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Abstract

Methane (natural gas) production from coal beds is a new and potentially
important industry in Montana. Coalbed methane (CBM) is held in coal beds by
adsorption on the coal due to weak bonding and hydrostatic pressure of water in the
coal. Reducing the water pressure allows the methane to desorb from the cleat faces
and micro-pores in the coal. Production of CBM requires that water pressure in the coal
aquifers be reduced across large areas. Water pressure is reduced by the removal of
large volumes of water which must be managed once it reaches the ground surface.
The extraction and subsequent management of CBM production water has raised many
concerns. In the Montana portion of the Powder River Basin CBM production water is
of acceptable quality for domestic and livestock use, however its high sodium content
makes it undesirable for application to soils, particularly those with a significant clay
component. High sodium content can cause clays to become deflocculated, thereby

decreasing the infiltration capacity of the soil.

This report introduces the Montana coalbed-methane ground-water monitoring
program and presents the first year of data. This program was initiated to document
baseline hydrogeologic conditions in current and prospective CBM areas in
southeastern Montana, to determine actual ground-water impacts and recovery, and to

provide data and interpretations for permitting and exploration decisions.

Two types of ground-water flow systems are present in the Powder River Basin

in Montana: the regional systems flowing from Wyoming, north into Montana; and local
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systems that are recharged along areas of outcrop and clinker-capped ridges, and flow
toward topographically lower areas. The quality of the water moving along these flow
systems changes in a predictable fashion with an end result being moderate
concentrations of sodium and bicarbonate, with little else in the water. Coalbed
methane production occurs only where this sodium-bicarbonate-dominated water exists

in the coal beds.

Ground-water flow occurs in two distinct modes, local systems recharged in
topographically high areas and flowing toward topographically low areas such as rivers,
and regional flow primarily recharged in Wyoming and flowing north into Montana.
Geometric mean values for hydraulic conductivity are 61.4 feet square per day (ft?/day)
for alluvium, 1.0 ft®/day for coal and 0.06 ft*/day for sandstone. Flow in the Dietz coal is
estimated at 5,430 ft*/day per mile width in the Squirrel Creek area, and 160 ft*/day per
mile width across the state line between Montana and Wyoming. Ground-water flow in

other coal beds is probably similar, if differences in thickness are considered.

The quality of water in coal beds in the project area is typically dominated by ions
of sodium and bicarbonate, with sodium adsorption ratios between 4 and 80 and
dissolved solids concentrations from less than 1,000 mg/L to nearly 9,000 mg/L.
Calcium, magnesium and sulfate concentrations are found at varying concentrations
throughout the basin. Coalbed methane production water will have high sodium
adsorption ratios, probably averaging 30 to 40, and low dissolved solids concentrations,

probably averaging around 1,500 mg/L.



One operator has been producing from one CBM field (the CX field, Plate 1) in
Montana since October, 1999. This field now includes about 250 wells near Decker.
Water levels in monitored coal beds have been lowered as much as 150 feet during
about 4 years of production. The area where greater than 5 feet of drawdown has been
measured extends 1 to 2 miles beyond the edges of the production field. An additional
178 CBM wells were drilled and completed for production adjacent to this field in 2003
and 2004 (the Badger Hills expansion, Plate 1). Production has not yet begun in this

field.

Based on computer modeling and reviews of current data from mines and other
CBM production fields, drawdown of 20 feet is expected to eventually reach as far as 4
miles beyond the edges of large production fields, and drawdown of 10 feet is expected
to reach 5 to 10 miles (Wheaton and Metesh, 2002). Less drawdown will occur at
greater distances. Water levels will recover, but it may take decades for them to return
to the original levels. The extent of drawdown and rates of recovery will be determined
in large part by the rate, size and continuity of CBM development, and the site specific

aquifer characteristics.

Models and predictions are important for evaluating potential hydrogeologic
impacts. However, inventories of existing resources and long-term monitoring of aquifer
responses will be the method to determine actual magnitude and duration of impacts.
Development decisions will be based in large part upon previous hydrogeologic data

and interpretations.



Introduction

Purpose and need

This report introduces the Montana coalbed-methane ground-water monitoring
program and presents the first year of data. This program was initiated to document
baseline hydrogeologic conditions in current and prospective CBM areas in
southeastern Montana, to determine actual ground-water impacts and recovery, and to

provide data and interpretations for permitting and exploration decisions.

Southeastern Montana is a semi-arid region that supports a rural economy based
mainly on agriculture. Coal mining, electricity generation and natural gas production
add to the local economy. Agriculture and coal mining successfully operate on adjacent
lands, in part by directing considerable effort toward managing the water resources.
The balance between domestic water needs, livestock, irrigation, wildlife, and energy
development is maintained by acquiring accurate scientific data, and correctly
evaluating those data in support of responsible management decisions. Following
successes in mining areas, ground-water monitoring and reporting have been initiated

in response to planned CBM production in Montana and Wyoming.

Based on data published by the Potential Gas Committee (Pierce, 2003) coalbed
methane (CBM) may represent about 7.5 percent of total natural gas reserves in the
United States; reserves in the Powder River Basin total about 26.7 trillion cubic feet

(tcf). Reserves in the Montana portion of the Powder River Basin have been estimated
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at about 0.9 tcf (U. S. Department of Energy, 2002). Current estimates indicate that
approximately 60,000 CBM wells may eventually be installed in the Powder River Basin
(Wyoming and Montana), with about 26,000 wells anticipated in Montana (U. S. Bureau
of Land Management, 2003). Estimated pumping rates for each well range from 5 to 20
gallons per minute with the rate of water production declining with time from each well
(U. S. Bureau of Land Management, 2003). The likely duration of CBM production in

the Powder River Basin is not yet known.

Methane is held on cleat surfaces and in micropores in coal (Rightmire, and
others, 1984; Law and Rice, 1993). The gas is held in place by physical sorption, in
addition to hydrostatic pressure from ground water in the coal. The gas can be released
from the coal surface by reducing the water pressure in the coal bed. Wells, drilled and
completed in the coal, are used to reduce hydrostatic pressure by pumping water from
the coal. The released methane is captured in the same wells. Greater efficiency in
reducing water pressure in the coal beds is achieved by completing wells in grid
patterns called pods. The well spacing is typically 1 well per 80 or 160 acres, for each
coal bed. Pods in Montana are expected to cover areas of about 800 acres, and will
consist of 10 to 15 wells in each coal bed. In some areas, as many as four coal beds
are targeted, and separate wells will be drilled to each bed from a single location. A
central, low-pressure compressor receives gas produced from the wells within a pod,
advancing the gas to a high-pressure compressor station that receives gas from several

pods and moves it to the market.



The co-production of water with coalbed methane can cause impacts due to: 1)
reduction of water in aquifers; and 2) inappropriate management of the produced water.
Water removed from aquifers lowers water levels, reducing flow through the aquifer and
in some cases reducing water yield at springs and private wells. In these cases, water
resources will be reduced for the duration of CBM production plus a recovery time that
will be years or decades long (Wheaton and Metesh, 2002). Produced water contains
high concentrations of sodium relative to other constituents, creating high sodium
adsorption ratios (SAR) which can impact soils. Inappropriate water management plans
can allow situations to arise where soils and surface-water resources are impacted.

Decision makers, including landowners, mineral-estate holders, resource
managers and governmental representatives need a scientific basis from which to make
and support decisions regarding CBM development. Establishment of scientific
baselines, and scientifically based understanding of the hydrogeologic systems are
critical to guide water-quality and water-resource decisions related to CBM development
in the Powder River Basin. The purpose of this report is to provide objective scientific
data concerning impacts to ground-water resources due to CBM development in
Montana. This report represents one step in the process of providing for

environmentally responsible CBM development.



Location and description of area

The study area ( Figure 1 and Plate 1) is that part of the Powder River Basin
bounded by the Montana Wyoming line on the south, roughly the Powder River on the
east, the Wolf Mountains on the west, and extending north to about Ashland. This is the
area of Montana that has the greatest potential for CBM development (Van Voast and

Thale, 2001).

Geographic setting and climate

The study area in southeastern Montana is a grassland region with rolling to
ruggedly dissected topography. Land surface altitude is generally highest in the south,
sloping down toward the Yellowstone River in the north. Most of the land is used for
agriculture. More than 80 percent of the land is used for grazing stock and about 6

percent is used for raising dryland and irrigated crops (Slagle and others, 1983).

The area is semi-arid, averaging less than 15 inches of precipitation per year.
Meteorological data from the weather station at Decker from 1958 through 2003 indicate
average total annual precipitation in the western part of the study area is 12.0 inches
(http://www.wrcc.dri.edu/summary/climsmmt.html). On the east edge of the study area
at Moorhead, records from 1950 through 2003 showed average total annual
precipitation of 12.4 inches. May and June are the wettest months and November

through March are the driest. Greatest monthly snowfalls occur from November through


http://www.wrcc.dri.edu/summary/climsmmt.html
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April. The annual average of monthly high temperatures is in the low 60° F range with
July and August being the warmest. Annual average of monthly low temperatures is
about 30° F with December and January being the coolest months. The annual mean

temperature in the project area is 46° F.

