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ABSTRACT

The North American Cordilleran Foreland Basin System extended from the eastern edge of the Cordilleran 
Sevier fold-thrust belt in western Montana across central and eastern Montana from Jurassic into early Paleo-
gene time. In the central and southern Montana part of the system, isolated Laramide basement-cored uplifts 
and sedimentary basin pairs characterize the main Laramide Province. The thrust/reverse fault-propagated 
arches and basins of the province developed primarily during Late Cretaceous through earliest Eocene time, 
although regionally, initiation of uplift may have occurred during Early to middle Cretaceous time in southwest-
ern Montana. Associated prominent WNW–ESE- and NE–SW-striking linear features refl ect Laramide reactiva-
tion of basement faults that now extend to the surface, or are entirely in the subsurface. They occur throughout 
the main Laramide Province and are likely genetically related to development of the uplift-basin pairs. 

The asymmetric Laramide Bighorn and Powder River Basins developed in association with uplift along 
basin-bounding thrust/reverse faults of the Beartooth and Bighorn basement-cored arches, respectively. Thrust 
loading associated with uplift along the faults propagated asymmetric synclinal basin folds that accommodated 
the greatest thicknesses of synorogenic deposits adjacent to the range-bounding faults. In Montana, synorogenic 
deposits of the Bighorn Basin primarily include the Paleocene Fort Union Formation, and those of the Powder 
River Basin primarily include the Paleocene Fort Union and Eocene Wasatch Formations. The similarly asym-
metric Crazy Mountains Basin developed in association with Laramide-style reverse and thrust-fault movement 
of the ancestral Bridger arch. Synorogenic deposits of the Crazy Mountains Basin primarily include the Upper 
Cretaceous Livingston Group and the mostly Paleocene Fort Union Formation. An oblique-slip reactivated 
basement fault that bounds the southern Central Montana Uplift generated the Laramide Bull Mountains Basin 
primarily during latest Paleocene and early Eocene time. Relative to the other basins, the Bull Mountains Basin 
did not accommodate much sediment from that uplift. The Black Hills Uplift, which extends into Montana, is 
the easternmost structure of the Laramide Province. The Black Hills may represent the youngest inception of 
Laramide uplift, whereas the Laramide uplifts in southwestern Montana may represent the earliest inception.

Other uplifts, basins, and folds associated with reactivated basement structures developed beyond the extent 
of the main Laramide Province in Montana. These include structures of the western Williston Basin; the Bow-
doin Dome; Hoagland, Opheim, Blood Creek, and Circle Basins; and the Bearpaw and Sweetgrass Arches1.

1The original names for Sweetgrass Arch, Bearpaw Uplift, Bighorn Uplift, and Bighorn Basin are used in 
this paper, rather than Sweet Grass, Bears Paw, and Big Horn, applied to certain geographic features. Some re-
ports refer to the Bull Mountains Basin as the Bull Mountain Basin and to the Hoagland Basin as the Hogeland 
Basin.
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INTRODUCTION

The main Laramide Province extends from Wyo-
ming northward into the central Montana part of the 
Cordilleran Foreland Basin System of western North 
America (Hamilton, 1988; DeCelles, 2004; fi g. 1) 
and is identifi ed as “domains 1 and 2” of the province 
(Lageson and others, this volume). It is character-
ized by a series of basement-cored uplifts (Laramide 
style) and genetically associated, sedimentologically 
isolated basins that developed primarily during the 
late Mesozoic to early Cenozoic Laramide orogenic 
event (Dickinson and others, 1988; fi g. 2). The Lara-
mide Province partly overlaps the Sevier fold-thrust 
belt in southwestern Montana (Kulik and Schmidt, 
1988; Schmidt and others, 1988; fi gs. 1, 2) and in the 
Bridger Range (Lageson, 1989). Basement-involved 
uplift may have begun as early as Early Cretaceous in 
southwestern Montana (DeCelles, 1986; Schwartz and 
DeCelles, 1988; Carrapa and others, 2019), but proba-
bly not until Late Cretaceous (Fan and Carrapa, 2014) 
to Paleocene time (Lisenbee and DeWitt, 1993) to the 
east. 

The Western Interior Cretaceous seaway that had 
occupied the foreland (Hendrix, this volume) retreated 
as orogenesis from contractional tectonism increased 
in the west. In the western part of the Cordilleran 
Foreland Basin System, the Upper Cretaceous Living-
ston Group (fi g. 3) records the retreat of the seaway 
and sedimentation related to Laramide-style uplift. 
The Upper Cretaceous marginal marine Fox Hills and 
overlying non-marine Hell Creek/Lance Formations 
(fi g. 3) were deposited across central and eastern Mon-
tana in association with the eastward-migrating west-
ern margin of the regressing seaway. Deposition of the 
Hell Creek Formation approximately terminated with 
the Cretaceous–Paleogene boundary extinction event 
(fi g. 4), including the demise of the dinosaurs (e.g., 
Fastovsky and Sheehan, 2005; Clemens and Hartman, 
2014). Deposition of the Paleocene Fort Union For-
mation followed this event. In southeastern Montana 
and isolated areas of the Bears Paw Mountains of 
north-central Montana (Brown and Pecora, 1949), the 
latest Paleocene–earliest Eocene Wasatch Formation 
overlies the Fort Union Formation (fi gs. 3, 4).

Paleocene and earliest Eocene deposits are sparse 
and equivocal in the Sevier fold-thrust belt area of 
western Montana. By contrast, Paleocene deposits are 
extensive in south-central and eastern Montana, and 

earliest Eocene deposits occur in a signifi cant part of 
southeastern Montana (fi g. 5). 

The Crazy Mountains, Bull Mountains, Bighorn, 
and Powder River Basins of the Montana part of the 
main Laramide Province (fi g. 2) fi lled with Late Cre-
taceous and/or Paleocene—and in some basins lowest 
Eocene—deposits, which were eroded from associat-
ed, coeval, adjacent Laramide uplifts, as well as from 
uplifts to the west. Synorogenic conglomerate/breccia 
(Piombino, 1979; DeCelles and others, 1991a); iso-
pach and paleocurrent data (Curry, 1971; Shurr, 1972; 
Seeland, 1988, 1992; Diemer and Belt, 1991; Whip-
key and others, 1991; Belt and others, 1992; Connor, 
1992; Hansley and Brown, 1992; Belt and others, 
1992; Lisenbee and DeWitt, 1993); sedimentary facies 
changes (Flores and Ethridge, 1985; Ayers, 1986; De-
Celles and others, 1991b; Whipkey and others, 1991); 
the presence of clasts with distinct lithologies (Merin 
and Lindholm, 1986; Brown, 1993); unconformities 
(Belt and others, 1997, 2004; Flores and Bader, 1999); 
paleolandslides (Garrett, 1963; Belt and others, 2002); 
and other paleoseismites (Bartholomew and others, 
2008; Jackson and others, 2019) record the infl uence 
of the Laramide Beartooth, Bighorn, and Bridger Up-
lifts on sedimentation in their associated basins. 

Less pronounced Laramide uplifts and basins 
occur in northern and easternmost Montana (fi g. 1), 
and are referred to as “domain 3” of the Laramide belt 
(Lageson and others, 2020). Most synorogenic depos-
its in this area were eroded or are partly obscured by 
glacial deposits, so little is known about the relation-
ship between the uplifts and basin sedimentation.

The Laramide Province overlaps the Sevier 
fold-thrust belt in southwestern Montana (Kulik and 
Schmidt, 1988; Schmidt and others, 1988; fi gs. 1, 2). 
In this area, initiation of Laramide uplift was inter-
preted from sedimentologic studies of the Early Cre-
taceous Kootenai and Blackleaf Formations (Schwartz 
and DeCelles, 1988) and recently based on thermo-
chronological and geochronological data from six 
basement-cored Laramide uplifts in the overlap zone 
and the Beartooth Uplift (Carrapa and others, 2019), 
all within “domain 1” of Lageson and others (2020). 
The Upper Cretaceous Sphinx Conglomerate (Graham 
and others, 1986; Ingersoll and others, 1986; DeCelles 
and others, 1987), and Upper Cretaceous and possibly 
lower Paleogene conglomerates of the Beaverhead 
Group (Ryder and Scholten, 1973; Haley and Perry, 
1990; fi g. 3), were derived from Sevier thrust sheets 
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Figure 1. Orogenic provinces and Laramide basins in Montana during Late Cretaceous through earliest Eocene time. Modifi ed from 
Hamilton (1988), Kulik and Schmidt (1988), and DeCelles (2004). SWMTZ, Southwest Montana Transverse Zone.
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and Laramide intra-foreland uplifts in the overlap 
zone. The conglomerates currently crop out in uplands 
and on mountaintops, rather than in preserved basins. 
These and other synorogenic deposits in the Sevier–
Laramide overlap area are not discussed in this paper. 
Rather, the paper focuses on deposits in the part of the 
Cordilleran Foreland Basin System that partitioned 
into basement-cored uplifts and associated basins (fi g. 
1).

