening in the map area to ~100–66 Ma.

Cenozoic extensional deformation

The most notable extensional structure occurs in the southwestern part of the map where poorly lithified 
Tertiary sedimentary deposits (Tml) are in fault contact with Paleozoic–Mesozoic strata; this fault is 
interpreted to be the southern trace of the Muddy–Grasshopper Fault (fig. 1; VanDenburg and others, 
1998; Mosolf, in prepb). The fault appears to dip westward, and likely inverts an older thrust fault. Fault 
movement appears to have been synchronous with the deposition of proximal alluvial fan deposits of the 
Eocene–Oligocene Medicine Lodge beds (Tml; VanDenburg and others, 1998). The other notable 
extensional structure in the map (named the Cameahwait Fault by Sears, 2007) displaces the southwest 
limb of the Armstead Anticline, and is synthetic to a normal fault cutting the Cedar Creek Syncline. The 
Cameahwait Fault is poorly exposed and mostly covered by Quaternary sedimentary deposits, but appears 
to be a high-angle fault dipping ~60–80 degrees to the southwest. The Cameahwait Fault is likely an 
inverted reverse fault, or a cut-off fault rooted to a subsurface thrust ramp that was reactivated upon the 
onset of crustal extension. Modeling of the (U-Th)/He data suggest the Armstead Gneiss underwent an 
additional ~25°C of cooling ca. 40–0 Ma (fig. 3) that was possibly linked to footwall exhumation of the 
Muddy–Grasshopper Fault or Cameahwait Fault.
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Csh Silver Hill Formation (Late Cambrian)—Brown, dark red, and olive green 
interbeds of micaceous clay shale and thick layers of brown glauconitic quartzose 
siltstone. Poorly exposed, commonly forming a saddle between the Hasmark and 
Flathead Formations. Thickness estimated to be 70 m (225 ft). 

Cf Flathead Formation (Middle Cambrian)—Light gray, tan, and maroon, medium- 
to coarse-grained, medium-bedded quartz sandstone. Commonly crossbedded with 
glauconite and quartz pebbles near the base of the unit. The contact with the 
underlying crystalline basement rocks is sharp and nonconformable. Thickness 
estimated to be 60 m (200 ft).
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