Aquifers are recharged by precipitation, and shallow ground-water levels reflect
both short- and long-term precipitation patterns, so interpretation of hydrographs must
include an understanding of precipitation records. Due to the size of the study area two
meteorological stations, Decker on the west and Moorhead on the east, were selected
to represent precipitation. Bar graphs on figures 2-A and 2-B indicate total annual
precipitation for Decker and Moorhead since 1970 (NOAA climatic data,
http://www.wrcc.dri.edu/summary/climsmmt.html). Long-term trends that may affect
ground-water levels become more evident when the departure-from-average
precipitation for each year is combined to show the cumulative departure (line graph on
figures 2-A and 2-B). Moisture gains through the 1970’s, and a below-average
precipitation since then are particularly evident in the Decker records (Figure 2-A).
Cumulative departure from annual-average precipitation does not provide a quantitative
measure of potential recharge, but rather an indication of periods of decreasing and

increasing moisture in possible recharge areas.
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Geologic setting

The Powder River Basin is a structural and sedimentary basin in southeast
Montana and northeast Wyoming (Biewick, 1994). About one-third of the basin lies in
Montana and two-thirds in Wyoming (Figure 3). It is situated between the Black Hills to
the east, the Big Horn Mountains to the west and the Miles City Arch to the north. The
Paleocene Fort Union Formation and the overlying Eocene Wasatch Formation are the
dominant bedrock exposures. Both formations consist of sandstone, siltstone, shale
and coal beds. The clastic units were fluvially deposited whereas the extensive coal
beds formed from extensive peat-forming swamps. In Montana, modern stream valleys
have cut through the entire coal-bearing Tongue River Member of the Fort Union
Formation, exposing coal along valley and canyon walls, allowing ground-water

seepage to form springs, and allowing methane to leak to the atmosphere.

Numerous coal beds have been mapped in the Fort Union Formation (Matson
and Blumer, 1973). A generalized stratigraphic column is presented in Figure 4. Not all
coal beds shown on Figure 4 are present across the entire basin; however, the figure
indicates relative stratigraphic position. The Anderson and Dietz coal beds are beomg
mined near Decker. Methane is currently being produced from these same coal beds in
Montana as well as the Canyon and Carney seams. Generally, the coal beds in the
Anderson through Knobloch interval are considered the most likely prospects for CBM
in southeastern Montana. Various names have been used to describe the seams in the

Decker area, as shown in the correlation chart is presented in Table 1.
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Figure 3. The Powder River Basin is in southeastern Montana and northeastern Wyoming. Vast quantities of minable coal
and coalbed methane exist in the Fort Union Formation within the Basin.
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Figure 4. Many coal beds have been mapped within the Tongue River Member of the Fort Union Formation. The general relative positions are
shown here, with the right edge of the column indicating generally sandy interburden to the right and shale by the line curving to the left.
Not all coals exist across the entire basin, and the interburden thickness varies considerably.The indicated depths are only
approximations (Matson and Blumer, 1973; McLellan and others, 1990; Law and others, 1979; Fort Union Coal Assessment Team, 1999).
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Water resources and uses

The Tongue River, Powder River, and several smaller streams and tributaries
provide surface water to limited areas of southeastern Montana. Where surface water
is not available, domestic and livestock water supplies are dependent on ground-water
resources. Wells are typically less than about 300 feet deep and penetrate alluvium in
valley bottoms, and coalbeds and sandstone throughout the area. The Montana
Ground-Water Information Center (GWIC): website (http://mbmggwic.mtech.edu/) lists
4,520 wells within the 5,321 square-mile area of the Tongue River Member in the
Powder River Basin that lies within Montana. This is an average density of 1 well per
1.2 square miles. The total number and the density include 162 observations wells.
Water-supply wells completed in coal beds tend to be located within 2 to 4 miles of the
major coal outcrops, where drilling depths are shallowest (Kennelly and Donato, 2001).
Spring data for this same area indicate an average density of at least 1 spring per 5
square miles (Kennelly and Donato, 2001). Ongoing spring-inventory work by the
Montana Bureau of Mines and Geology indicate the density of springs in the area is
much higher. Springs occur throughout the Powder River Basin but are particularly

prevalent along geologic contacts at the bases of clinker zones and coal outcrops.
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Coal beds are important aquifers in southeastern Montana because they are
laterally far more continuous than sandstone units in the Tongue River Member. They
crop out along valley walls and subcrop beneath valley fill and surface water bodies,
providing baseflow to surface water bodies. It is the ability to transmit water, and the
extensive nature of the coal beds that make them the targets for stock and domestic
well drilling, while outcrop and subcrop areas provide springs for livestock and wildlife,
and baseflow to water courses. Sandstone units are also aquifers, though used to a
lesser degree than coal. Alluvium has a much higher ability to transmit water than do
bedrock units. However, the small areal extent of alluvial aquifers limits their

geographic usefulness as water resources.

Previous investigations

The Powder River Basin has been the focus of many hydrogeologic studies that
were completed during the coal assessment work of the 1970’s and early 1980’s. Also,
the Montana Bureau of Mines and Geology (MBMG) has maintained a continuous
ground-water monitoring program near the Decker and Colstrip coal mines since 1970.
Studies of particular interest include: Ground-water Subgroup of Water Group Northern
Plains Research Program (1974); U. S. Bureau of Land Management (1975, 1977a,
1977b); Delk and Waldhaus (1977); McClymonds (1982, 1984a, 1984b, 1985, 1986);
McClymonds and Moreland,1988; Daddow (1986); Cannon (1985, 1989); Van Voast
and Reiten (1988); Hedges and others (1998); Van Voast and Thale (2001); and Van

Voast (2003). Data include aquifer-test results, water-level measurements, water-

16



quality data, lithologic descriptions and hydrogeologic interpretations. Most data from
the coal studies are from those portions of the coal fields with less than about 200 feet
of overburden, since the purpose has been to identify hydrologic conditions where strip
mining could be economically feasible. Additional data are available on the Internet at
http://mbmggwic.mtech.edu/. References for additional studies can be found on the
MBMG coalbed methane bibliography at

http://mww.mbmg.mtech.edu/coal/DEFAULT.htm.
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Hydrogeologic conditions prior to coalbed-methane production

Monitoring Program

Hydrogeologic data were collected at wells installed during the previous projects
referenced above, at wells maintained as part of the BLM and MBMG 30-year coal-mine
hydrogeology program, and at wells drilled during 2002 and 2003 specifically for this
project. Lithologic and location records for newly drilled wells are in Appendix A.
Records for previously existing wells were published in the original reports. Location
and completion data for all wells are also available on line at:
http://mbmggwic.mtech.edu/. All previously-drilled monitoring wells were inventoried.
All new wells drilled for this project and appropriate existing wells were included in the
regular monitoring program, and are listed in Appendix B. Water levels are measured
approximately monthly at each monitoring well. Springs located on Federal land were
visited and inventoried. Data from these springs are listed in Appendix C. Water-quality
data are available for many of the existing wells, and additional samples have been
collected at selected wells that had not been previously sampled. Water-quality data
are listed in Appendix D. Data from previous reports were entered in GWIC to provide a

longer period of record.

Monitoring locations and completions, including wells drilled as part of this
project, were specifically chosen to provide geologic and hydrogeologic data about coal

beds that may be developed for CBM production, and aquifers that underlie or overlie
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potential production zones. To the extent possible, monitoring locations have been
chosen to be outside future CBM production fields. Consistent with standard
hydrogeologic methods, monitoring is best performed between areas of potential

impacts and points of water usage.

Aquifer characteristics

In southeast Montana ground water is obtained from springs and wells completed
in alluvium, fine-grained sandstone, and coal units. These aquifers were the focus of
the hydrogeologic studies listed earlier. Hydraulic conductivity is a measure of the
ability of an aquifer to transmit water and is determined in the field by means of aquifer
testing. Hydraulic conductivity values from all available tests in the Montana Powder
River Basin were analyzed and the results presented on Figure 4 (MBMG file data).
Tests performed by MBMG, USGS and mine companies have been published in

hydrogeologic studies listed above and are on file at MBMG.

Water supplies have been developed in the alluvium of the Tongue River, and to
a lesser degree in the Powder River and its tributaries. The geometric-mean hydraulic-
conductivity value for alluvium is 61.4 feet per day (ft/day). Saturated thickness for
alluvium, reported from tests, averages 17 feet and reaches a maximum of 50 feet.
Throughout the region, sandstone units in the Tongue River Member are used for
ground-water supplies. Reported hydraulic-conductivity values in sandstone units have

a geometric mean of 0.06 ft/day. Aquifer thickness averages 36 feet and reaches a
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maximum of 110 feet. Due to extensive lateral continuity, and generally higher
hydraulic conductivity as compared to sandstone, coal beds are the primary target for
water well completions in Montana'’s portion of the Powder River Basin. The geometric
mean for hydraulic conductivity from tests in coal is 1.0 ft/day. Average thickness of

tested coal beds is 27 feet and the maximum is 96 feet.