UNIT DESCRIPTIONS

Maastrichtian (Upper Cretaceous) formations were 
deposited during Sevier and Laramide orogenesis in 
Montana. They are introduced in this section, but the 
main focus is on the Paleocene Fort Union Forma-
tion, which provides the most prominent evidence of 
sedimentologic response to uplift associated with the 
Crazy Mountains, Big Horn, Powder River, and Bull 
Mountains Basins in Montana. 

Maastrichtian (Uppermost Cretaceous) 
The upper part of the Livingston Group (fi g. 3) 

was deposited as the deep trough of the Crazy Moun-
tains Basin was developing, whereas the generally 
age-equivalent Fox Hills and Hell Creek/Lance For-
mations to the east, although broadly infl uenced by 
the Laramide event, do not record Laramide basin 
development related to partitioning of the Cordilleran 
Foreland Basin System. 
Upper Livingston Group

The Maastrichtian Billman Creek and overlying 
Hoppers Formations are part of the nonmarine upper 
Livingston Group (Roberts, 1963). The Billman Creek 
Formation is dominantly massive tuff aceous mudstone 
interbedded with sandstone and tuff aceous claystone. 
Sandstone and conglomerate channel deposits make 
up about one-fourth of the formation and are dom-
inantly fi lled with volcanic rock fragments derived 
from the Elkhorn Mountains volcanic fi eld to the west. 
The overlying Hoppers Formation is dominantly vol-
canic lithic sandstone interbedded with mudstone and 
siltstone, also with channel fi ll sandstones primarily 
composed of volcanic rock (Roberts, 1972).
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Figure 5. Distribution of Upper Cretaceous Fox Hills, and Hell Creek or Lance Formations; and Paleocene/lower Eocene Fort Union 
and Wasatch Formations.
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Fox Hills and Hell Creek/Lance Formations
The Upper Cretaceous Fox Hills Formation (fi gs. 

3, 4, 6) contains brackish-water trace fossils (Flores 
and Lepp, 1983; Wilde, 1985; Flight, 2004) and rep-
resents marginal marine deposits associated with the 
last Cretaceous cycle of the retreating Western Interior 
seaway. The interfi ngering terrestrial Hell Creek and 
Lance Formations overlie the Fox Hills Formation 
in south-central Montana (fi gs. 3, 4). As mapped in 
Montana, sandstone beds in the Lance Formation are 
much thicker and more continuous than sandstone 
beds in the Hell Creek Formation (Lopez, 2001), and 
the Lance Formation apparently lacks smectitic beds, 
which are prevalent in the Hell Creek Formation 
(Vuke and Wilde, 2004). The Hell Creek Formation 
(fi gs. 6, 7) has yielded numerous dinosaur fossils 
(Horner and Hanson, 2020). A detailed lectostratotype 
was established for the entire Hell Creek Formation 
section in Garfi eld County (Hartman and others, 2014) 
in the reference area (type area) originally designated 
by Brown (1962). 

Paleocene and Lowest Eocene 

Fort Union and Wasatch Formations
Brown (1962) designated the Hell Creek Forma-

tion contact with the overlying Fort Union Formation 
(fi gs. 3, 4, 7B) as “the base of the lowest coal zone 

above the latest remains of dinosaurs,” restricting the 
upper contact of the Hell Creek Formation to approxi-
mately the Cretaceous–Tertiary (K-T) or Cretaceous–
Paleogene (K-Pg) boundary. Prior to that designa-
tion, the upper contact of the Hell Creek Formation 
included what is now the lower member of the Fort 
Union Formation. Brown’s defi nition of the formation 
boundary has both synchronous (i.e., latest dinosaur 
remains) and diachronous (i.e., lowest persistent coal-
bed) components. Therefore, the Hell Creek/Lance 
contact with the Fort Union Formation may be, but is 
not necessarily, coincident with the K-Pg boundary. 
The Hell Creek–Fort Union contact crosses magnetic 
polarity zones from west to east (fi g. 4), but faunal and 
fl oral changes parallel the polarity zones (Archibald 
and others, 1982).

In the western Crazy Mountains Basin in central 
Montana, Roberts (1972) defi ned the contact between 
the Livingston Group and Fort Union Formation (fi g. 
3) using sedimentary provenance. Conglomerate in the
upper Livingston Group was designated as containing
almost entirely volcanic clasts, and conglomerate in
the overlying basal Fort Union Formation as contain-
ing igneous (intrusive), metamorphic, and sedimen-
tary clasts derived from Precambrian, Paleozoic, and
Mesozoic units. Using this contact designation, the
lowest part of the Fort Union Formation in the Crazy

Lower Hell Creek Formation

Colgate Member

Timber Lake
Member

Upper
Fox Hills

Formation

Figure 6. Upper Fox Hills Formation showing Colgate Member, and lower Hell Creek Formation near Glendive, Montana.

https://mbmg.mtech.edu/pdf/geologyvolume/HornerVertebratePaleoFinal.pdf
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Mountains Basin is latest Cretaceous (Roberts, 1972), 
whereas in the Powder River Basin, the uppermost 
part of the underlying Hell Creek Formation is very 
earliest Paleocene (Brown, 1993). However, the dis-
tinction between clast composition at the Livingston 
Group–Fort Union Formation contact in the Crazy 
Mountains Basin was not necessarily discernable by 
other workers (Dripps, 1992). 

The Fort Union Formation ranges from 6,600 ft 
(2,010 m) thick in the Crazy Mountains Basin (Rob-
erts, 1972) to more than 3,000 ft (915 m) thick in the 
Powder River Basin. It is only approximately 300 ft 
(90 m) thick in the Montana part of the Williston Ba-
sin (Anna, 1986).

In easternmost Montana, the Paleocene Fort 
Union Formation is composed of the Ludlow Mem-
ber and the overlying Tongue River Member (fi g. 3), 
distinguished primarily by color and lithology. The 

Ludlow Member (fi g. 7C) is dominantly gray and 
brown, greater than 50 percent mudstone, and has 
a clay fraction dominated by smectite. The Tongue 
River Member (fi g. 8A) is dominantly orange and tan, 
generally has a higher percentage of sandstone, and 
a clay fraction dominated by illite and kaolinite (Belt 
and others, 1992). To the west, the Tullock (fi gs. 4, 
7D) and overlying Lebo Members replace the Lud-
low Member (fi g. 3). In southeastern-most Montana, 
the Ekalaka Member (fi g. 8B) is in the stratigraphic 
position of the upper Ludlow Member (fi g. 3), but 
unlike the Ludlow Member, it contains greater than 50 
percent sandstone (Belt and others, 2002). All mem-
bers of the Fort Union Formation consist dominantly 
of sandstone, mudstone, shale, and coalbeds, but the 
Tullock, Ekalaka, and Tongue River Members contain 
a higher percentage of sandstone than the Lebo and 
Ludlow Members. The Tongue River Member has the 

Figure 7. (A) Hell Creek Formation near Webster, Montana. (B) Hell Creek Formation–Ludlow Member contact (~K-Pg boundary) north 
of Baker, Montana. (C) Ludlow Formation, Makoshika State Park, S.M. Roberts photo. (D) Hell Creek Fm–Tullock Member contact (~K-
Pg boundary), Garfi eld County, Montana, J.H. Hartman photo. Arrows indicate contact positions in (B) and (D).



9

Susan M. Vuke: Laramide Sedimentation

most numerous and thickest coalbeds (fi g. 9A), which 
have served as a signifi cant energy resource (Gunder-
son and Wheaton, 2020).

Along the western margins of the western Lara-
mide basins in Montana (fi g. 2), synorogenic alluvial 
fan and braided stream deposits of the Fort Union 
Formation are dominantly coarse-grained sandstone 
and conglomerate, and contain a higher percentage 
of volcanic clasts than deposits located to the east 
(Piombino, 1979; DeCelles and others, 1991a,b). 
Clasts of crystalline Precambrian basement rock are 
present in Fort Union Formation deposits in the Crazy 
Mountains, Bighorn, and Powder River Basins. The 
average grain size of fl uvial deposits fi nes toward the 
basin center, where lacustrine environments in the 
Lebo Member may be present, with clastic input from 
both sides of the Bighorn and Powder River Basins 
(Yuretich and others, 1984; Ayers, 1986). Alternative-
ly, poorly resistant Mesozoic rock sources may have 
provided the fi ne-grained sediment in those basins 
(DeCelles and others, 1991b; Flores and Bader, 1999).