Ground-water flow

Two distinct types of ground-water flow systems are present in the Montana
portion of the Powder River Basin. In deeper units, flow is from the south in Wyoming to
the north. Recharge along high, clinker-capped ridges produces local flow systems
that follow topography. An example of flow directions is shown for the Dietz coal on
Plate 2. Other aquifers should have similar trends, with the exception that deeper units
will have less topographic control than shallower units. Ground-water flow is
perpendicular to equipotential lines. In the eastern part of the study area, ground water
in the Dietz coal flows from distant regional recharge areas in Wyoming, northward to
outcrop areas in Montana. As the ground-water flows north, discharge areas along
outcrops exert strong control on the flow directions. The gradient in the area of Hanging
Woman Creek is about 0.007, typical hydraulic conductivity for the Dietz coal in this area is
0.4 ft/day, and a porosity value of 0.1 is assumed. Average aquifer thickness for the Dietz
coal in the Hanging Woman Creek area is 11 feet. Using Darcy’s equation, ground-water flow

through a one-mile width of the Dietz coal bed is about 160 fts/day, or 0.8 gpm.Based on these

assumptions, the average ground-water velocity is about 0.03ft/day or about 10 feet per year.
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In the western part of the study area recharge occurs along the topographically
high areas on the Crow Indian Reservation in the Wolf Mountains. Ground-water flow is
to the east, toward the Tongue River, but is interrupted by coal mines and coalbed
methane production. Based on data from the Squirrel Creek area (Hedges and others,
1998) the Dietz coal has a mean hydraulic conductivity value of 1.2 ft/day, average
thickness of 48 feet, gradient of 0.02 (Plate 2) and a porosity of 0.1 is assumed. The
calculated flow through a 1-mile wide section of aquifer is 5,450 ft*/day or 28 gpm and

the average velocity is about 0.2 ft/day or 80 ft/year.

Water levels in shallow aquifers respond to seasonal variations in precipitation.
Deeper aquifers show little if any measurable change in water level except for long
periods of low or high precipitation. In addition to temporal conditions, the vertical
gradient of hydrostatic pressure is evident by comparing water-level altitudes in wells with
different depths at the same location. Deeper water levels at deeper wells characterize

downward gradients. Shallower levels in deeper wells characterize upward gradients.

Hydrographs for precipitation at Moorhead and water levels at selected monitoring
sites that are outside of potential coalbed-methane impacts are presented in figures 6
through 10. The long-term precipitation trend for Moorhead is summarized from NOAA climatic

summaries for Montana (http://www.wrcc.dri.edu/summary/climsmmt.html). Data from 1974
through 2003 from an overburden sandstone (Figure 5-B), the Canyon coal (Figure 5-C)
and the Cook coal (Figure 5-D) indicate a downward gradient and a lowering of water levels

that follows the regional precipitation trend. These wells are located in the eastern part of
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Figure 6. Graph (A) shows average annual and cumulative departure from average precipitation at Moorhead, Montana. The long-
term decrease in water levels in the Canyon overburden sandstone (B), and Canyon coal (C), likely relate to precipitation
patterns. The short period of record for the Cook coal (D) at the CBM03-12 site does not indicate meteorological influence.
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Figure 7. A downward hydrostatic gradient is evident by comparing water-level altitudes for the Anderson (A), Dietz
(B), and Canyon (C) coalbeds at the CBM03-11 site.
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Figure 8. A downward hydrostatic gradient is evident between the Canyon underburden sandstone (A), Wall overburden
sandstone (B), and Wall coal (C) at the CBM02-4 site. Water levels trends in the Wall coal and overburden are probably not
related to meteorological patterns while those in the shallower Canyon Coal may be.
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Figure 9. An upward hydrostatic gradient is evident by comparing water-level altitudes for the Knobloch coal (A) and Knobloch
underburden sandstone (B), and the deeper Flowers-Goodale overburden (C) and Flowers-Goodale coal (D) at the
CBMO02-08 site. Water levels trends are probably not related to meteorological patterns.
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Figure 10. An downward hydrostatic gradient is evident by comparing water-level altitudes for the Brewster-Arnold coal
(A), Local coal (B), and Knobloch coal (C) at the CBMO02-1 site. Water levels trends are probably not related to
meteorological patterns.
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the study area near Bear Creek. At site CBM02-11, the Anderson (Figure 7-A), Dietz
(Figure 7-B) and Canyon (Figure 7-C) coals also show a downward gradient, but too
little record to indicate any relationship with precipitation trends. West of the Tongue River
at site CBMO02-4, water levels in the Canyon underburden (Figure 8-A), Wall overburden
(Figure 8-B) and Wall coal (Figure 8-C) indicate a downward gradient. A water-level
rise during spring, 2003 of about 11 feet in the shallow Canyon underburden may
indicate a response in this shallow aquifer to precipitation. Water-level data in the
Knobloch coal (Figure 9-A), Knobloch overburden (Figure 9-B), Flowers-Goodale
overburden (Figure 9-C) and Flowers-Goodale coal (Figure 9-D) show a general upward
gradient indicating a ground-water discharge zone. This site is just west of the Tongue
River near the outcrop of the Knobloch coal. Near the community of Kirby, just east of
Rosebud Creek, a downward gradient exists between the Brewster-Arnold coal (Figure

10-A), a local unnamed coal (Figure 10-B) and the Knobloch coal (Figure 10-C).

Ground-water quality

Ground-water quality in the Powder River Basin changes in a predictable fashion
along flow paths (Van Voast and Reiten, 1988). In recharge areas, water quality is
dominated by ions of calcium (Ca*?), magnesium (Mg*?) and bicarbonate (HCO3).
Further along the flow path, sulfate (SO,4) concentrations increase due to dissolution of
sulfate minerals (such as gypsum) and oxidation of sulfide minerals (such as pyrite).
Cation exchange with shales increases the sodium (Na*) concentrations while

decreasing Ca* and Mg*? concentrations. In deep coal aquifers sulfate reduction and
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carbonate precipitation produce water quality that is dominated by Na* and HCO* ions,
with little else. Coalbed methane exists only in reduced zones where the water quality

is characterized by ions of Na* and HCO® (Van Voast, 2003).

Data from laboratory analyses for major ions in samples from monitor wells
included in this project are listed in Appendix D. Water from alluvium generally has a
low sodium adsorption ratio (SAR), less than 7 and averaging 3.8. This water has a
wide range in calculated dissolved-solids (CDS) concentrations from 572 to 6,836 mg/L,
averaging 3,190 mg/L. Alluvium receives leakage from streams (which are typically
loosing within the study area), local infiltration of precipitation and discharge from
outcrops and subcrops of bedrock aquifers. These sources represent a wide range of

possible water quality, and as expected, alluvium has highly varied water quality.

Water quality from the Anderson coal, throughout the study area, is generally
dominated by Na* and HCO® ions. The only areas with significant amounts of Ca*? and
Mg*? occur where the coal is shallow east of the Tongue River near the East Decker
Coal Mine and in the Hanging Woman Creek area. These sites had concentrations of
SO, that indicate the ground water has not reached fully chemically reduced conditions,
or it is influenced by local recharge. In either case the coal at these locations is not
likely to contain methane. Concentrations of CDS are between 1,023 and 8,788 mg/L,
averaging 2,489 mg/L. Sodium adsorption ratio in the Anderson coal is high, ranging

from 11 to 65, with an average value of 39.

Water quality in the Dietz coal is similar to that found in the Anderson coal,

typically dominated by ions of Na* and HCO®. Stiff diagrams on Plate 2 indicate
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concentrations of major ion chemistry in samples from Dietz coal monitoring wells.
Some higher concentrations of SO4, however, were found in many parts of the study
area. Dissolved-solids concentrations in the Dietz coal are generally lower than those in
the Anderson, ranging from 667 to 2,597 mg/L with an average of 1,498 mg/L. Ground
water in the Dietz coal has a wider range of SAR values than does the Anderson coal,

ranging from 4 to 80 and averaging 37.

With the exception of samples from two wells that may be in areas where local
recharge may influence water quality, ground water in the Canyon coal contains
exclusively Na* and HCO3' ions in all monitoring wells. The concentrations of CDS
range from 941 to 1,761 mg/L and average 1,415 mg/L. Sodium adsorption ratios are

between 30 and 66, with an average of 47.

At several locations, the normal change in water quality along flow paths is
evident. For example, at wells BC-07 and BC-08, the water quality in the overburden
sandstone is dominated by Ca*?, Mg*?, Na* and SO, ions, while the underlying Canyon
coal water quality is dominated by Na* and HCO® ions due to ion exchange and SO,

reduction.
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Hydrogeologic conditions after three-years of coalbed-methane

production

Ground-water levels

Water-level trends in aquifers that are susceptible to CBM impacts in and
adjacent to the CX field are presented in figures 11 through 15. Ground-water levels in
this area respond to a combination of precipitation patterns, coal mining and CBM
production. Both coal mining and CBM production have caused large areas of lowered

ground-water levels to occur in the coal beds.

On Figure 10 the annual high and low water levels in the Squirrel Creek alluvium
correspond to wetter and dryer times of each year, typical for shallow water-table
aquifers. The long-term precipitation trend shown on Figure 11-A appears to explain
the subtle water-level trends in the alluvium upstream from CBM production (Figure 11-
B). Note that since 1999 the alluvial water levels have become lower in response to
drought conditions. Mining at the West Decker mine has not lowered the water levels in
the Squirrel Creek alluvium, which indicates a lack of vertical communication between
the coal and shallow aquifers (Van Voast and Reiten, 1988). For the same reason,
CBM production has not lowered water levels in the alluvium. Within the CBM
production area (Figure 11-C) since 1999, the water level in some reaches of the
alluvium has increased, probably in response to CBM-production-water infiltrating from

nearby holding ponds.
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Figure 11. In addition to normal annual cycles, long-term precipitation trends (A) effect water-table levels in the Squirrel Creek
alluvium. Upstream of CBM production Squirrel Creek alluvium is not influenced by CBM production (B), but adjacent to
CBM production the water level rise since 1999 likely relates to infiltration ponds (C).
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Water levels in Anderson overburden in the Squirrel Creek area (Figure 12) show
possible correlation with precipitation patterns (Figure 12-A), and no drawdown due to
CBM production. The lack of drawdown in overburden sandstone indicates the
slowness of vertical responses. The shallow, water-table aquifer (Figure 12-B) shows a
rapid rise, totaling about 30 feet, in response to vertical migration of CBM-production
water from an infiltration pond. The pond is located approximately 250 feet northeast of
the monitoring well, is unlined and is 1 to 2 acres in size. The deeper overburden
aquifer (Figure 12-C) at this site shows no response to the infiltration pond. The
additional water in the shallow aquifer may be moving laterally with little vertical
communication, or the slow rate of vertical movement may create such a delay that the

response has not yet been measured in the deeper aquifer.

Declining water levels (hydrostatic pressure) in coal beds are expected
responses to both coal mining and CBM production. Near the Ash Creek coal mine
(Wyoming, Township 58 north, Range 84 west, section 22), hydrostatic pressure in the
Anderson and Dietz coal beds declined from 1977 to 1979 due to mining. Pit
dewatering through 1995 maintained reduced ground-water levels until reclamation
began. After pit dewatering ended, the ground-water levels recovered. Since 2001,
CBM production has reduced ground-water levels at this site by about 150 feet (Figure
13-A). In the Squirrel Creek area hydrostatic pressure in the Anderson-Dietz coal has
declined continuously due to coal mining since the 1970’s. Starting in 1998 a rapid
decline in hydrostatic pressure has occurred in response to CBM production (Figure 13-

B). The much faster decline in hydrostatic pressure due to CBM production, as
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Figure 12. Graph A shows average annual and cumulative departure from average precipitation for Decker, Montana. Long-term
water-level trends in the Anderson overburden(B and C) in the Squirrel Creek area, may relate to precipitation patterns.
The rise starting in 1999 in the water table at WR-17A (B) is a response to infiltration of water from a CBM holding pond.
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Figure 13. Water levels in the combined Anderson and Dietz coal (A and B) in the Squirrel Creek area respond to both
coal mining and coalbed methane production.
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compared to coal mining, is a function of the rate of movement of development and
proximity of production to monitoring. The arrival of the cone of depression is clearly
marked by the changes in water levels, indicated on the figures. The site-specific rate
of change will be determined by several factors, including distance to the nearest
production well, proximity to a source of recharge, and aquifer physical characteristics.
Mining advances very slowly, whereas CBM production can move rapidly, covering a
larger area, moving closer to monitoring wells and creating a larger cone of depression.
Also, in this case, CBM production was initiated about midway between well WR-51 and

the West Decker Mine.

Near the western edge of current CBM production, but across a fault from active
CBM wells, the Canyon and Carney coals show no response to CBM-related drawdown
(Figure 13). Faults in this area are known to be aquitards, and hydrostatic pressure
responses to mining varies tremendously across faults (Van Voast and Reiten, 1988).
The water level in the Canyon coal has slowly decreased, along with decreased

precipitation (figures 14-A and 14-B).

Changes in stage in the Tongue River Reservoir affect water levels in the Dietz
coal near the reservoir. Stage levels in the reservoir have been higher since a new
spillway was put to use in 1999 (Figure 14-A). However, water levels in the Dietz coal
since the year 2000 are influenced more by CBM production than by the higher stage
levels (figures 15-B and 15-C). Drawdown in coal beds beneath the reservoir may
increase leakage from the reservoir, thus increasing CBM pumping costs and possibly

causing water that is not under reduced conditions to migrate into the CBM field. The
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Figure 14. Graph A shows average annual and cumulative departure from average precipitation for Decker, Montana. The
long-term decrease in water levels in the Canyon Coal (B), is probably related to precipitation patterns. The short period
of record for the Carney coal (C) at the CBM02-02 site does not indicate meteorological influence.
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Figure 15. Annual fluctuations of stage level in the Tongue River Reservoir (A), and water levels in the Dietz coal (B and C)
correlate well until CBM influence reached the area in about the year 2000.
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introduction of SO, into the CBM field can create a situation where sulfate-reducing

bacteria oxidize the methane to carbon dioxide, thereby reducing the gas reserves.

Hydrostatic pressure in the Dietz coal has been reduced over an area of nearly
30 square miles in and adjacent to the CX field (Plate 3). The locations of producing
CBM wells at any specific time are not available, however the production area at the
end of 2002 is marked on Plate 3 (Fidelity Exploration and Production Company, 2002).
Drawdown of at least 5 feet has reached a distance of 1.5 to 2.5 miles beyond wells in
the active field. Drawdown of 20 feet extends a maximum of 1.9 miles where ground-
water flow is fault bounded (WR-47) and as far as 1.2 miles where faults are not
creating no-flow boundaries (PKS-2061). Drawdowns in other monitored coal beds are

similar to that shown for the Dietz coal.
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Quality of produced water

Coalbed-methane-produced water quality in the Powder River Basin is
dominated by ions of Na* and HCOs (Rice and others., 2002). Water quality parameters
include: pH from 6.8 to 8.0, specific conductance levels from 400 to 4,000 uS/cm, SAR
ranging between about 5 to about 70, and CDS from about 300 to more than 2,000
mg/L. In the southeastern PRB in Wyoming, CBM water generally has low CDS and

SAR, increasing to the north and west into Montana.

Based on data from monitoring wells within the CX coalbed-methane field, water
quality in the Anderson and Dietz coals has high SAR values (37 to 53) and moderate
CDS concentrations (703 to 1,806 mg/L). This is typical for ground water in coal beds
throughout the study area where SO, concentrations are less than about 100 mg/L,

indicating reduced conditions where methane can exist in the coal.
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Anticipated hydrogeologic changes with continued coalbed-methane

production

Water production

During CBM production, wells are pumped to lower the hydrostatic pressure to
near the top of the coal. Water levels are then maintained at this elevation during
production. Individual well-discharge rates are highest at the start of pumping, and
decrease with time. The equations for constant drawdown tests for flowing wells can be
applied to calculate the discharge rates for a well where the drawdown is held constant
and the discharge is varied (Jacob and Lohman, 1952 in Lohman, 1972, p. 23). For the
purpose of a CBM field, an approximation of discharge can be calculated if the entire
field is assumed to act as a single well with diameter equal to the diameter of the field.
Using the Hanging Woman Creek area as an example, this equation estimates
discharge per well from a 100-well field (12.5 square miles) to be 20 gpm during startup,
decreasing to 0.5 gpm after 10 years (Figure 16). The constant drawdown equation, as

applied here is:

a = Kbt/Sr,?
Where: K = hydraulic conductivity ( 0.4 ft/day)
b = aquifer thickness (11 ft)
t =time (0.8 to 3,650 days)
S = Storativity (2 E -4)
rw = Well radius (10,500 ft)
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And:

Qr = Kb2piG(a)sw

Where: Qr = Total discharge from the well field (100 wells)
G(a) = the function of a, available in tables (Lohman, 1972)

Sw = constant drawdown in well

It is important to note in discussions of well discharge that the rate of discharge
decreases with time, so discussions of average discharge rates have little value.
Discharge rates from individual CBM wells will vary depending upon time since pumping
began, position in the field, size of the CBM field, and local aquifer conditions. As the
area of production increases, and cones of depression for fields overlap, discharge from
individual CBM wells will decrease in response to the generally lower hydrostatic
pressure. However, total discharge from all wells will increase as new wells are

completed and as ground water is withdrawn from larger areas.

42



20 30

- Single-well %
£ . 3
o discharge L
= 15 Jrate 20 o
s 1 &
- o =
8_ 10 - \ o §
Gé> Cumulative 1 10 _g
S 5] volume of water S
o . >
0 discharged per well =
(&) ]

0 ‘ * * o ©

0 5 10 15 20
Years

Figure 16.  Approximation of discharge from a single CBM production well, using the constant-head equation
developed by Jacob and Lohman (1952, in Lohman, 1972) demonstrates the decline curve. Based on these
calculations, most of the water produced will actually be at the lower production rates.
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Ground-water levels

Data collected during this project show that drawdown within the coal aquifers
during the first 4 years of production may reach 20 ft at distances of 1 to 2 miles outside
the producing fields (Plate 3). Computer modeling, using geometric mean values of
aquifer characteristics for Montana coal beds indicates that after 20 years of production,
drawdowns of 20 feet or more are expected to reach distances of 2 to 4 or more miles,
(Wheaton and Metesh, 2002). Drawdown may occur in overburden and interburden
aquifers, but to a lesser degree than that in the producing coal beds. Flow from springs
and water available at water-supply wells will be diminished proportionally to the

decrease in hydrostatic pressure in the aquifer at the well or spring.