Although Fort Union alluvial fan and braided 
stream deposits may also be present along basin mar-
gins in eastern Montana (Flores and Bader, 1999), 
sedimentary environments were dominated by coastal 
plain swamps (Belt and others, 2005) and delta plain 
swamps (Flores and Lepp, 1983; Belt and others, 
1984). Inland swamps were associated with low-en-
ergy, anastomosing (Flores and Hanley, 1984; Brown, 
1993) and meandering (Diemer and Belt, 1991; Flores, 
1983) fl uvial systems that produced lignite and sub-
bituminous coal. Coal swamp development was most 

widespread during times when tectonic uplift caused 
paleodrainage reorganization (Diemer and Belt, 1991; 
Belt and others, 1992; Belt, 1993), when related sub-
sidence increased accommodation, or during base-lev-
el changes (Flores and Bader, 1999). Isolated, remnant 
patches of the Sentinel Butte Member of the Fort 
Union Formation extend a short distance into Mon-
tana (Vuke and Colton, 1998; Vuke and others, 2003c; 
fi gs. 3, 4) from widespread deposits in North Dakota. 
Brown and gray (from its smectite clay fraction), more 
friable deposits of the Sentinel Butte Member overlie 
the yellow, tan, and light gray Tongue River Member 
(Jacob, 1975). 

The Wasatch Formation (fi gs. 3, 4) is extensive 
in the Powder River Basin, primarily in Wyoming. 
In Montana, it is present only in the northern Powder 
River Basin, in several fault blocks of limited extent 
in the Bears Paw Mountains (Brown and Pecora, 
1949; Hearn and others, 1964), and along the north-
ern Bighorn Basin in south-central Montana (Raines 
and Johnson, 1995; Hart, 2012). In the Powder River 
Basin, the Wasatch Formation overlies the Fort Union 
Formation both conformably (central basin in Wyo-
ming) and unconformably (at basin margins; Flores 
and Bader, 1999). In Montana, the Wasatch Formation 
is dominantly fl uvial sandstone with subordinate fi ne-
grained clasts and signifi cant coalbeds (Culbertson and 
Mapel, 1976), whereas farther south it includes syn-
orogenic conglomerate where it is adjacent to resistant 
Precambrian and Paleozoic source rock (Love and 
Christiansen, 2014).

At least four stratigraphic criteria have been used 

Figure 8. (A) Tongue River Member, near Savage, Montana. (B) Ekalaka Member, near Ekalaka, Montana.

https://mbmg.mtech.edu/pdf/geologyvolume/Gunderson_CoalGeologyFInal.pdf
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to defi ne the contact between the Fort Union Forma-
tion and overlying Wasatch Formation (Seeland, 1993; 
Flores and Bader, 1999). Depending on the criteria 
used, the Wasatch Formation is considered entirely 
earliest Eocene (e.g., Denson and others, 1990) or 
partly upper Paleocene, at least locally (e.g., Nichols 
and others, 1988; Seeland, 1992). In Montana, the 
contact was placed at a regional unconformity approx-
imately 250 ft (75 m) below a 6- to 8-in-thick (15- to 
20-cm-thick), brown-weathering, calcareous coquina
(Denson and others, 1990; Vuke and others, 2001b).

The eff ect of the Paleocene/Eocene Thermal Max-
imum (PETM) on deposition of the Wasatch Forma-
tion has not been studied in Montana. Research of the 
age-equivalent Willwood Formation in the Bighorn 
Basin of Wyoming suggests that the PETM resulted 
in more seasonal or episodic precipitation because of 
the temperature increase (Baczynski and others, 2017), 

which facilitated changes in fl ora and fauna (Gin-
gerich, 2003; Wing and others, 2009). The fl ora and 
fauna of the Wasatch Formation in the Powder River 
Basin were also aff ected by the PETM (Wing and oth-
ers, 2003; Wagner, 2013).

Clinker 
Red clinker, prominent in the Fort Union and 

Wasatch Formations (fi gs. 5, 9), formed as rocks 
were baked or melted during burning of underlying 
coal intervals (Heff ern and Coates, 1997; Heff ern and 
others, 2013). Clinker deposits cap many ridges and 
escarpments in eastern Montana, because they are 
more resistant than the underlying rock, thus playing a 
role in modern topographic development (Heff ern and 
Coates, 1997; fi g. 9C). Clinker also forms lines along 
bedding within the Fort Union and Wasatch Forma-
tions where overburden was not removed by erosion 
(fi g. 9D). 

Coalbed

Clinker caprock

Figure 9. (A) Mammoth coalbed, Bull Mountains Basin near Roundup, Montana, K.B. Waren photo. (B) Clinker bed, C.W. Schwartz 
photo. (C) Tongue River Member with clinker caprock near Terry, Montana, G.N. Abdo photo. (D) Clinker along Hell Creek–Ludlow 
contact, near Baker, Montana.
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Biostratigraphic, Magnetostratigraphic, and 
Chronostratigraphic Age Constraints 

Biostratigraphic dating of the Hell Creek and Fort 
Union Formations has relied primarily on the presence 
or absence of dinosaur fossils, North American Land 
Mammal ages (NALMA; Krause, 1980; Gingerich and 
others, 1983; Archibald and others, 1987; Robinson 
and Honey, 1987; Lofgren and others, 2004; Gingerich, 
2016), molluscan faunal changes (Hartman and Roth, 
1998), and palynomorph zones (Nichols and Brown, 
1992; Pocknall and Nichols, 1996; Hotton, 2002; Nich-
ols, 2003). NALMA designations for the synorogenic 
deposits include Lancian (upper Hell Creek and Lance 
Formations); Puercan, Torrejonian, Tiff anian, and 
Clarkforkian (Fort Union Formation); and Wasatchian 
(Wasatch Formation; fi g. 4). Mammal fossils have 
been studied extensively in the Crazy Mountains Basin 
(e.g., Krause and Gingerich, 1983; Hartman and others, 
1989; Boyer and Bloch, 2003; Boyer and others, 2004; 
Bloch and others, 2006), and in eastern Montana and 
western North Dakota (e.g., Holtzman, 1978; Krause, 
1987; Strait and Krause, 1988; Kihm and others, 1993; 
Hunter and Pearson, 1996; Hunter and others, 1997; 
Hunter, 1999; Hunter and Archibald, 2002; see Horner 
and Hanson, 2020).

Magnetostratigraphic and chronostratigraphic 
studies of the Hell Creek and Fort Union Formations 
provide age constraints in specifi c areas (Archibald 
and others, 1982; Butler and others, 1987; Belt and 
others, 1997; Lund and others, 2002; Peppe and oth-
ers, 2009, 2011; Hicks and others, 2002; Swisher and 
others, 1993; Warwick and others, 2004; Hart, 2012; 
Buckley, 2018; fi g. 4). 

Infl uence of the Cannonball Sea on 
Synorogenic Sedimentation 

The Cretaceous epicontinental seaway that had oc-
cupied the Cordilleran Foreland Basin System retreat-
ed from Montana during latest Cretaceous time, but 
did not completely leave the Western Interior region 
(Hartman and Kirkland, 2002; Hoganson and Murphy, 
2002). During Paleocene time, the seaway (known as 
the “Cannonball Sea” at this time) primarily occupied 
the craton area of western North and South Dakota 
(fi g. 10), where the marine deposits are represented by 
the Cannonball Formation (Cvancara, 1976). Mam-
mal fossils, foraminifera, coccoliths, and ostracodes 
constrain the ages of bounding strata and tongues of 
the Cannonball Formation, and therefore the incur-
sions of the Cannonball Sea. The lowest tongue of the 

Cannonball Formation is constrained to upper Puer-
can, and part of the lower Tongue River Member that 
intercalates with Cannonball tongues is constrained to 
upper Torrejonian through lower Tiff anian (Hartman 
and others, 1998, 1999; fi g. 4). In eastern Montana, 
the lower Tongue River Member contains beds with 
brackish-water trace fossil associations and marine 
diatoms that closely alternate with freshwater facies 
(Belt and others, 2005). Torrejonian deposits of the 
Ekalaka Member in southeastern Montana (fi gs. 4, 8) 
display complex intercalations of marine, estuarine, 
and nonmarine deposits (Belt and others, 2002) that 
refl ect high-frequency alternations between freshwater 
and marginal-marine deposits in Montana (Belt and 
others, 2005). 