Recovery of water levels in affected aquifers will begin when CBM production
ends. Complete recovery will require much more time within the CBM well field than
outside the field. Based on a modeled scenario (Wheaton and Metesh, 2002) using an
isolated CBM well field 1-township in size, the available head outside the production
area may approach 90 percent of pre-development levels about 5 years after production
ceases. Within the CBM field, recovery of hydrostatic pressure will take longer, and
may approach 70 percent of pre-development levels within 10 to 15 years. Patrtial
recovery will occur as hydrostatic pressures of water in storage in the coal bed
redistribute to fill the cone of depression. Complete recovery, however, will require
recharge water to reach the impacted area along with replenishment of hydrostatic
pressures in to the recharge area. Ground-water velocity is naturally slow, and travel

time from recharge areas will likely be measured in decades.
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Quality of produced water

Coalbed methane exists only in areas of chemically reducing conditions,
indicated by a dominance of sodium and a lack of sulfate in the water (Van Voast,
2003). Across the study area, where sulfate concentrations are less than 100 mg/L,
water quality in coal beds has SAR values between 32 and 68, with an average of 49.
Concentrations of CDS in these aquifers range from 703 to 2,000 mg/L with an average
of 1,472 mg/L. The quality of CBM-production water throughout the Montana portion of
the Powder River Basin is expected to be similar to this. Both SAR and CDS (as
represented by specific conductance) are commonly used as indicators of the usability
of water for irrigation (Hanson and others, 1999). These constituents are noted here as
both indicators of areas where CBM may exist and as considerations for water-

management design.
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Summary

Coalbed-methane production is expected to occur across much of the southern
portion of the Powder River Basin in Montana (Van Voast and Thale, 2001). Related to
this production are concerns that ground-water levels will be reduced, causing a loss of
local ground-water resources for the agricultural community, and concerns that disposal
of CBM-production water, if handled inappropriately, will cause detrimental impacts to

soils and surface-water resources.

Ground-water levels in producing coal beds in and near CBM-production fields
will be lowered for the duration of production and may require decades to recover.
Ground-water levels in overlying and underlying aquifers are expected to show little
response to drawdown in the producing coal beds due to the presence of shale-
dominated stratigraphic sequences. During periods of production and recovery, water
availability at some springs and wells which derive their water from the producing coal
beds will be reduced. Ground-water discharge where aquifers subcrop in alluvium
provides baseflow to support perennial streams. During CBM production and aquifer
recovery, streams that receive significant portions of their flow from ground-water
discharge from coal beds may decline due to the loss of ground-water base flow. In
larger surface-water bodies, such as the Tongue River, this impact will not likely be

measurable.

After 4 years of production from the CX field, water levels have been lowered by

20 feet at distances of less than 1 mile to as much as 2 miles outside the production
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area. Within the production area water levels are as much as 150 feet lower than
baseline conditions. As production continues, and as field sizes enlarge, greater
drawdown is expected to occur, and at greater distances from the well fields.
Drawdown of 20 feet may eventually reach 4 or more miles, outside production fields.
These estimated ranges of drawdowns for CBM fields will be refined with continued
monitoring. Accurate estimates of drawdown for specific fields will need to be based on
very site-specific data. As shown in this report, the physical characteristics of coal
aquifers vary widely, including hydraulic conductivity, saturated thickness, proximity to
outcrop and starting hydrostatic pressure. Gas-field-development designs will be

adjusted to fit local characteristics rather than being generic.

CBM-production-water management practices will depend on the quantity of
water and the quality of the water released. The discharge rates from individual CBM
wells will depend on time since pumping began, size of the well field, position in the well
field, and coal-aquifer characteristics in the field. Typical discharge rates may range
from highs of 20 or more gpm during startup, and decrease to possibly as low as 1 gpm
after 10 years, depending on local aquifer characteristics. Water discharged from CBM
wells is dominated by sodium and bicarbonate ions. Based on existing data, SAR
values in CBM production water in Montana are expected to be higher than 30 and in
some areas approach 70. Concentrations of CDS in production water are expected to

be greater than 1,000 mg/L but less than 2,000 mg/L.

Ground-water models are useful tools in interpreting drawdown and recovery

trends and for anticipating the general types and magnitudes of potential impacts.
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However, data from monitoring wells are required to calibrate models, and make actual
determinations of impacts and recovery. The importance of regular monitoring at
dedicated wells cannot be overemphasized. Wells for monitoring regional impacts
should be located outside producing fields. Water-level measurements within CBM
fields only indicate the effectiveness of the reduction in hydrostatic pressure; and do not
indicate the extent or magnitude of drawdown outside the production field. Monitoring
of water levels in sandstone units above and below a producing seam, adjacent to and
within a producing field can provide valuable information on the rates and extent of
vertical leakage between aquifers. Continued collection of data and interpretation of
those data will provide an understanding of the ground-water systems and their

response to CBM production.
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Appendix A.

Monitoring well drilling and completion records



Site: cBm02-1 Completion Date: october 2002 L ocation: 06S39E 16 DBCA
Latitude 45.3186
Longitude 106.9671
Altitude 3980 Ft
well ID GWICID _ Total Depth (ft) Casing__Aquifer Scr eens (ft)
CBMO02-1BC 203655 255.50 45PVC Brewster-Arnold Coal 237-255
CBMO02-1LC 203658 366.00 5.0Steel Loca Coa 356-366
CBMO02-1KC 203646 417.00 5.0 Steedl  Knobloch Coal 403-417
To Description
0.0/  43.0[COLLUVIUM, SANDY, WEATHERED
43.0  74.5(COAL (WALL)
745  91.0/SHALE, LIGHT GRAY
91.0|  96.0/COAL (0.25 GPM)
96.0 115.0/SHALE, GRAY
115.0/ 159.0|SANDSTONE, LIGHT GRAY, FINE GRAINED
159.0/ 165.5[SHALE, TAN, HARD
165.5| 172.0|COAL (PAWNEE)
172.0| 177.0/SHALE, MEDIUM GREEN-GRAY, SOFT
177.0| 218.0|SANDSTONE, MEDIUM GRAY, FINE GRAINED, FRIABLE (6 GPM)
218.0| 230.0/SILTSTONE, MEDIUM GRAY
230.0| 235.0/SHALE, GRAY
235.0] 238.0/COAL
238.0| 242.5/SHALE, MEDIUM GRAY, FIRM
2425 253.5/COAL (BREWSTER_ARNOLD) (13 GPM)
253.5| 260.0/SHALE, MEDIUM GRAY, FIRM
260.0 270.0/SANDSTONE, GRAY
270.0| 298.0/SHALE, GRAY WITH INTERBEDDED SILTSTONE
298.0| 309.5/SHALE, MEDIUM GRAY, SILTY
309.5| 313.5/COAL
313.5| 354.5/SHALE, MEDIUM GRAY, WITH INTERBEDDED SILTSTONE
354.5| 363.5/COAL(LOCAL UNNAMED)
363.5| 403.0/SHALE, MEDIUM GRAY, FIRM
403.0/ 416.5/COAL (KNOBLOCH) (< 1 GPM)
416.5| 421.5/SHALE, MEDIUM GRAY
4215 426.0/SILTSTONE, MEDIUM GRAY
425.0| 460.0/SANDSTONE, GRAY, FRIABLE
426.0| 430.0[SHALE, MEDIUM GRAY, FIRM
430.0| 435.0[COAL
435.0/ 452.0/SHALE, RED-BROWN, SILTY, SOFT (TOTAL AT 450 FT CONNECTION: 20 GPM)
460.0| 472.0|SHALE, MEDIUM GRAY AND RED-BROWN (20 GPM AT 450 CONNECTION)
472.0| 476.0/SANDSTONE, MEDIUM GRAY, VERY FINE GRAINED, FRIABLE
476.0| 493.0|SHALE, GRAY, WITH INTERBEDDED SILTSTONE
493.0| 527.0/SHALE, DARK GRAY, WITH SANDSTONE STRINGERS
527.0| 557.0[SANDSTONE, POOR RETURNS
557.0| 560.0/SHALE, DARK GRAY
560.0| 600.0[SANDSTONE, INTERBEDDED WITH SHALE AND SILTSTONE (SIGNIFICANT WATER)
600.0/ 630.0/SANDSTONE, GRAY, FINE GRAINED, FRIABLE (TOTAL 50 GPM)
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Site: cBm02-2 Completion Date: Sseptember 2002 L ocation: 09S39E29 BBDC
Latitude 45.0207
Longitude —106.9884
Altitude 3792 Ft
well 1D GWICID  Total Depth (ft) Casing Aquifer Scr eens (ft)
CBMO02-2WC 203669 290.00 5.0 Stedl Carney Coal  259-290
From To Description
0.0 4.0[TOPSOIL
4.0 18.0/COLLUVIUM, TAN SANDY
18.0 34.0[CLINKER (FIRST WATER MAKING 8 GPM)
35.0 44.0|SANDSTONE (10 GPM)
44.0 49.0[SHALE
49.0 59.0[SILTSTONE, GRAY
59.0 62.0[SANDSTONE, GRAY
62.0 67.0/SHALE, MEDIUM BROWN-GRAY, SOFT
67.0 71.0[SHALE, LIGHT GRAY, SILTY
71.0 74.0/SHALE, LIGHT GRAY
74.0 81.0[SILTSTONE, LIGHT GRAY
81.0 88.0|SHALE, MEDIUM GRAY, CARBANACEOUS STREAKS
88.0|  101.0/SILTSTONE, LIGHT GRAY
101.0|  104.0[SHALE, LIGHT GRAY
104.0]  116.0[SILTSTONE, MEDIUM GRAY
116.0|  127.0|SHALE, MEDIUM GRAY, INTERBEDDED SILTSTONE
127.0]  142.0[COAL (CANYON)
142.0|  144.0[SHALE, LIGHT GRAY, FIRM
144.0  147.0lcoAL
147.0|  160.0|SHALE, LIGHT GRAY, INTERBEDDED SILTSTONE
160.0|  208.0[SILSTONE, MEDIUM GRAY, HARD FROM 180-186
208.0|  212.0[SILTSTONE, MEDIUM GRAY, FIRM
212.0|  221.0[SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED
221.0|  223.0[SHALE, GRAY
223.0/  236.0[SANDSTONE, MEDIUM GRAY, FINE GRAINED, POORLY SORTED
236.0|  244.0[SILTSTONE, GRAY
244.0|  256.0[SHALE, GRAY
256.0]  288.0|COAL (CARNEY) (10 GPM)
288.0|  290.0[SHALE, GRAY
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Site: cBmM02-2 Completion Date: September 2002

L ocation: 09S39E29 BCBD

Latitude 45.0185
Longitude —106.9889
Altitude 3890 Ft

Well ID GWIC ID _ Total Depth(ft) Casing Aquifer Scr eens (ft)
CBMO02-2RC 203670 159.00 45PVC Roland Coal 149-159
From To Description
0.0 6.0/SOIL AND COLLUVIUM
6.0 21.0|SHALE, BROWN AND ORGANGE-BROWN
21.0 24.0|COAL
24.0 27.0|SHALE, MEDIUM GRAY
27.0 31.0/SANDSTONE, LIGHT TAN, VERY-FINE GRAINED
31.0 55.0/SHALE, MEDIUM GRAY WITH INTERBEDDED SILTSTONE
55.0 72.0|SANDSTONE, LIGHT GRAY, VERY-FINE GRAINED, DAMP
72.0 76.0|SHALE, GRAY, SOFT
76.0 99.0/SHALE, LIGHT GRAY, BROWN AND REDDISH-BROWN
99.0| 126.0/SHALE, LIGHT AND DARK GRAY, DARK BROWN
126.0, 128.0/COAL
128.0| 149.0/SHALE, LIGHT AND MEDIUM GRAY, MINOR SANDSTONE
149.0/ 150.5|SILTSTONE, MEDIUM GRAY (BASE OF WASATCH FM)
150.5| 154.0|COAL (FIRST WATER) (TOP OF FT UNION FM)
154.0, 158.0/SHALE, MEDIUM GRAY
158.0/ 160.0/COAL (MAKING WATER)
160.0, 166.0/SHALE, MEDIUM GRAY
166.0| 169.0/COAL (MAKING WATER)
169.0| 178.0[SILTSTONE, MEDIUM GRAY
178.0 180.0/SHALE, MEDIUM GRAY, SOFT
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Site: cBmM02-3 Completion Date: October 2002 L ocation: 08S39E 16 BAAA

Latitude 45.1392
Longitude -106.9608
Altitude 3920 Ft

Well ID GWIC ID _ Total Depth(ft) Casing Aquifer Scr eens (ft)
CBMO02-3DC 203678 235.00 5.0 Steel Dietz Coal 186-235
CBMO02-3CC 203676 376.40 5.0 Steel Canyon Coal 356-376
From To Description
0.0 9.0[TOPSOIL, BROWN, SANDY
9.0 16.0[SAND, TAN, FINE GRAINED, LOOSE, DRY
16.0 36.0|COAL
36.0 48.0/SANDSTONE, ORANGE-BROWN, VERY-FINE GRAINED, LOOSE
48.0 57.0/SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED, DAMP
57.0 61.0/SHALE, BROWN-BLACK, CARBONACEOUS, SOFT
61.0 70.0/SHALE, DARK BROWN-GRAY, SOFT
70.0 74.0/SILTSTONE, MEDIUM GRAY, LOOSE
74.0 78.0|SHALE, MEDIUM GRAY, BRITTLE
78.0 113.0/SHALE, DARK GRAY, INTERBEDDED WITH RED-BROWN SHALE AND THIN SANDSTONE
113.0/ 145.0/COAL (ANDERSON)
145.0, 150.0/SHALE, DARK BROWN, CARBONACEOUS, FIRM
150.0/ 157.0|]SANDSTONE, MEDIUM GRAY, VERY FINE GRAINED, FRIABLE (MINOR WATER FIRST WATER)
157.0 186.0/SHALE, LIGHT GRAY, FIRM
186.0| 234.0|COAL (DIETZ) (4.5 GPM AT 230 CONNECTION IN CBMO2-3CC BOREHOLE)
234.0f 252.0[SILTSTONE, LIGHT GRAY, CLAYEY, FIRM
252.0| 260.0[SHALE, LIGHT GRAY, SILTY
260.0f 271.0[SHALE, LIGHT AND MEDIUM GRAY
271.0| 277.0/SILTSTONE, LIGHT GRAY
277.0 280.0[SHALE, DARK GRAY
280.0f 297.0[SANDSTONE, LIGHT GRAY, VERY-FINE GRAINED WITH SILTSTONE
297.0| 300.0[SHALE, MEDIUM GRAY, FIRM
300.0f 314.0/SILTSTONE, LIGHT GRAY
314.0 341.0/SANDSTONE, LIGHT GRAY, FINE GRAINED, WITH SILTSTONE AND SHALE INTERBEDS (6 GPM AT
330 CONNECTION)
341.0f 354.0[SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED, WITH SILTSTONE
354.0/ 356.0[SHALE
356.0f 376.0|COAL (CANYON)
376.0 376.4|SHALE, DARK BROWN-GRAY, FIRM
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Site: cBmM02-4 Completion Date: October 2002 L ocation: 07S40E 36 CDDC

Latitude 45.1798
Longitude -106.7803
Altitude 3500 Ft

Well ID GWICID _ Total Depth(ft) CasingInfo _Aquifer Scr eens (ft)
CBMO02-4SS2 203690 96.60 45PVC Sub-Canyon Coal 53-96
CBMO02-4SS1 203681 221.00 45PVC Wall Cod Overburden 191-221
CBMO02-4WC 203680 291.00 5.0 Stedl Wall Coal 234-291
From To Description
0.0 1.0/TOPSOIL, DARK RED-BROWN, SANDY
1.0 26.0/ALLUVIUM, CLINKER COBBLES IN SANDY MATRIX (DRY)
26.0 31.0/SILTSONE, ORANGE-TAN, WEATHERED
31.0 41.0/SHALE, MEDIUM GRAY, SOFT
41.0 46.0[SILTSTONE, MEDIUM GRAY, FRIABLE
46.0/ 100.0/[SANDSTONE, DARK GRAY, VERY-FINE GRAINED (38 GPM)
100.0, 106.0/COAL
106.0f 119.0|SHALE, MEDIUM GRAY, INTERBEDDED SILTSTONE
119.0, 121.0/COAL
121.0| 129.0|SHALE, LIGHT GRAY, SILTY STRINGERS
129.0f 144.0/SILTSTONE, WHITE, SOFT, INTERBEDDED WITH SHALE
144.0| 148.0[SHALE, GRAY
148.0, 151.0/COAL
151.0f 187.0|SILTSTONE WITH SHALE STRINGERS
187.0 191.0/SHALE, MEDIUM GRAY
191.0, 217.0/SANDSTONE, LIGHT GRAY, FINE AND MEDIUM GRAINED, FRIABLE
217.0| 218.0[SILTSTONE, DARK GRAY, HARD
218.0 222.0/SANDSTONE, MEDIUM GRAY, FINE GRAINED
222.0| 231.0|SHALE, MEDIUM GRAY, SOFT
231.0f 236.0[SILTSTONE
236.0] 290.5|COAL (WALL) SHALE STRINGER 237.5 TO 328.5
290.5| 291.0[SILTSTONE, LIGHT TAN AND GRAY
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Site: cBM02-7 Completion Date: sSeptember 2002 L ocation: 08S39E01 AAAA
Latitude 45.1801

Longitude -106.8906

Altitude 3900 Ft

Well ID GWICID _ Total Depth(ft) Casing Aquifer Scr eens (ft)

CBMO02-7SS 203695 190.30 45PVC Canyon Coal Overburden 170-190

CBM02-7CC 203693 263.40 5.0Steel  Canyon Coal 246-263
From To Description

0.0 19.0|SOIL AND COLLUVIUM, TAN, SANDY

19.0 55.0/CLINKER (ANDERSON AND DIETZ)

55.0 68.0]SANDSTONE, TAN, POOR RETURNS

68.0 74.0|SHALE, GRAY

74.0 75.0|COAL

75.0 80.0|SHALE, MEDIUM GRAY, SILTY, FIRM

80.0] 108.0|SILTSTONE, MEDIUM TAN AND GRAY, HARD, WITH INTERBEDDED SHALE
108.0] 128.0|SHALE, MEDIUM GRAY AND BROWN, FIRM
128.0] 129.0/COAL
129.0] 138.0|SHALE, LIGHT GRAY, SILTY
138.0| 142.0/SHALE, LIGHT GRAY AND TAN
142.0] 154.0|SANDSTONE, LIGHT GRAY, VERY-FINE GRAINED
154.0f 192.0[SANDSTONE, MEDIUM GRAY, FINE GRAINED (MINOR WATER)
192.0] 204.0|SHALE, DARK GRAY, MINOR COAL STRINGERS
204.0 221.0[SANDSTONE, DARK GRAY, VERY-FINE GRAINED, HARD
221.0| 242.0]SHALE, MEDIUM GRAY, FIRM (5 GPM AT 230 CONNECTION)
242.0] 259.0|COAL (CANYON) SHALE AT 243.5 TO 244.5
259.0] 263.5|SHALE, MEDIUM GRAY
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Site: cBM02-8 Completion Date: November 2002 L ocation: 05S42E 28 DDAC
Latitude 45.3688