Paleovalleys and mature paleosols, including 
silcrete beds (siliceous paleosols) on the interfl uves 
between channels, indicate unconformities related to 
marine regressions (Belt and others, 2004). Paleo-
valleys cut into the upper Lebo, Ludlow, or Ekalaka 
Members (fi g. 3) as base level dropped, and were then 
backfi lled with Tongue River sediments during subse-
quent transgressions (Belt and others, 2002, 2004). 

Regionally, the zone that contains the paleosols 
spans the upper Lebo or Ludlow Members and the 
lower Tongue River Member in much of eastern Mon-
tana (Vuke and Colton, 1998, 2003; Vuke and others, 
2001a–f; 2003a,b; 2011). The most signifi cant uncon-
formity may occur at the Lebo–, Ludlow–, or Ekala-
ka–Tongue River contact (fi g. 3) where a thick silcrete 
bed and incised channels occur locally (Wehrfritz, 
1978; Belt and others, 2002, 2004). Plants preserved in 
the silcrete beds are dominantly non-branching Equi-
setum (“scouring rush”; Christensen, 1984), a marsh 
plant with diminutive leaves and roots that deposits 
silica in its outer epidermal walls. The main source of 
silica in the silcrete beds may have been windblown 
sand (Christensen, 1984), perhaps derived from mar-
ginal marine quartz-rich sands associated with the 
Cannonball Sea to the east (fi g. 10). 

Magnetostratigraphic studies indicate a time-cor-
relative unconformity associated with the Lebo–
Tongue River contact near Miles City in eastern Mon-
tana and with the Ludlow–Tongue River contact in the 
Little Missouri River area of western North Dakota. 
The unconformity represents a 0.26 to 0.62 mil-
lion-year long depositional hiatus (Peppe and others, 
2009, 2011). 

https://mbmg.mtech.edu/pdf/geologyvolume/HornerVertebratePaleoFinal.pdf
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In the Little Missouri River area of westernmost 
North Dakota, a single silcrete bed (the Rhame bed) 
occurs locally at the contact between the Ludlow 
Member equivalent and the Tongue River Member 
equivalent (Wehrfritz, 1978). Mature paleosols in-
cluding well-developed silcrete beds also occur at the 
contact between the Ekalaka Member and the over-
lying Tongue River Member (Belt and others, 2002; 
fi g. 3). A well-developed silcrete bed is also present 
in the Cave Hills of South Dakota at the contact be-
tween the Ekalaka Member equivalent and the Tongue 
River Member (Belt and others, 2002). Ages of mam-
mal teeth (Krause, 1987; Strait and Krause, 1988) 
above and below the unconformity at the top of the 
Ekalaka Member in southeastern Montana document 
a signifi cant time gap related to a regressive episode 
of the Cannonball Sea (Belt and others, 2002), which 
is correlative with unconformities located elsewhere 
in eastern Montana and western North Dakota at the 

top of the Ludlow or Lebo Members. The Cannonball 
Sea—the fi nal epicontinental sea to inundate the West-
ern Interior of North America—persisted into late Pa-
leocene time east of Montana (Lund and others, 2002), 
but its infl uence in eastern Montana diminished during 
later Tongue River deposition (fi g. 10). 

MAIN LARAMIDE PROVINCE

The main Laramide Province of the North Ameri-
can Cordilleran Foreland Basin System (fi g. 1) extends 
northward into Montana from the Central Rockies 
of Wyoming, although the placement of its northern 
boundary varies (e.g., Hamilton, 1988; DeCelles, 
2004; Yonkee and Weil, 2014). The northern place-
ment of Hamilton (1988) incorporates the main Lar-
amide uplifts and associated basins discussed in this 
section (fi gs. 1, 2). 

Cannonball
  Sea

Figure 10. Paleogeographic map showing a waning stage of the Cannonball Sea. Sea-level fl uctuations brought marginal marine envi-
ronments into eastern Montana intermittently during Paleocene time at least to the extent of the blue line. Figure from Blakey (2016).



13

Susan M. Vuke: Laramide Sedimentation

Regional Late Cretaceous Eastward-
Propagating Uplift

Magnetostratigraphic, biostratigraphic, and isoto-
pic age constraints have identifi ed a pre-Lancian (fi g. 
4) unconformity at the base of the Hell Creek and
Lance Formations in southern Montana and northern
Wyoming, and have determined regional trends in its
magnitude and duration (Belt and others, 1997). The
period of erosion represented by the unconformity is
greatest in the west and becomes younger to the east
by 3.5 million years (fi g. 3). Belt and others (1997)
concluded that the unconformity was the result of a
wave-like migration of tectonic uplift, rather than re-
lated to the regressing Western Interior Sea to the east.
The eastward-propagating phase of uplift (and associ-
ated erosion) moved 600 km (373 mi) in 3.5 Ma, equal
to a rate of 17.14 cm (6.8 in)/yr—greatly exceeding
the rate of fl exural response to Sevier thrust loading,
and beyond the range of forebulge migration (Belt and
others, 1997). This eastward propagation of uplift and
erosion is broadly consistent with recent geodynam-
ic modeling of the topographic development in the
Cordilleran System (Copeland and others, 2017), and
preceded compartmentalization into uplift arches and
associated basins (e.g., Carrapa and others, 2019).

The unconformity at the base of the Hell Creek 
Formation may occur regionally in eastern Montana 
and western North Dakota (Jensen and Varnes, 1964), 
with scour features and rip-up clast breccia or lithic 
clast lags at the base (Jensen and Varnes, 1964; Vuke 
and Colton, 1998; Flight, 2004). However, Flight 
(2004) related the unconformity at the base of the Hell 
Creek Formation in northeastern Montana to sea level 
fl uctuation, rather than tectonically driven surface 
uplift. Elsewhere in northeastern Montana an uncon-
formity is not recognized at the base of the Hell Creek 
Formation (Hartman and others, 2014).

Laramide Uplifts and Associated Structural-
Sedimentary Basins 

Bridger Uplift/Crazy Mountains Basin 
(fi gs. 2, 11, 12) 

The reactivated Mesoproterozoic Pass fault of 
the Southwest Montana Transverse Zone transects 
the central Bridger Range and separates the Helena 
Salient of the Sevier fold-thrust belt north of the fault 
zone, from the main Laramide Province to the south 
(fi g. 1). Basement-involved (Laramide-style) uplift 
associated with the sub-Bridger fault zone deformed 

and folded the thin-skinned (Sevier-style) thrust sheets 
at the south margin of the Helena Salient in the pres-
ent-day northern Bridger Range, and produced a com-
posite, northward-plunging, ancestral Bridger Range 
arch during Paleogene time (Lageson, 1989; Skipp and 
others, 1999). Subsequent Neogene extension down-
dropped the crest and western limb of the ancestral 
arch beneath the Gallatin Valley (Craiglow, 1986). 
The asymmetric Crazy Mountains Basin developed 
from thrust loading along its western margin, which 
produced a deep basin trough adjacent to the ancestral 
Bridger Arch. Based on structure contour maps, the 
trough probably formed largely during Maatrichtian 
time (Johnson and Finn, 2004; fi g. 4). Seismic data in-
terpretations indicate that Upper Cretaceous rocks are 
thicker in the basin trough than near the basin margins 
along the extent of the basin, whereas lower Mesozoic 
rocks appear to have uniform thickness, suggesting 
that Laramide-related subsidence began during Late 
Cretaceous time (Taylor, 2004). Uplift to the west 
caused rapid erosion of the Elkhorn Mountains vol-
canic fi eld, and basin subsidence kept pace with and 
accommodated the infl ux of immature sediment domi-
nantly from that source (Roberts, 1972; Taylor, 2004). 
A change from east-directed to south-directed paleo-
currents in Upper Cretaceous deposits in the north-
eastern part of the basin also suggests that the basin 
began to develop during Late Cretaceous time (Bor-
rell, 2000). As uplift continued, a series of coalescing 
alluvial fans of the dominantly Paleocene Fort Union 
Formation developed along the western basin margin 
(Piombino, 1979). Members of the Fort Union Forma-
tion were mappable in the eastern part of the basin, but 
were not distinguishable in the western part (Berg and 
others, 2000; McDonald and others, 2005).