Longitude -106.5471

Altitude 3260 Ft

Well 1D GWICID _ Total Depth(ft) Casing Aquifer Scr eens (ft)
CBMO02-8KC 203697 208.00 45PVC Knoblock Coal 190-208
CBMO02-8SS 203699 224.00 45PVC Knoblock Underburden 219-224
CBMO02-8DS 203700 446.00 5.0PVC Flowers-Goodale Overburden  388-446
CBMO02-8FG 203701 480.46 5.0 Steel Flowers-Goodale Coal 459-482
From To Description

0.0 3.0[TOPSOIL, MEDIUM BROWN, SANDY
3.0 18.0[SAND, ORANGE-BROWN, LOOSE, FINE GRAINED

18.0 19.0|GRAVEL, CLINKER

19.0 21.0|SAND, ORANGE-BROWN, MINOR CLINKER

21.0 25.5|COAL (BREWSTER-ARNOLD) DAMP AT BASE

25.5 28.0|SHALE, MEDIUM BROWN-GRAY

28.0 42 0[SILTSTONE, LIGHT GRAY, SHALEY

42.0 55.0|SHALE, MEDIUM GRAY AND DARK GRAY, SOFT TO HARD

55.0 57.0|COAL

57.0] 121.0|SHALE, DARK GRAY, SOFT
121.0] 127.0|COAL
127.0] 132.0/SILTSTONE, LIGHT GRAY, SOFT
132.0f 137.0|SHALE, MEDIUM GRAY, FIRM
137.0| 149.0/SHALE, MEDIUM BROWN-GRAY AND LIGHT GRAY, FIRM
149.0/ 169.0|]SANDSTONE, LIGHT GRAY, FINE GRAINED
169.0| 171.5[SHALE, LIGHT GRAY, FIRM (1.5 GPM AT 170 CONNECTION)
171.5] 173.5|COAL
173.5| 180.0/SHALE, MEDIUM GRAY, FIRM
180.0/ 190.0|SILTSTONE, INTERBEDDED WITH SHALE
190.0f 207.0/COAL (KNOBLOCH)
207.0| 208.0[SILTSTONE, LIGHT GRAY, SILTY, SOFT
208.0 211.5]SANDSTONE, LIGHT GRAY, VERY-FINE GRAINED (12 GPM AT 210)
211.5| 218.0[SHALE, LIGHT TAN AND LIGHT GRAY, FIRM
218.0] 223.0/SANDSTONE, LIGHT GRAY, FINE GRAINED
223.0| 227.0[SHALE, LIGHT GRAY, FIRM
227.0 233.0[SILTSTONE, LIGHT TAN WITH GRAY SHALE (4.25 GPM AT 230 CONNECTIONO
233.0| 238.0[COAL, WITH SHALE STRINGER 235 TO 236.5
238.0] 245.0/SHALE, DARK BROWN, SOFT
245.0| 264.0[SILTSTONE, LIGHT GREEN-GRAY, SHALEY, SOFT
264.0 344.0/SANDSTONE MEDIUM GRAY, VERY-FINE GRAINED, FRIABLE, SILTY ZONE 317 TO 324.5
344.0] 350.0|COAL (6 GPM AT 350 CONNECTION)
350.0] 354.0/SHALE, DARK BROWN
354.0/ 359.0[SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED
359.0/ 370.0/SHALE, DARK GRAY, FIRM
370.0 373.0[SILTSTONE, MEDIUM GRAY, HARD
373.0] 377.0|]SHALE, DARK BROWN, FIRM
377.0] 459.0|]SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED (24 GPM AT 390 CONNECTION)

459.0| 479.0|COAL (FLOWERS-GOODALE) (60 GPM AT 470 CONNECTION IS APPARENTLY COMING FROM
OVERLYING SANDSTONE)

79.0] 482.0/SHALE, DARK BROWN AND DARK GRAY, MINOR COAL
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Site: cBM03-10 Completion Date: April 2003 L ocation: 08S42E 29 ADAD

Latitude 45.1141
Longitude -106.6045
Altitude 4130 Ft

Well 1D GWICID _ Total Depth(ft) Casing __Aquifer Scr eens (ft)
CBMO03-10SS 203704 462.00 5.0 Stedl Anderson-Dietz Overburden 429-462
CBMO03-10AC 203703 560.00 5.0 Stedl Anderson Coal 523-560
From To Description
0.0 5.0/TOPSOIL AND COLLUVIUM
5.0 16.0/SHALE, TAN, RED-BROWN, WEATHERED
16.0 61.0/SHALE, MEDIUM GRAY, MINOR CARBONACEOUS, FIRM
61.0 66.0/SANDSTONE, DARK GRAY, FINE GRAINED, SLIGHTLY CALCAREOUS
66.0 76.0/SHALE, MEDIUM GRAY, SOFT
76.0 79.0/SILTSTONE, MEDIUM GRAY, CLAYER, HARD
79.0 106.0/SHALE, MEDIUM GRAY, FIRM (BASE OF WASATCH FM)
106.0 113.0|COAL (ROLAND)
113.0/ 162.5|SHALE, MEDIUM BROWN-GRAY, SILTY, SOFT
162.5| 164.0/COAL
164.0) 187.0/|SHALE, MEDIUM GRAY, SOFT
187.0) 219.0|SILTSTONE, MEDIUM GRAY, INTERBEDDED WITH SILTSTONE
219.0, 224.0/SILTSTONE, GRAY, HARD AT TOP
224.0 240.0/SHALE, MEDIUM GRAY, SOFT
240.0, 251.0/SILTSTONE, GRAY
251.0, 268.0/SHALE, MEDIUM BROWN, SOFT, CARBONACEOUS, COAL AT 261 TO 263
268.0| 288.0|SHALE, MEDIUM GRAY, SOFT
288.0 299.0|SHALE, LIGHT BROWN, SILTY
299.0, 305.0/SANDSTONE, MEDIUM GRAY, MEDIUM GRAINED, CLAY FILLED
305.0f, 310.0/SHALE, GRAY AND BROWN
310.0f, 350.0/SHALE, MEDIUM GRAY AND GRAY-BROWN
350.0/ 367.0|COAL (SMITH) (1/4 GPM, FIRST WATER)
367.0, 408.0/SHALE, MEDIUM GRAY, FIRM, THIN SILTY STRINGERS
408.0f 428.0[SANDSTONE, INTERBEDDED WITH SHALE, POOR RETURNS
428.0| 463.0|SANDSTONE, MEDIUM GRAY, FRIABLE (1 GPM)
463.0| 485.0|SHALE, MEDIUM BROWN, BRITTLE
485.0/ 486.0|SILTSTONE, HARD, NO RETURNS
486.0 522.0|SHALE, POOR RETURNS
522.0 557.0/COAL (ANDERSON) SHALE PARTING AT 550 TO 554 (0.3 GPM)
557.0 560.0/SHALE, DARK GRAY, MINOR CARBONACEOUS
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Site: cBM03-11 Completion Date: April 2003 L ocation: 08S44E05 BBBB

Latitude 45.1793
Longitude -106.3647
Altitude 3950 Ft

Well ID GWICID _ Total Depth(ft) Casing Aquifer Scr eens (ft)
CBMO03-11AC 203705 211.00 45PVC  Anderson Coal 177-211
CBMO03-11DC 203707 271.00 45PVC  Dietz Coa 254-271
CBMO03-11CC 203708 438.00 5.0 Stedl Canyon Coal 410-413, 421-437
From To Description
0.0 4.0[TOP SOIL, LIGHT BROWN AND GRAY-TAN, SANDY
4.0 16.5/CLAY, GRAY-TAN, SOFT
16.5 31.5/SANDSTONE, LIGHT ORANGE-TAN, VERY-FINE GRAINED, WEATHERED
31.5 41.0/SHALE, MEDIUM ORANGE-GRAY BECOMING GRAY WITH DEPTH, SOFT, COAL AT 33 TO 34
41.0 58.0/SHALE, MEDIUM GRAY, SILTY
58.0 63.0]SANDSTONE, DARK GRAY, VERY-FINE GRAINED, CLAY FILLED
63.0 73.0|SHALE, MEDIUM GRAY, SOFT
73.0 76.5/SANDSTONE, DARK GRAY, VERY-FINE GRAINED
76.5 88.0/SHALE, MEDIUM GRAY, SOFT
88.0| 124.0/SHALE, MEDIUM GRAY, SOFT, THIN STRINGERS OF COAL AND CARBONACEOUS SHALE AND
SILTSTONE
124.0| 136.5/SANDSTONE, DARK GRAY, VERY-FINE GRAINED
136.5| 149.0/SHALE, DARK GRAY, VERY SILTY
149.0| 154.0|SHALE, MEDIUM GRAY, SOFT
154.0, 162.0/SILTSTONE, DARK-BROWN-GRAY, MEDIUM HARD
162.0| 168.0|SANDSTONE, MEDIUM GRAY, FINE GRAINED, FRIABLE
168.0 176.0/SHALE, MEDIUM BROWN, SOFT
176.0| 210.5/COAL (ANDERSON) (1 GPM)
210.5| 242.5/SHALE, MEDIUM GRAY AND BROWN-GRAY, SOFT
242.5| 246.0|]SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED, CLAY FILLED
246.0| 253.0[SHALE, GRAY, SOFT
253.0] 268.5(COAL (DIETZ) (MINOR WATER)
268.5 300.0[SHALE, LIGHT GRAY, WITH INTERBEDDED SILTSTONE AND SANDSTONE STRINGERS
300.0/ 306.0[SHALE, MEDIUM GRAY, FIRM, COAL AT 303.5 TO 304
306.0f 315.5/SHALE, LIGHT GREEN-GRAY, WITH SILTSTONE STRINGERS
315.5| 331.0[SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED, CLAY FILLED
331.0/ 336.0[SHALE, MEDIUM GRAY, FIRM
336.0 341.0/[SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED
341.0 343.0[SHALE, MEDIUM GRAY
343.0/ 347.0|COAL (MINOR WATER)
347.0| 357.0[SHALE, MEDIUM GRAY, FIRM
357.0 362.0[SILTSTONE, MEDIUM GRAY, HARD
362.0f 367.0|[SANDSTONE, MEDIUM GRAY, VERY-FINE GRAINED
367.0 379.0[SHALE, MEDIUM GRAY, INTERBEDDED SILTSTONE
379.0| 409.5/SHALE, MEDIUM GRAY, FIRM
409.5| 436.0[COAL (CANYON) (1.5 GPM)
436.0/ 438.0|SHALE, LIGHT GRAY, SILTY, SOFT
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Site: cBM03-12 Completion Date: may 2003 L ocation: 08S45E 16 DBCB