The Crazy Mountains Basin is the deepest Lara-
mide basin in Montana and is one of the deepest in the 
Western Interior (Dickinson and others, 1988), having 
accommodated 10,300 ft (3,140 m) of Upper Creta-
ceous and more than 6,600 ft (5,000 m) of Paleocene 
sedimentary deposits along its axis (Roberts, 1972). 
Although the Helena Salient, which borders much of 
the western Crazy Mountains Basin, is referred to as a 
salient of the fold-thrust belt (e.g., Harlan and others, 
1988) it also represents a deep crustal segment that 
translated eastward along high-angle reactivated base-
ment faults (Reynolds, 2004) and functioned as a Lar-
amide-style uplift (Lageson, 1989; Skipp and others, 
1999). In that sense it is part of the Laramide–Sevier 
overlap zone (Kulik and Schmidt, 1988; fi g. 1).
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Battle Ridge and the “Bangtail Mountains” in the 
western Crazy Mountains Basin are surface expres-
sions of a west-directed back-thrust zone that was ge-
netically related to the sub-Bridger thrust zone (Skipp 
and others, 1999; fi g. 12). The back-thrusts steeply 
folded and locally overturned strata of the upper Liv-
ingston Group and those of the Fort Union Formation 
as young as late Paleocene near their leading edge, 
producing folds within the basin (Skipp and others, 
1999). The most signifi cant Laramide deformation 
occurred during late Paleocene and early Eocene time 
(Craiglow, 1986; Harlan and others, 1988).

Beartooth Uplift/Bighorn Basin 
(fi gs. 2, 13)

A WNW–ESE-striking, basement-involved reverse 
fault bounds part of the north side of the Beartooth 
Uplift, but the fault trace defl ects southward at the Red 
Lodge corner (fi g. 13). New thermochronological data 
suggest that exhumation of the Beartooth Uplift may 
have begun as early as Early Cretaceous (Carrapa and 
others, 2019). Initially, fi ne-grained sediment derived 
from unroofi ng of 3.6 km of poorly resistant Mesozoic 
rock bypassed the uplifted footwall of the fault and 
was deposited in the distal basin (DeCelles and others, 
1991b). When Paleozoic, and later, Precambrian rocks 
in the eroding hanging wall were breached, Paleocene 
synorogenic alluvial fan conglomerate (DeCelles and 
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others, 1991a) was shed into an asymmetric, east-ver-
gent growth syncline along the western margin of the 
Bighorn Basin (Hoy and Ridgway, 1997). As much as 
7,000 m (23,000 ft) of sediment was deposited in the 
syncline (Foose and others, 1961; Blackstone, 1986). 

The synorogenic conglomerate adjacent to the 
northern part of the WNW–ESE-striking fault was 
designated the Linley Conglomerate (Calvert, 1916), 
and was included as a member of the Paleocene 
Fort Union Formation (Lopez, 2000a). South of Red 
Lodge, a similar unit has been called the Beartooth 
Conglomerate (DeCelles and others, 1991a). 

The conglomerate proximal to the fault contains a 
depositionally inverted section of approximately 3 km 
(1.86 mi) of Phanerozoic and Precambrian crystalline 
rock, refl ecting the progressive erosion and unroofi ng 
of the Beartooth Arch (Dutcher and others, 1986). 
Progressive angular unconformities, with dips as 
high as 50° along the west side of the basin and more 
subdued farther out into the basin, further document 
the relationship between progressive uplift and basin-
ward rotation of proximal synorogenic conglomerates 
(Dutcher and others, 1986; Koenig, 2015).

 According to one model, fault-propagation folding 
of the Beartooth Conglomerate alluvial fan/alluvial 
plain deposits produced considerable uplift before 
breakout of the Beartooth thrust fault along the west-
ern side of the Bighorn Basin, south of Red Lodge 
(DeCelles and others, 1991a). Another interpretation 
suggests that this period of uplift involved only minor 
deformation (Stewart and others, 2008). 

The uplift-proximal Beartooth Conglomerate 
interfi ngers with the more distal, fi ner-grained Tongue 
River Member of the Fort Union Formation in the 
Bighorn Basin (Nielsen, 2009; fi g. 4). Late Paleocene 
fl oral dates from within the Beartooth Conglomerate 
along the eastern front of the Beartooth Range in Mon-
tana (Hickey, 1980) correlate with late Paleocene fl o-
ral and faunal fossil dates in the Fort Union Formation 
in the Bighorn Basin to the east (Flueckinger, 1970). 
However, the fl oral age of the uppermost conglomer-
ate may extend into Eocene time (Hickey, 1980). Up-
per conglomerate beds along the northern front of the 
Beartooth Range may also be earliest Eocene (Raines 
and Johnson, 1995; Hart, 2012). A NE-fl owing trunk 
drainage system is interpreted to have occupied the 
Bighorn Basin during earliest Eocene time (Seeland, 
1992). 

The oldest deposits of the Beartooth Conglomerate 
were carried in the hanging wall of the Beartooth fault 
(Nielsen, 2009), which overrode younger Beartooth 
Conglomerate deposits (DeCelles and others, 1991a). 
At the Red Lodge corner of the basin where the trace 
of the Beartooth thrust fault changes orientation (fi g. 
13), the hanging wall locally completely overrode 
the Beartooth Conglomerate and currently rests on 
more distal facies of the Fort Union Formation (Bar-
tholomew and others, 2008). 

Fission track dating indicates that the Beartooth 
Uplift was actively rising from early Paleocene to 
early Eocene time (Omar and others, 1994; fi g. 4). 
Preserved paleoseismites are abundant in the late Pa-
leocene Tongue River Member of the Fort Union For-
mation (clastic dikes, dewatering structures, contorted 
laminae), and in the Eocene Willwood Formation in 
Wyoming (liquefaction structures) in the Bighorn 
Basin (Bartholomew and others, 2008; Jackson and 
others, 2019). Their presence suggests that the main 
phase of deformation of the Beartooth Uplift extend-
ed from late Paleocene into early Eocene time (Bar-
tholomew and others, 2008; Stewart and others, 2008). 
This agrees with paleoelevation, thermochronology, 
and provenance data that indicate the main phase of 
uplift was late Paleocene into early Eocene time (Fan 
and Carrapa, 2014), although initiation of uplift may 
have begun during Late Cretaceous time in Wyoming 
(Fan and Carrapa, 2014; Jackson and others, 2019) or 
as early as Early Cretaceous time in Montana (Carrapa 
and others, 2019).

Big Horn Uplift/Powder River Basin 
(fi gs. 2, 14, 15) 

Four structural domains make up the northern part 
of the greater Big Horn Uplift or Arch in Montana (fi g. 
14): (1) the Big Horn Uplift proper is a back-thrusted 
domain with 3,000 m (9,800 ft) of structural relief that 
exposes the basement core of the arch. This domain 
includes a graben on its western side. (2) The Pryor 
Mountain domain lies to the immediate west of the 
graben, forms the eastern boundary of the Bighorn 
Basin, and has 3,400 m (11,150 ft) of structural relief. 
(3) The Billings Arch domain is an arched platform
composed of Mesozoic strata located north of the
Pryor Uplift, and is bisected by the NE–SW-striking
Fromberg fault zone. The domain is bounded on the
north by the Lake Basin fault zone. (4) The Hardin
Platform is located east of the Billings Arch, is dom-
inantly composed of Cretaceous rock at the surface,
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and is also bounded on the north by the Lake Basin 
fault zone, which extends into the Powder River Basin 
(Robinson and Barnum, 1986). The Hardin Platform 
domain bounds the Powder River Basin to the east and 
north (Naus, 2000). Geophysical data suggest that the 
subsurface structure of the northwestern Powder River 
Basin extends along the western side of the Hardin 
Platform (Robbins, 1994). Seismic profi les across the 
east fl ank of the Big Horn Mountains indicate that two 
major west-dipping thrust faults are present close to 
the surface in northern Wyoming (Robbins and Grow, 
1992; Robbins, 1994; fi g. 15). 

The Powder River Basin is asymmetrical with 
strata dipping as many as 20–25 degrees along its 
western margin and only 2–5 degrees along its east-
ern margin (Flores and Bader, 1999). Gravity “lows” 
are lowest on the west side of the basin, refl ecting the 
basin’s asymmetry (Robbins, 1994). The Fort Union 
Formation is over 5,200 ft (1,585 m) thick along the 
basin axis in the western part of the basin in Wyo-
ming (Curry, 1971). Abundant mudstone in the central 
part of the basin led to interpretations of an internally 
drained lacustrine environment for the Lebo Member 

of the Fort Union Formation (Ayers, 1986). However, 
glauconite in the Lebo Member (Whipkey and others, 
1991) suggests that unroofi ng of Cretaceous marine 
shale from the Bighorn Uplift contributed the fi ne-
grained sediment to the central part of the basin, hav-
ing bypassed coarser sediment along the basin margin 
(Flores and Bader, 1999).

Isopach data show little change in thickness of the 
Upper Cretaceous Fox Hills and Hell Creek Forma-
tions across the northern Powder River Basin (Connor, 
1992). Abundant fi rst-cycle carbonate clasts in the 
lowermost part of the Paleocene Tullock Member of 
the Fort Union Formation in the northwestern part of 
the Powder River Basin suggest doming and erosion 
of Paleozoic and Mesozoic rocks in the Big Horn 
Uplift area during earliest Paleocene time (Hansley 
and Brown, 1992; Brown, 1993). However, Tullock 
Member streams fl owed east–northeast across a gen-
tly sloping alluvial plain toward the Cannonball Sea 
(Hansley and Brown, 1992), suggesting that basin 
formation was not developed enough at the surface to 
defl ect the fl ow direction. Paleocurrent and isopach 
data indicate that more signifi cant uplift began during 

Powder
River
Basin

Bull Mountains Basin

Hardin
Platform

Billings
Arch

Pryor
Uplift

graben

Back-thrusted
Bighorn Uplift

Proper

Lake    Basin    Fault    Zone

1
2

3 4

BHB

Fr
om

be
rg

Fa
ul

t Z
on

e

Location map

Figure 14. Greater Bighorn Uplift domains and adjacent basins. BHB, Bighorn Basin. Modifi ed from Naus (2000).
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early Puercan (fi g. 4) deposition of the Lebo Member 
of the Fort Union Formation (Curry, 1971; Whipkey 
and others, 1991; Belt and others, 1992). Based on 
sedimentary facies studies, the Bighorn Uplift became 
a major source of sediment for the Powder River Basin 
beginning in late Paleocene time (Flores and Ethridge, 
1985). Additionally, according to paleoelevation and 
thermochronology data, the highest rate and magni-
tude of uplift associated with the Big Horn Uplift and 
thrust-loading of the Powder River Basin occurred 
during late Paleocene–early Eocene time (Fan and 
Carrapa, 2014). 

The Wasatch Formation (fi gs. 3, 4) conformably 
overlies the Fort Union Formation in the center of the 
Powder River Basin in Wyoming, but unconformably 
along its margins (Flores and Bader, 1999). The in-
terplay between tectonic subsidence and base-level 
changes promoted development of raised bogs that 
in turn produced thick, economical, subbituminous 
and lignite coalbeds in the Tongue River Member of 
the Fort Union Formation and the Wasatch Formation 
(Flores and Bader, 1999; Gunderson and Wheaton, 
2020). However, along the western margin of the 
basin in Wyoming, synorogenic conglomerate is 
present in the late Paleocene upper Fort Union and 
early Eocene Wasatch Formations (Love and 
Christiansen, 2014), recording rapid erosion of the 
Bighorn Uplift (Hoy 

and Ridgway, 1997). Conglomerate is lacking along 
the western edge of the Powder River Basin in Mon-
tana, where source areas adjacent to the basin primari-
ly consisted of poorly resistant Cretaceous rock, rather 
than resistant Paleozoic and Precambrian rock as to 
the south. 

During late Paleocene and earliest Eocene time, a 
trunk fl uvial drainage system fl owed along the subsid-
ing part of the basin adjacent to the Bighorn Uplift and 
then diverted to the east along the northern edge of the 
Black Hills Uplift, fl owing toward the Cannonball Sea 
(Seeland, 1988, 1992; fi g. 10).

Central Montana Uplift1/Bull Mountains Basin (fi gs. 
2, 16) 

The Bull Mountains Basin in central Montana is 
an asymmetrical syncline (Stricker, 1999) with su-
perimposed anticlines (Luebking and others, 2001). 
It is bounded on the north by the southern part of the 
WNW–ESE-striking Central Montana Uplift (fi g. 
16), and on the south by the parallel Lake Basin fault 
zone (fi g. 2), both of which are associated with blind 
Laramide reverse and strike-slip faults that were reac-
tivated from Proterozoic basement structures (Nelson, 

2In this paper Central Montana Uplift refers to its 
original application (e.g., Lageson and others, 2020), 
not to other applications (e.g., Bader, 2019a).
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1992, 1993). The youngest deposits in the basin are 
those of the Paleocene Fort Union Formation, and the 
Tongue River Member is the dominant unit exposed 
(Wilde and Porter, 2000). 

The Central Montana Uplift is a foreland structure 
composed of several structurally positive tectonic 
elements including the Big Snowy Mountains at its 
west end, the Porcupine Dome at its east end (e.g., 
Sonnenberg, 1956; Shurr and Rice, 1986), and numer-
ous smaller domes and folds between (Nelson, 1993; 

Porter and others, 1996; Porter and Wilde, 1999; Vuke 
and Wilde, 2004; fi gs. 2, 11, 16). The Cat Creek An-
ticline (fi gs. 16, 17)—a fault-propagation fold (Nel-
son, 1992, 1993)—and related features bound part of 
the north end of the Central Montana Uplift, which 
is underlain by a Laramide-reactivated basement-in-
volved reverse fault that dips to the southwest and was 
buttressed by stable craton to the north (Nelson, 1992, 
1993). The Cat Creek reverse fault displays approxi-
mately 1,200 m of vertical separation in addition to an 
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unknown amount of lateral (oblique-slip) movement 
(Nelson, 1992, 1993). The Willow Creek fault, a par-
allel subsurface basement fault, bounds the southern 
margin of the Central Montana Uplift and the northern 
end of the Bull Mountains Basin (Stone, 1969; fi g. 
2). This reverse fault extends along the southern Big 
Snowy Uplift (Baker and Johnson, 2000; fi gs. 2, 16). 

The Willow Creek Syncline (fi g. 16), just south of 
the Central Montana Uplift, represents the trough of 
the asymmetric Bull Mountains Basin (Woodward and 
others, 1997). Most of the basin gently dips toward the 
trough from the Lake Basin fault zone along the south-
ern margin of the basin (Woodward and others, 1997), 
and the northern margin of the greater Big Horn Up-
lift (Naus, 2000). Paleoseismites in the Tongue River 
Member, localized in the Bull Mountains Basin, sug-
gest the occurrence of large-magnitude, late Paleocene 
earthquakes generated by movement on a nearby fault 
(Bartholomew and others, 2008).

Clast lithologies and sediment grain-size distri-
butions in the basin indicate that the Central Mon-
tana Uplift did not contribute signifi cant amounts of 
sediment to the Bull Mountains Basin (Shurr, 1972). 
Although one study demonstrated consistent paleofl ow 
to the south for the Tongue River Member, away from 
the Central Montana Uplift (Shurr, 1972), another 
study indicated eastward paleocurrent directions for 
the Tongue River Member, refl ecting a western source 
and paleodrainage toward the Cannonball Sea (See-
land and others, 1988; fi g. 10). The Central Montana 
Uplift represents the last reversal of a trough in rough-
ly the same position that was episodically present from 
Proterozoic through Early Cretaceous time (Protero-
zoic Belt Basin, Paleozoic Big Snowy Trough, and 
Mesozoic Central Montana Trough; Peterson, 1981). 
The most signifi cant uplift in this area began during 
Paleocene time, and reached maximum uplift after 
Paleocene time (Shurr, 1972; Nelson, 1993). Only a 
small, unnamed arch (fi gs. 2, 14), recognized from its 
gravity signature and to a lesser extent its magnetic 
signature, separates the Bull Mountains Basin from the 
Powder River Basin (Robbins, 1994). 

Black Hills Uplift and Miles City Arch
The domal, basement-cored Black Hills Uplift 

is the easternmost of the Laramide basement-cored 
uplifts that extend into Montana (fi gs. 2, 15), and had 
the latest time of initial development (Paleocene time; 
Lisenbee and DeWitt, 1993). Fault data indicate that 
subhorizontal shortening was kinematically identi-

cal to that of most other Laramide uplifts, although 
unlike the other Laramide uplifts, basement fabric 
reactivation was likely insignifi cant (Singleton and 
others, 2019). Although the uplift provided sediment 
to the east side of the Powder River Basin (Merin 
and Lindholm, 1986; Lisenbee and DeWitt, 1993; fi g. 
15), it contributed only minimally to basin subsidence 
relative to the loading infl uence of the basin-bounding 
reverse faults associated with the Big Horn Uplift on 
its western side. 