Latitude 45.1352
Longitude -106.2121
Altitude 3715 Ft

Well ID GWIC ID _ Total Depth(ft) Casing Aquifer Scr eens (ft)
CBM03-12COC 203709 351.00 5.0 Stedl Cook Coa 332-351
From To Description
0.0 30.0/COLLUVIUM, SANDY CLAY WITH CLINKER BOULDERS
30.0 35.0/CLAY, TAN, SILTY, VERY SOFT
35.0 37.0|COAL
37.0 46.0[SHALE, GRAY, VERY SOFT
46.0 49.0|COAL
49.0 60.0/SANDSTONE, POOR RETURNS
60.0 91.0|CLAY, MEDIUM BROWN-GRAY, VERY SOFT
91.0 94.0/SANDSTONE, POOR RETURNS
94.0 101.0/CLAY, MEDIUM GRAY, SILTY
101.0f 117.5|]SANDSTONE, MEDIUM GRAY, VERY FINE GRAINED, CLAY FILLED, SHALE 105.5 TO 107.5 (FIRST
WATER MINOR AMOUNT)
117.5| 121.0[SHALE, MEDIUM GRAY
121.0| 124.0|]SANDSTONE, MEDIUM TAN-GRAY, VERY FINE GRAINED (MINOR WATER)
124.0| 135.0|SHALE, MEDIUMG GRAY
135.0f 142.0|]SANDSTONE (MAKING ABOUT 1 GPM)
142.0| 149.0/SHALE, MEDIUM GRAY, FIRM
149.0f 177.0|COAL (CANYON) SHALE AT 174 TO 176 (MAKING WATER)
177.0| 183.0[SHALE, TAN, CARBONACEOUS
183.0 210.5/SANDSTONE, LIGHT GRAY, VERY-FINE GRAINED, CLAY FILLED
210.5| 222.0[SHALE, LIGHT TO MEDIUM GRAY, SILTY, MINOR COAL STRINGERS
222.0| 223.5|COAL
223.5| 244.0|SHALE, MEDIUM GRAY, WITH SILTSTONE STRINGERS
244.0| 246.5SANDSTONE MEDIUM GRAY, VERY-FINE GRAINED
246.5| 252.0[SHALE, MEDIUM GRAY, FIRM
252.0| 278.0[SILTSTONE, MEDIUM GRAY
278.0| 286.0[SANDSTONE, DARK BROWN-GRAY, VERY-FINE GRAINED, CLAY FILLED
286.0 293.0/SHALE, MEDIUM GRAY, SILTY
293.0 303.0/SANDSTONE
303.0 322.0|SHALE, MEDIUM GRAY, SILTY
322.0 330.5/SHALE, MEDIUM BROWN-GRAY, FIRM
330.5| 346.0[COAL (COOK) (MAKING ABOUT 2 GPM)
346.0f 351.0/SHALE, MEDIUM BROWN-GRAY, SOFT
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Site: cBM03-13 Completion Date: may 2003 L ocation: 09S46E 11 BBBA

Latitude 45.0722
Longitude -106.0572
Altitude 3931 Ft

Well ID GWIC ID _ Total Depth(ft) Casing Aquifer Scr eens (ft)
CBMO03-130C 203710 500.00 5.0 Steel Otter Coal 487-500
From To Description
0.0 3.0[TOPSOIL, BROWN, SANDY
3.0 10.0/COLLUVIUM, TAN, CLAY AND SILT
10.0 15.0|CLAY, TAN, SOFT
15.0 28.0/CLAY, MEDIUM GRAY, SOFT
28.0 40.0(CLAY, MEDIUM BROWN, SOFT
40.0 69.5|COAL (ANDERSON) SHALE PARTINGS 54.5 TO 55.5, 64 TO 66.5, CREATE THREE BENCHES
69.5 95.0/SHALE, MEDIUM GRAY, WITH SANDSTONE LENSES
95.0 111.0/SHALE, MEDIUM GRAY
111.0, 115.0/SHALE, MEDIUM BROWN, CARBONACEQUS, SOFT
115.0f 128.0|COAL (DIETZ) SHALE PARTING AT 116.5 TO 118 CREATES TWO BENCHES
128.0 131.0/SHALE, LIGHT GRAY, SOFT
131.0f 150.0/SILTSTONE, LIGHT GRAY, VERY CLAYEY, SOFT
150.0f 204.0/SANDSTONE, LIGHT GRAY, VERY-FINE GRAINED, MINOR SHALE STRINGERS
204.0| 226.0[SHALE, LIGHT GRAY, SILTY, SOFT
226.0| 229.0[SHALE, MEDIUM GRAY, FIRM
229.0/ 259.0/COAL (CANYON) SHALE PARTING AT 236 TO 240
259.0| 262.0[SHALE, MEDIUM GRAY, FIRM
262.0| 280.0[SILTSTONE, LIGHT GRAY, CLAY FILLED
280.0/ 289.5|SHALE, LIGHT TAN-GRAY, FIRM
289.5| 291.0/COAL
291.0/ 304.0|SHALE, LIGHT GRAY, FIRM
304.0f 332.0/[SANDSTONE, MED GRAY, FINE GRAINED, INTERBEDDED SILTSTONE
332.0f 341.0|]SANDSTONE, MEDIUM GRAY
341.0f 369.5[SILTSTONE, MEDIUM GRAY
369.5| 387.5[SHALE, MEDIUM GRAY, SILTY, FIRM, MINOR CARBONACEOUS STRINGERS
387.5| 389.5|COAL
389.5| 393.0[SILTSTONE, MEDIUM GRAY, CLAYEY
393.0 402.0/SANDSTONE,
402.0, 405.0/SHALE, MEDIUM BROWN-GRAY, SILTY, SOFT
405.0| 408.0/COAL (COOK)
408.0, 411.0/SHALE, BROWN-GRAY, SOFT
411.0/ 416.0]SANDSTONE
416.0 432.5|SHALE, LIGHT GRAY, FIRM
432.5| 439.0/COAL (MAKING 17 GPM PROBABLY FROM OVERLYING SANDSTONE)
439.0, 440.0/SILTSTONE, MEDIUM GRAY
440.0f 451.5]SANDSTONE, LIGHT GRAY, FINE GRAINED, FRIABLE
451.5| 455.5|SHALE, LIGHT TAN, HARD
455.5| 466.5]SANDSTONE, MEDIUM GRAY, FINE GRAINED, FRIABLE
466.5| 471.0|SHALE, DARK BROWN TO GRAY BROWN, FIRM
471.0/ 484.0|SILTSTONE, POOR RETURNS
484.0| 487.0|SHALE
487.0| 498.0/COAL (OTTER)
498.0| 501.5[SHALE
501.5| 530.0[SILTSTONE
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Appendix C.

Spring inventory data
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Appendix D.

Water quality data for wells completed in coal, sandstone and alluvium
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Appendix D
Major chemical constituents for selected coal monitoring wells in the Powder River Basin

On-site
Specific
conduct
ance Magne Potas
Well Sampling (umhos/cm On-site CDS SAR Calcium sium Sodium sium  Bicarbonate Carbonate Chloride Sulfate
designation  Aquifer date @ 2d C) pH 1) (2) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mglL) (mg/L) (mg/L)
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Plate 3. Area of potentiometric decline
for the Dietz coal bed in the CX coalbed
methane gas field.

Explanation

v+ Producing coalbed methane well
(Data from Montana Oil and Gas Commission)

o Non-producing coalbed methane well
(includes permit to drill, abandoned
and unapproved, shut-in, spudded,
completed, and expired permit)

wR-53 Monitoring well
13§ Change in water level due to CBM

production in feet (as of December, 2003)

/\/ Drawdown related to CBM
production (ft)

/\/ Anderson coal outcrop
&< Reservation boundary
/\/ Faults

[ ] Mine permit area

[ ] Mine pit boundary

[ ] Area with current CBM production in Montana.
(Fidelity Exploration and Production Company
2002 Annual Groundwater Monitoring Report)
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