The Miles City Arch in southeastern Montana (fi g. 
2) is typically considered the northwestern extension
of the basement-cored Black Hills Uplift that is cen-
tered in northwestern South Dakota (Lisenbee and De-
Witt, 1993; Robbins, 1994), although the Miles City
Arch has also been interpreted as a discrete structural
entity (Thomas, 1974). Paleocurrent patterns of the
Fox Hills and Hell Creek Formations, as well as the
lower Ludlow and Tullock Members of the Fort Union
Formation, suggest that the Black Hills area did not
obstruct eastward drainage toward the Cannonball Sea
(fi g. 10) during Late Cretaceous and early Paleocene
time (Seeland, 1988; Lisenbee and DeWitt, 1993; Belt
and others, 1997). Isopach maps also show no strati-
graphic thinning across the Miles City Arch during
deposition of the Hell Creek and Lance Formations
(Connor, 1992).

Initiation of the Black Hills Uplift–Miles City 
Arch occurred during earliest Torrejonian time based 
on sedimentologic evidence (Belt, 2004; fi g. 4). 
During late Torrejonian and early Tiff anian time, the 
Black Hills area was further uplifted and eroded, tilt-
ing strata in lower parts of the Tongue River Member 
to the northwest and producing a regional angular un-
conformity in southeastern Montana (Vuke and others, 
2001a; Belt and others, 2004). The uplift may have 
caused a shift in depocenters from east of the present 
Black Hills to the northern Williston Basin during the 
transition from Puercan to middle Torrejonian time 
(fi g. 4), as refl ected by a signifi cant shift in paleodrain-
age orientation (Diemer and Belt, 1991; Belt and 
others, 1997) throughout eastern Montana and western 
North Dakota (Belt, 1993). A locally persistent Puer-
can unconformity is present at the base of the Ekalaka 
Member in southeastern Montana, also refl ecting this 
episode of uplift (Belt and others, 2002). In addition, 
earthquakes associated with uplift may have triggered 
middle Paleocene mass movement, refl ected by large 
areas of rotated bedding and megabreccias, present 
along the axis of the Black Hills Uplift (Belt and oth-
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ers, 2002) and Miles City Arch (Garrett, 1963). 
Paleozoic clasts in the Tongue River Member in 

the central part of the Powder River Basin could have 
originated from the Bighorn Uplift on the west side 
of the basin or the Black Hills Uplift on the east side. 
However, the Tongue River Member contains detri-
tal marble and phyllitic rock fragments just south of 
the Montana border in the central part of the Powder 
Basin, both of which more likely came from the Black 
Hills Uplift. This suggests that erosion breached the 
crystalline core of the uplift during Tongue River 
deposition and that the sediment source for the central 
and eastern part of the basin was at least partly from 
the Black Hills Uplift (Merin and Lindholm, 1986). 
An unconformity at the base of the Wasatch Formation 
on the east side of the Powder River Basin suggests 
a second Black Hills Laramide tectonic pulse during 
latest Paleocene–early Eocene time (Lisenbee and 
DeWitt, 1993). During or after uplift of the Black Hills 
area, a system of NE–SW-striking faults of the Belle 
Fourche Arch (fi g. 2) was active, off setting the Black 
Hills monocline, which refl ects a blind fault system on 
the west side of the Black Hills Uplift. 

CORDILLERAN FORELAND BASIN 
SYSTEM NORTH OF THE MAIN 

LARAMIDE PROVINCE

Outside of the primary extent of the main Lar-
amide Province (Laramide Belt of Hamilton, 1988; 
“domains 1 and 2” of Lageson and others, 2020; fi gs. 
1, 11), many peripheral basement-cored uplifts and 
basins are also referred to as Laramide-style struc-
tures (e.g., Rice and Shurr, 1978; Thamke and Craigg, 
1997). These features are less pronounced than those 
within the main Laramide Province, and the relation-
ships between uplifts and basins are poorly known. 
This area of less-pronounced Laramide-style features 
is “domain 3” of Lageson and others (2020).

Western Williston Basin and Related Structures 
The main part of the intracratonic Williston Basin 

is centered in North Dakota (fi g. 2), but its western 
margin is defi ned by Laramide-style uplifts in Mon-
tana: the Black Hills Uplift, Miles City Arch, Porcu-
pine Dome, and Bowdoin Dome (Shurr and others, 
1989a; Anna and others, 2010; fi g. 11). The Williston 
Basin—the largest intracratonic sedimentary basin 
in North America (Hamke and others, 1966)—may 
have been dominantly fl exural without an associated 
fault-controlled uplift along its margins, distinguishing 

it from basins of the Laramide Province (Sloss, 1987). 
However, a Laramide-style evolutionary phase is inter-
preted for the Williston Basin based on basement-in-
volved reverse and strike-slip faults that caused most 
of the mild deformation within the basin (Anna, 1986; 
Lisenbee and DeWitt, 1993; Herrera, 2013). 

The Williston Basin underwent steady, continu-
ous subsidence throughout most of Phanerozoic time 
(Fowler and Nisbet, 1985), although the sediment 
accumulation rate increased at the onset of Laramide 
foreland basin sedimentation (Cherven and Jacob, 
1985). Subsequent slow, constant subsidence is indi-
cated by the continuity of Late Cretaceous and early 
Paleogene rocks in the basin, and the basin received 
more than 3,000 ft (915 m) of sediment during this 
time (Anna, 1986). The change from Tongue River 
Member to overlying Sentinel Butte Member within 
the Fort Union Formation refl ects a shift in source ar-
eas that resulted from uplift to the west and northwest 
(Royce, 1970). The Tongue River and Sentinel Butte 
Members also thicken toward the center of the basin, 
indicating signifi cant Paleocene basin subsidence 
during their deposition (Royce, 1970). 

The Cannonball Sea occupied the central part of 
the Williston Basin during much of early Paleocene 
time (fi g. 10), with only limited incursion into Mon-
tana (Belt and others, 1997; Warwick and others, 
2004; Belt and others, 2005). The sea dwindled as 
basin subsidence no longer kept pace with sedimenta-
tion rates during deposition of the late Tiff anian Sen-
tinel Butte Member (Royce, 1970; Kihm and others, 
1993). The continuity and thickness of lignite beds in 
the Tongue River and Sentinel Butte Members in the 
Williston Basin indicate a tectonic setting that was 
stable enough to allow a consistent water table level, 
but with dynamic subsidence rates that allowed organ-
ic matter to accumulate, conducive to lignite develop-
ment (Daly and others, 1985). 

The asymmetric, NNW–SSE-striking, fault-prop-
agated Cedar Creek Anticline (fi gs. 11, 18) is a major 
Laramide structure within the southwestern part of 
the Williston Basin (Shurr and others, 1989a), hosting 
signifi cant hydrocarbon yields (Clement 1986, 1987;  
Hofmann, 2020). The basement-cored structure may 
coincide with the fault boundary between the Wyo-
ming and Trans-Hudson Precambrian basement prov-
inces at depth (Sims and others, 1991; Bader, 2019b), 
although the eastern margin of the Wyoming Province 
has also been interpreted much farther west (Worth-

https://mbmg.mtech.edu/pdf/geologyvolume/Hofmann_Devonian_Web_Final.pdf
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ington and others, 2015). Subsurface data indicate 
recurrent movement along the Cedar Creek basement 
fault, and tectonic stability from Middle Jurassic to 
post-Paleocene time (Clement, 1986, 1987). However, 
surface mapping places the basal upper Cretaceous 
Hell Creek Formation on progressively lower parts of 
the underlying Fox Hills Formation toward the axis of 
the anticline, suggesting some Late Cretaceous move-
ment followed by erosional beveling prior to deposi-
tion of the Hell Creek Formation (Vuke and Colton, 
1998). 

Paleocene Ludlow Member fl uvial systems fl owed 
across the eroded Cedar Creek Anticline, but during 
later Paleocene Tongue River deposition, the anticline 
was again prominent enough to obstruct drainage (Belt 
and others, 1984). The greatest uplift of the structure 
was post-Paleocene movement along the high-angle, 
SE-dipping, reverse fault system that displaced Pa-
leozoic, Jurassic, and Cretaceous rocks up to the east 
(Clement, 1986, 1987). 

The Sheep Mountain Syncline (fi g. 11) is adjacent 
to the steeply dipping west limb of the Cedar Creek 

Anticline. The Tongue River Member is thicker in the 
Sheep Mountain Syncline area than on the east fl ank 
of the anticline (Vuke and Colton, 1998). 

Seismic data demonstrate vertical displacements 
on basement-rooted faults associated with the Pop-
lar Dome (Shurr and others, 1993; fi g. 11). The Fort 
Union Formation is tilted away from the Poplar Dome 
in the western part of the Williston Basin, refl ecting 
Laramide-style uplift of the dome that occurred during 
post-Paleocene time (Orchard, 1987; Thomas, 1974).

Two subbasins are present along the margin of the 
Williston Basin—the Opheim Basin near Poplar Dome 
and the Circle Basin near Porcupine Dome (fi g. 11). 
The Blood Creek Basin or Syncline (Thomas, 1974; 
fi g. 11) is arbitrarily included as part of the Williston 
Basin on some maps (Hamke and others, 1966). Other 
maps exclude the syncline from the Williston Basin 
(Shurr and others, 1989a).

Additional Laramide-Style Structures North of the 
Main Laramide Province 

The relationship between foreland structures and 
sedimentation is also unknown for other structures in 

Figure 18. Ludlow Member, west limb of Cedar Creek Anticline near Glendive, Montana, looking north.
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the Cordilleran Foreland Basin System that are periph-
eral to the main Laramide Province. The Consortium 
for Continental Refl ection Profi ling (COCORP) deep 
seismic profi les across northern Montana (fi g. 11) 
show faults interpreted to extend to mid-crustal levels 
(Baker and Johnson, 2000). The Bowdoin Dome was 
a long-lived positive tectonic element with a Laramide 
history (Shurr and others, 1993; Shurr and Monson, 
1995). The Bearpaw Arch is a basement-cored Lar-
amide feature (Baker and Johnson, 2000) that was 
intruded by laccoliths in later Eocene time (Hearn and 
others, 1964). Similarly, the Little Belt Uplift had a 
Laramide history, including movement on a basement 
reverse fault on its northeast side (Baker and Johnson, 
2000). The Little Belt area was subsequently uplifted 
further during the intrusion of later Eocene laccoliths 
(Marvin and others, 1973), exposing Precambrian 
crystalline basement rocks in the Little Belt Moun-
tains. The Sweet Grass Hills in northwestern Montana, 
located along the international border (fi g. 11), also 
had a Precambrian ancestry (Lopez, 2000b).

The Hoagland Basin and associated Coburn Syn-
cline are present between the Bearpaw Uplift and 
Bowdoin Dome. The Blood Creek Basin (Syncline) 
(Thomas, 1974) is the most prominent basin in the 
area and lies along the northern margin of the main 
Laramide Province (fi g. 11).

The Sweetgrass Arch is a basement-involved 
structure that extends northward into Canada and 
southeastward to the Little Belt Uplift. The arching of 
sedimentary rocks is easily discernable on a COCORP 
deep seismic line (Latham and others, 1988). The 
structure was strongly infl uenced by movement on the 
eastward-migrating Sevier fold-thrust belt to the west 
(Fuentes and others, 2011; Schwartz and Vuke, 2019) 
before reaching its present orientation during the fi nal 
stage of contractile orogenesis (Lorenz, 1982). 

LINEAR STRUCTURES

Sets of basement-cored linear structures transect 
the Cordilleran Foreland Basin System. These include 
a WNW–ESE-striking set (the Cat Creek, Willow 
Creek, Lake Basin, and Nye–Bowler left-lateral zones) 
and a NE–SW-striking set (the Hinsdale, Weldon–
Brockton, and Fromberg right-lateral zones), attribut-
ed to simple shear (Stone, 1969; Bader, 2019a) from 
reactivation of Paleoproterozoic conjugate basement 
fault zones (Bader, 2019a; fi gs. 2, 11). Subsurface data 
indicate that many of the faults underwent signifi cant 

dip-slip reverse movement (Shurr and others, 1989b; 
Nelson, 1993; Baker and Johnson, 2000). En echelon 
faults, anticlines, domes, and half domes characterize 
some of the features (fi g. 16), and are manifestations 
of subsurface basement-involved faults. Others are 
expressed as zones of linear fault traces. Gravity and 
aeromagnetic anomalies (Smith, 1970; Woodward 
and others, 1997) and isostatic residual gravity maps 
(Bader, 2019a) also help delineate these structures. 
Reactivation of these basement structures interplayed 
with basin development in the Laramide Province of 
the Central and Northern Rocky Mountains (Bader, 
2019a), and this framework confi nes major structural 
features (Thomas, 1974) throughout the Montana and 
Wyoming Foreland Basin System.

The Lake Basin and Nye–Bowler WNW–ESE 
linear structures represent reactivated Precambrian 
faults (Bader, 2019a) that infl uenced development of 
the Laramide Crazy Mountains Basin (Roberts, 1972). 
The Nye–Bowler structure (Wilson, 1936) is repre-
sented by a complex regional anticlinal trend produced 
by movement on basement faults. The feature sepa-
rates the Crazy Mountains Basin from the Bighorn 
Basin (fi gs. 1, 2), and diff erent structural styles occur 
on either side of the feature (Johnson and Finn, 2004). 
The Paleocene Lebo Member of the Fort Union For-
mation is the youngest preserved unit that is involved 
in folding associated with the Nye–Bowler linear 
structure (Johnson and Finn, 2004).

The Cat Creek and Willow Creek linear structures 
bound parts of the Central Montana Uplift on the 
north and south, respectively, refl ecting reactivated 
basement faults. A basement-involved thrust fault 
along the south side of the Big Snowy Uplift aligns 
with the Willow Creek fault on the south side of the 
Central Montana Uplift and indicates that it was also 
involved in Laramide movement (Baker and Johnson, 
2000). The Willow Creek and Lake Basin linear fea-
tures bound the Bull Mountains Basin on the north and 
south, respectively (Sonnenberg, 1956). 

The Bowdoin Dome is geographically associated 
with the Hinsdale fault, the Poplar Dome is geograph-
ically associated with the Weldon–Brockton fault zone 
(Stone, 1969), and the Blood Creek Syncline is geo-
graphically associated with part of the northern Central 
Montana Uplift. These associations may be genetically 
related (Thomas, 1974). However, the area north of the 
Central Montana Uplift may have been stable craton 
during Laramide tectonism, and movement on the 
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southern part of the Weldon fault postdated Laramide 
tectonism (Nelson, 1993). 

The NE–SW-striking Pendroy fault bisects the 
Sweetgrass Arch into the northern Kevin–Sunburst 
Dome and the South Arch, off setting the fold axes of 
the two components (Dobbin and Erdmann, 1955; fi g. 
11). The Pendroy and parallel Scapegoat–Bannatyne 
subsurface faults have been interpreted as part of a 
wrench-fault system that was activated by Laramide 
tectonism (Stone, 1969; Thomas, 1974). A wrench-
fault origin of the Williston Basin has also been pro-
posed (Thomas, 1974), specifi cally involving two NE–
SW-striking fault zones that bound the basin (Gerhard 
and others, 1982), but data from COCORP seismic 
lines suggest that this hypothesis is unlikely (Latham 
and others, 1988). 

The Belle Fourche paleo-arch is marked by a zone 
of NE–SW-striking faults in northeastern Wyoming 
(fi g. 2). The faults are related to basement structures, 
and were active throughout the Phanerozoic. Laramide 
movement on the faults was suffi  cient to infl uence 
synorogenic basin-fi ll sediment (Slack, 1981). Some 
NE–SW-striking faults in southeastern Montana cross-
cut the Hell Creek Formation but seem not to persist 
into the Fort Union Formation; others off set rocks as 
young as the Tongue River Member of the Fort Union 
Formation in this area (Vuke and others, 2001a,f). A 
NE–SW-striking zone of linear features has also been 
identifi ed in this area, based on satellite images and 
high-altitude aerial photos (Shurr, 2000). 

FUTURE WORK

The distinction between structures of the main 
Laramide Province and structures identifi ed as “Lar-
amide-style” north of the belt needs clarifi cation, and 
the relationship between tectonism and sedimentation 
north of the main Laramide Province needs more 
research. Some of the structures north of the main 
Province (fi gs. 2, 10) extend into Canada, where the 
term “Laramide” has a diff erent, broader application 
(Osborn and others, 2006). More research on these 
structures that transcends the international boundary is 
needed. Continued thermochronological dating of Lar-
amide uplifts is needed for more refi ned interpretations 
of exhumation timing. More work is also needed on the 
intersecting WNW–ESE and NE–SW faults in central 
and eastern Montana to update interpretations in light 
of the deep reverse-fault movement identifi ed on some 
of them (Nelson, 1992; Shurr and others, 1989b) and 

their relation to basement structures (Bader, 2019a). 
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